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Spin-orbit-coupled spinor gap solitons in Bose-Einstein condensates
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Spin-1 spin-orbit-coupled spinor Bose-Einstein condensates have been realized in experiment. We study
spin-orbit-coupled spinor gap solitons in this experimentally realizable system with an optical lattice. The
spin-dependent parity symmetry of the spin-orbit coupling plays an important role in the properties of gap
solitons. Two families of solitons with opposite spin-dependent parity are found. Using an approximate model
by replacing the optical lattice with a harmonic trap, we demonstrate the physical origin of the two families.
For the zero effective quadratic Zeeman shift, we also find a type of gap soliton that spontaneously breaks the

spin-dependent parity symmetry.
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I. INTRODUCTION

In nonlinear phenomena, solitons are notably interesting
[1,2]. Nonlinearities are able to balance the dispersion of
spatially localized wave packets to form solitary waves. De-
pending on the physical origin and nonlinear backgrounds, the
types of solitons are very diverse [3,4]. Among them, there is
a particular family, called gap solitons [5,6]. The existence of
gap solitons requires that there must be energy gaps in the
dispersion relation of corresponding linear systems. Nonlin-
earities excite gap solitons and exactly situate them in these
linear energy gaps. In general, periodic potentials provide an
important approach to open gaps in a linear dispersion rela-
tion. Therefore, nonlinear periodic systems are widely used to
explore gap solitons. In nonlinear optics, periodic potentials
can be afforded by waveguide arrays and optically induced
photonic lattices [7]. In atomic Bose-Einstein condensates
(BEC:s), optical lattices are a powerful experimental means to
control the dispersion relation for the gap opening [8].

Besides their specific location in the linear gaps, gap
solitons have a generic feature: They can be classified as
fundamental and higher-order modes [9]. Higher-order modes
can be considered as the composites of fundamental ones
[10-12]. Different from usual bright solitons that are sup-
ported by only attractive nonlinearities, gap solitons can
exist in the presence of attractive [13,14] or repulsive [15]
nonlinearities. This makes it possible to experimentally ob-
serve gap solitons in atomic BECs with repulsive interactions
[16].

The experimentally tunable optical lattices and interactions
make the BECs an ideal platform to investigate gap solitons
[17-21]. Furthermore, one of the outstanding properties of
the BEC systems is the experimentally possible implementa-
tion of multiple components. Interactions and couplings [22]
between multiple components introduce novel properties to
gap solitons [23-28]. Recently, gap solitons in spin-orbit-
coupled two-component BECs loaded into optical lattices
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have demonstrated interesting features originating from spin-
flip symmetries of the spin-orbit coupling [29-32]. The study
of the spin-orbit-coupled gap solitons is encouraged by the
great achievement and rapid development of experiments on
spin-orbit-coupled BECs [33-39]. The research interest in
the direction of spin-orbit-coupled gap solitons has gradually
increased [40-48].

In this paper we study the existence and properties of
gap solitons in a spin-1 spin-orbit-coupled spinor BEC in the
presence of optical lattices. The study is stimulated by the
following aspects. First, a two-component spin-orbit-coupled
BEC has been successfully loaded into optical lattices in ex-
periment [49]. Meanwhile, the spin-orbit coupling has been
experimentally synthesized into a spin-1 spinor BEC [50].
These experimental advancements have inspired people to
study the physics of a spin-orbit-coupled spinor BEC with
optical lattices. Second, in comparison with two-component
BECs, the spin-1 spinor BECs have more degrees of free-
dom, and spinor interactions include the spin-spin collision
which allows the spin exchange [51]. Many significant spin-
mixing solitonic states have been experimentally observed in
spinor BECs [52,53]. Spinor gap solitons have already shown
interesting spin structures [26]. The interplay between the
symmetries of the spin-orbit coupling and spinor interactions
is expected to give rise to more distinct spin states. Finally,
the spin-orbit-coupled optical lattices can have an alternative
interpretation with the aid of the synthetic dimension con-
cept [54,55]. Based on this idea, spin states become discrete
sites in synthetic dimensions. The coupling between them
turns into the tunneling of the sites. The connection of the
spin-orbit-coupled optical lattices and the synthetic dimension
has been experimentally examined [56]. Using the synthetic
dimension, the system of spin-1 spin-orbit-coupled spinor op-
tical lattices can be mapped into a model of three-leg ladders
with a tunable magnetic flux [57-59]. Such mapping enables
experimental accessibility to chiral edge states by the stan-
dard spin-resolved atomic measurements [58,59]. The study
of spatially localized states in the spin-1 spin-orbit-coupled
spinor optical lattices may shed light on the existence of novel
quantum many-body edge states.

©2023 American Physical Society
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Our study is completely based on the spin-1 spin-orbit-
coupled spinor BEC experiment of 8’Rb atoms in Ref. [50].
The spin-orbit coupling is synthesized by Raman lasers. It
respects a spin-dependent parity symmetry. We find that this
symmetry plays an important role in the existence of the spin-
orbit-coupled spinor gap solitons and introduces interesting
features to them. In the experiment of the spin-1 spin-orbit-
coupled spinor BECs, the tunable parameters are the effective
quadratic Zeeman shift and the Raman coupling. We find that
the different effective quadratic Zeeman shift lead to diverse
solitons. For the zero effective quadratic Zeeman shift, the
population in the |mr = 0) component is not preferred, and
gap solitons have two different types: One type occupies the
|mgp = —1) and |mp = 1) components and obeys the spin-
dependent parity symmetry, while the other just occupies
the |mp = —1) or |mp = 1) components and spontaneously
breaks the spin-dependent parity symmetry. For a large effec-
tive quadratic Zeeman shift, we uncover two different families
of gap solitons having opposite spin-dependent parity symme-
tries. For a further understanding, we develop an approximate
model to provide a physical picture for the origin of these two
families. All solitonic solutions can exist in a broad range of
the Raman coupling and are stable. Their features are identi-
fied.

This paper is organized as follows. In Sec. II we present
the theoretical model for the spin-1 spin-orbit-coupled spinor
BEC with optical lattices. In Sec. III the linear properties of
the spin-orbit-coupled spinor optical lattice are studies, with
particular attention on the identification of linear energy gaps
which will accommodate gap solitons. In Sec. IV two different
types of spin-orbit-coupled spinor gap solitons are demon-
strated in the case of the zero effective quadratic Zeeman shift.
In Sec. V we demonstrate the existence of two families of
solitons which have opposite spin-dependent parity symme-
tries for the case of a large effective quadratic Zeeman shift.
An approximate model is developed to explain the origin of
solitons. Section VI includes a summary and a discussion of
edge state solitons.

II. MODEL

Our system is quasi-one-dimensional. The spin-orbit
coupling and the optical lattice are in the longitudi-
nal direction and the motion in the transverse direction
is completely frozen due to strong traps. The work in
Ref. [50] has experimentally realized a spin-1 spin-orbit-
coupled spinor BEC. We follow the experimental de-
sign. The scheme to realize the spin-1 spin-orbit-coupled
spinor optical lattice is shown in Fig. 1. With a large
bias magnetic field, three hyperfine states of 87Rb atoms
(-1)=|F=1,mp=-1), |0)=I|F =1,mg=0), and
1) = |F = 1,mp = 1)) are split unequally between | — 1)
<> ]0) and |0) <> |1). Three external Raman lasers (with the
wavelength Ar,m = 790 nm) are employed to interact with the
atom cloud. Laser frequencies and polarizations are properly
chosen such that the Raman lasers can couple the hyper-
fine states together via two sets of two-phonon transitions
[see Fig. 1(b)]. Two of the lasers propagate in the same
direction and the third one propagates oppositely. Such an
arrangement of the laser propagating configuration introduces

(a) (b)

FIG. 1. Scheme for the realization of the spin-1 spin-orbit-
coupled spinor optical lattice. (a) Spin-orbit coupling is implemented
by the interactions between the atom cloud and three Raman lasers
represented by the arrows in the horizontal direction, two of them
propagating in the same direction and the third one in the opposite
direction. Two additional far detuning lasers with a 7 /2 incident
angle represented by the black arrows generate the optical lattice.
(b) Interactions of three Raman lasers and the unequal splitting
hyperfine states of 8’Rb atoms. Two sets of two-photon transitions
share the same laser represented by the red lines.

a spin-momentum locking during the transitions. The resulted
single-particle spin-orbit-coupled Hamiltonian is [50]

1 _
Huoe = 5= (P + 2ikean F2)° -+ SF2 + V2QF, (1)

where p, is the momentum in the longitudinal direc-
tion, m is the atom mass, F, and F, are the spin-
1 Pauli matrices, and (py + 2fikramF.)?/2m = p>/2m +
2likram pxF./m + 212k, F2 /m. The spin-1 spin-orbit cou-
pling is 2hkgrampxF;/m, with the strength 27ikr,y/m, here
kram = 27 /ARram- The & relates to the two-photon detuning.
In the experiment [50], the detunings for the two sets of two-
photon transitions are adjusted to be equal, which results in

SFzz. Incorporating 2R k2 FZ2 /m from the first term in Hg,,

Ram
the effective quadratic Zeeman shift becomes (2ﬁ2k§am /m+
5)F22. The last term in Hy, is the so-called Raman coupling
with the strength €.

Like the experiment of the two-component spin-orbit-
coupled optical lattices in Ref. [49], we load such a spin-1
spin-orbit-coupled system into an optical lattice by shining
two Al = 1540 nm lattice lasers. There is a /2 incident
angle between these two lasers, which are represented by
the black arrows in Fig. 1. The generated optical lattice
is spin independent and becomes V (x) = —V cos(2kx)/2,
with ke = 27 /«/z)qm. Here V is the lattice depth which
can be tuned by changing the intensity of the lattice
lasers. Consequently, we end up with the total single-
particle Hamiltonian for the spin-orbit-coupled spinor optical
lattice

1%
Hgn = Hyoe — E COS(2klatx)- (2)
The spin-1 BEC with the spin-orbit-coupled optical lattice
is described by the standard mean-field Gross-Pitaevskii (GP)
equations with the above single-particle Hamiltonian. Since
the system has three components, the GP equations are three
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coupled nonlinear equations

Iy_
i% = H oy + Qo + v,
0
i% = Hoo + Q1 + Y1) + 209 ¥V,
0
= Ho + Q0+ v 03, 3)

with
0 >
Hy =L+ eFiy— —2nlYul,
ox
Hy = £ — 2y,

192 V ) ]
Y ECOS( x)+ (1 +nn.
In the above GP equations, the spinor wave functions are
Yix,t) = [Y_1(x, 1), Yolx, 1), Y1 (x, )7, which describe the
probability amplitudes of the corresponding three hyperfine
states | — 1), |0), and |1). The total density n is defined as
n = |Y_1|> + |¥ol> + |¥1]?. For the convenience of numeri-
cal calculations, the above GP equations are dimensionless.
The units of length, energy, and time are 1/kjy, 2Ej =
Fzzklzat /m =2mxh x 097 kHz, and /i/2E,, respectively. The
wave functions are also dimensionless with the unit being
Eia/hw | co; here w) is the harmonic trap frequency along
the transverse direction and ¢y = (ap + 2a,)/3, with ap and
a s-wave scattering lengths in the total spin-0 and -2 chan-
nels [60,61]. With these units and experimental parameters
of lasers (Aram = 790 nm and A, = 1540 nm) [49,50], the
dimensionless quantities, i.e., the spin-orbit coupling strength
y and the effective quadratic Zeeman shift €, become

Kram Y
y =220 _ 22— 55,

L=

klat Ram
k2 ) F)
— p-Ram =152 , 4
=% T E, HETo» @

and V =V /2E,, Q = Q/2E, and n = c3/cg, with ¢; =
(ay —ap)/3. For ¥Rb atoms, ap = 101.8az and a, =
100.4ap, with ap the Bohr radius [62]; therefore,

C2 ay — Ay

n= = —0.005, 5)

Co - ap + 2a,
which represents a ferromagnetic spin-spin interaction. We
characterize the spin-orbit-coupled spinor gap soliton by its
atom number

N =No/dx<|x/f_l|2 ol + [P, ©)

which is measured with Ny = fiky, /2mw cy. A typical exper-
imental transverse trap frequency w, /2 = 300 Hz leads to
Ny = 105.

The ground states of a spin-1 spinor BEC are polar states
when n > 0 and ferromagnetic states when n < 0 [61]. Mean-
while, the ground states have an infinite spin degeneracy; all
spinors associated with spin rotations are degenerate [61]. The
spin-1 spinor BEC can support stable bright solitons [63—65],
which may have the spin degeneracy [64]. This may be un-
derstood from the single-mode approximation [66]. Three

components share the same spatially localized profile which
is decoupled from the spin degrees of freedom. Therefore,
the spin rotation invariance of the spinor interactions is not
affected under the single-mode approximation. In the pres-
ence of optical lattices, spinor bright solitons exist inside the
linear energy gaps, converting to gap solitons. The work in
Ref. [26] found a family of spin-1 spinor gap solitons which
have the same spatial profile in three components and have
the spin degeneracy. Different from the ground states, the
stable polarlike and ferromagneticlike spinor gap solitons can
exist regardless of the sign of 1. Moreover, Ref. [26] found
the existence of stable gap solitons that do not satisfy the
single-mode approximation.

The coupling between the spin and orbit degrees of free-
dom leads to the single-mode approximation generally not
applying to spin-orbit-coupled spinor BECs. The ground
states of a spin-1 spin-orbit-coupled spinor BEC have intrigu-
ing phases including stripe, plane-wave, and zero-momentum
states [67—71]. Spin textures and spin dynamics [72] of spin-
orbit-coupled spinor bright solitons become important due to
the lack of the spin degeneracy [73-80].

Here we study spin-1 spin-orbit-coupled spinor gap soli-
tons by numerically solving Eq. (3). In the experiment [50],
the Raman coupling €2 and the two-photon detuning § are tun-
able parameters. In our study, we keep 2 as a free parameter
and choose two typical values for the detuning § = —30.4Ey
and § = 0. This leads to the effective quadratic Zeeman term
of the GP equations (3) and (4) becoming ¢ = 0 and ¢ = 15.2,
respectively. Due to the locations of gap solitons, it is impor-
tant to identify linear energy gaps first.

III. LINEAR SPECTRUM

The optical lattice is periodic, so the single-particle Hamil-
tonian Hy;, in Eq. (2) possesses the Bloch band-gap spectrum.
The corresponding Bloch waves are defined as v (x,?) =
exp(—ipt + ikx)p(x). Here ¢(x) = [p-1(x), do(x), ¢1(x)]"
are periodic functions having the same period as the optical
lattice, k is the quasimomentum, and w is the chemical poten-
tial. The linear Bloch spectrum (k) can be calculated by a
plane-wave expansion of ¢ (x).

Two typical linear Bloch spectra for the effective quadratic
Zeeman shifts € =0 and € = 15.2 are shown in Fig. 2. For
the case of € =0 in Fig. 2(a), the two lowest bands mix
together and there is an energy gap between the second and
third bands. The size of this gap increases with the increase of
the optical lattice depth. The four lowest bands of the linear
spectrum at V = 3 are shown in Fig. 2(b) as a function of
the quasimomentum. Clearly, the gap between the second and
third bands is big enough in comparison to the band widths
of the two lowest bands. It may provide an accommodation to
support spinor gap solitons. The density distributions of the
Bloch waves at k = 0 and at the maximum of the second band
[labeled by the dots in Fig. 2(b)] are demonstrated in Figs. 2(c)
and 2(d), respectively. It is interesting to see that these Bloch
waves have specific spin populations, i.e., |¥/_;|> = |v/|* and
|o|> = 0 in Fig. 2(c) and |¥_{]* = |¥0|*> = 0 in Fig. 2(d).

We depict the linear spectrum for a large effective quadratic
Zeeman shift € = 15.2 in Figs. 2(e)-2(h). As shown in
Fig. 2(e), the three lowest bands mix together and there is
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FIG. 2. Linear Bloch spectrum of the spin-1 spin-orbit-coupled spinor optical lattice and corresponding Bloch waves. The dimensionless
parameters are y = 5.52 and Q = 1. In (a)—(d) the effective quadratic Zeeman shift is € = 0. (a) Bloch spectrum as a function of the optical
lattice depth V. The shadow areas indicate Bloch energy bands and the white areas are energy gaps. The solid lines are the maximum and
minimum of each Bloch band. (b) Bloch spectrum as a function of the quasimomentum k for a fixed depth V = 3 [indicated by the vertical
dashed line in (a)]. (c) and (d) Density distributions of the Bloch waves labeled by the closed circles in (b). The shaded areas indicate the
optical lattice regimes with —V cos(2x)/2 > 0. Here |r_1|?, |¥o|?, and |¢|> are shown by the red, olive, and blue lines respectively. In
©) [_i1*> = |¥1]? and |Yo|> = 0. In (d) |¥_;|> = |¥o|> = 0. (e)—(h) Same quantities as in (a)—(d), but the effective quadratic Zeeman shift is

€ =15.2.

no energy gap between them when the depth V is small. For
a sufficient large V, gaps are weakly opened between the
three lowest bands. There always is an energy gap opening
between the third and fourth bands. Its size also increases as
a function of V. Therefore, for the existence of spinor gap
solitons in this gap, it is reasonable to choose a large V.
Here we choose V = 3. The linear spectrum as a function
of the quasimomentum for V = 3 is shown in Fig. 2(f). As
expected, the energy gap between the third and fourth bands is
a proper accommodation for spinor gap solitons. Furthermore,
two typical Bloch waves are described in Figs. 2(g) and 2(h).
They are the Bloch waves at the Brillouin zone center and
edge in the third band. The outstanding feature of these Bloch
waves is spin occupation: |1/o|> < |[¥_i|*> = |¥|? in Fig. 2(g)
and |Yo|> > [¢_1|* = [y1]* in Fig. 2(h).

Once the energy gaps are identified, we numerically find
gap solitons located inside them. In the following we focus
on the energy gaps shown in Figs. 2(b) and 2(f). The profiles
of linear Bloch waves shown in Fig. 2 are instructive for the
structures of gap solitons since they may bifurcate from these
linear waves.

IV. SPIN-ORBIT-COUPLED SPINOR GAP SOLITON WITH
THE ZERO EFFECTIVE QUADRATIC ZEEMAN SHIFT

Spin-orbit-coupled spinor gap solitons are stationary so-
lutions of Eq. (3). Here ¥ (x,t) = exp(—iut)y(x) with the
chemical potential u. Then the v (x) satisfy the stationary GP
equations. We use the Newton relaxation method to solve the

spatially discretized stationary GP equations. The chemical
potential is fixed to be the value inside the linear energy gaps
during the calculations. We first consider the case of the zero
effective quadratic Zeeman shift € = 0. The solitons will be
located inside the linear energy gap demonstrated in Fig. 2(b).

The results of gap solitons are shown in Fig. 3. We find that
the fundamental solitons have two different types. The depen-
dence of the solitonic atom number N [defined in Eq. (6)] on
the chemical potential u is shown in Fig. 3(a). Two types are
completely degenerate in the (N, @) plane. From this figure,
we can know of their existence; they exist inside the linear
energy gap except for a very small regime close to the sec-
ond band where the wave functions go to zero. Without the
spin-orbit coupling, the wave functions of spinor gap solitons
can be scaled into real numbers [26]. However, the presence
of the spin-orbit coupling makes the scaling impossible and
the wave functions are in general complex numbers. The first
type has [¥_;|?> = [y]> # 0 and |1/o|*> = 0, whose profile is
demonstrated in Fig. 3(b). The second type has two configura-
tions: [¥_;|*> # 0 and |y|> = |1 |> = 0 as shown in Fig. 3(c)
and |_1|*> = |¥o|?> = 0 and |y |> # 0 as shown in Fig. 3(d).
Because of the degeneracy of these two types, the density
amplitude of the second type is double that of the first. This is
because the second type has only one-component occupation,
while the first type includes two components. No matter which
type the soliton is, the common feature is the zero population
of the |0) component, ||* = 0.

In the following we provide physical insight into these nu-
merical solutions of Eq. (3). The effective quadratic Zeeman
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FIG. 3. Two types of spin-1 spin-orbit-coupled spinor gap soli-
tons in the case of the zero effective quadratic Zeeman shift € = 0.
The other parameters are the optical lattice depth V =3 and the
Raman coupling 2 = 1. (a) The existence of spinor gap solitons is
reflected by the dependence of the solitonic atom number N on the
chemical potential . Two types are degenerate in the (N, ) plane.
The shaded areas correspond to linear bands. The density profiles
of the labeled point are shown in (b)—(d). (b) Density profile of the
first type, |¥_1|> = |¥1]* # 0 and |y|> = 0, which is polarlike. The
inset shows a close-up of the density oscillating tail. (c) Density
profile of the second type, |_;|> # O (red line) and |y |?> = | ]> =
0. (d) Density profile of the second type, |¥_|> = |/o|> = 0 and
[¥1]*> # 0 (blue dashed line). In (b)-(d) the red, olive, and blue
dashed lines correspond to |_ |?, [¥|?, and |y |?, respectively. The
shaded areas indicate the regimes for the lattices —V cos(2x)/2 > 0.
(e)—(g) Momentum-space distributions corresponding to (b)—(d). The
| — 1) (|1)) component has a momentum peak centered at k = —y
(y). (h) Stable time evolution of a gap soliton. The initial state is
¥ (14 0.1R), with  the first type of gap soliton labeled by the cir-
cle in (a) and 10% Gaussian distributed random noise is considered.

shift consists of two parts: One is due to the spin-dependent
momentum displacement 2h2k§am /m and the other is the two-
photon detuning §. Here ¢ = 0 means § = —30.4E},, which
is a large negative value. The momentum displacement does
not affect the energy of system. The energy functional of the
8 term is Equa = 8(|¥—11* + [¥1]?). Since § < 0, minimiz-
ing this energy functional requires ¥y = 0. Physically, when
the two-photon detuning § is a large negative value we can
adiabatically eliminate the |0) state. Under the condition of
Yo = 0 and € = 0, the stationary GP equations in Eq. (3) are

simplified as

oy
wyoy =LYy —iy ng‘ + (- * = [Py,
0
wyn = L'y + iy% —n(y_il* =l DHv, (D)
with
, 192 Vv
L= =5 = 5 cos(2) + (Y_1® + 1Y 1),

Note that the Raman coupling 2 disappears in the above
reduced equations due to iy = 0. In the absence of €2, the
spin-orbit coupling can be gauged out from the equations.
After applying a unitary transformation ¥_;=exp(—iyx)¢_;
and ¥r; = exp(iyx)¢,, the above equations become

pwp-1 = L'¢-1 + 11> — |p11")ep-1,
per = L'or — (g1 — 1¢11))¢1. (8)

An irrelevant constant 2 has been dropped. The energy func-
tional of the nonlinear terms in the above equations is

Enon = (Lot + 191 1)) + (1 — n)lp—1 *|g |*.

Since n = —0.005 < 0, the above interactions are immiscible.
In the absence of the optical lattice, to minimize the immis-
cible interactions, the ground state has two configurations:
¢_1 #0 and ¢ =0, and ¢_; =0 and ¢; # 0. The ground
state takes one of the two configurations spontaneously.
Therefore, considering the zero |0) component g = 0, the
ground state of the spin-orbit-coupled spinor BEC without
the optical lattice is ferromagnetic and is a plane wave as
Y1 = exp(—iyx)¢_; and ¥ = exp(iyx)¢, for the situation
of the zero effective quadratic Zeeman shift. This result is
consistent with that in Ref. [50].

In the presence of the optical lattice, gap soliton solutions
of Eq. (8) can be numerically found as ¢>iGls)(x) and ¢>}GS) (x).
Since all quantities in Eq. (8) are real valued, the wave func-
tions of gap solitons ¢(_C;S) and ¢§GS) can be scaled into real
numbers. On the other hand, the conservation of the total
density |¢_;|*> + |¢;|?> and the relative density |¢_;|* — |¢ >
in the time-dependent version of Eq. (8) introduces two free
degrees of freedoms into the gap soliton solutions; they are
the global phase o and relative phase 6. Finally, returning to
the basis of ¢, we get the solutions of gap solitons as

= e 7% (x)
Yo = 0 . 9)
14 GS) ei”"¢st) (x)e?

The numerical results demonstrated in Fig. 3 are from
the solutions in Eq. (9). In order to show this, we plot the
momentum-space density distributions of corresponding gap
solitons in Figs. 3(e)-3(g). The | — 1) component of solitons
always has a momentum peak located at k = —y, while it
sits at k = y in the |1) component. The results of momen-
tum peaks are consistent with solutions in Eq. (9). Note that
there is a small-amplitude splitting in each peak. The splitting
originates from the existence of very small oscillating tails in
gap solitons, which are shown in the inset in Fig. 3(b).
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The spin-orbit-coupled Hamiltonian in Eq. (1) obeys a
spin-dependent parity symmetry O,

0 0 1
O=-P™=P[0 1 0]. (10)
1 0 0

Here P is the parity operator, PxP~! = —x, and ™ is

the operator to rotate spins along F, by an angle of w. The
first type of spin-orbit-coupled spinor gap soliton satisfies
this symmetry, which gives rise to ¥_;(x) = £ (—x). This
restriction in the end leads to qﬁ(_G]S) x) = ¢§GS)(x) and 6 is
fixed to O or &. In contrast, the global phase in Eq. (9) still
cannot be fixed and « can be an arbitrary real constant since
the GP equations have U(1) symmetry. The second type wants
one of 4)(7(‘15) and ¢§GS) to disappear. Therefore, it does not obey
the O symmetry.

Finally, we calculate the spin average value for the gap
solitons. It is defined as

(F) = fdx YT OFY (x). (1)

The first type satisfies (F) = 0, which is reminiscent of the
spinor polar ground state in the case of n > 0 [61]. However,
for spin-orbit-coupled spinor gap solitons, the first type is
polarlike but can exist when n < 0, while the second type is
ferromagneticlike, |(F;)| # 0 and (F;) = (F;) = 0.

The stability of gap solitons found in Fig. 3(a) is examined
by the nonlinear evolution of the GP equations. The nonlin-
ear evolution is implemented by using the initial states as
¥ (14 0.1R), with ¢ gap solitons and R the randomly dis-
tributed noise. The stable solutions evolve without changing
density profiles. The results are that all gap soliton solutions in
Fig. 3(a) are stable except for a very small regime in which the
chemical potential is close to the second band. In this regime,
both types of solitons have a weak oscillation. In Fig. 3(h)
we demonstrate a typically stable evolution of the first type
of soliton [which is labeled by the dot in Fig. 3(a)]. It shows
that the corresponding soliton evolves stably up to t = 1000
(which corresponds to 165 ms considering the time unit) in
the presence of noise.

These polarlike and ferromagneticlike types can exist for a
broad range of Raman coupling €2 as long as the linear energy
gap keeps opening. The evolution of the linear spectrum as a
function of 2 is demonstrated in Fig. 4(a). It shows that the en-
ergy gap between the second and third bands is widely opened
as Q2 changes. We fix the chemical potential and numerically
search for gap solitons along the horizontal line shown in
Fig. 4(a). The results are described in Fig. 4(b). Two types
are still degenerate in the (N, ©2) plane. The solitonic atom
number N increases with the increase of 2. When €2 is small,
the two-photon detuning § completely dominates, leading to
the zero occupation in the |0) component. Since the Raman
coupling works via the |0) component, it has no effect on
solitons. Therefore, the number N remains constant for small
Q. However, as it increases, the Raman coupling manages to
flip spins to allow for the small occupation in the |0) com-
ponent. This causes an increase of the solitonic atom number
with the increase of Raman coupling as shown in Fig. 4(b).
The typical coordinate-space and momentum-space density

T T T T \
=

16 + ]

17 4+ )

-18-@ i t t } t
0 1 2 3 4 5 6
Q

P4
E
x

0 500 1000
t

FIG. 4. Two types of spin-1 spin-orbit-coupled spinor gap soli-
tons with the zero effective quadratic effect € = 0 can exist in a
broad range of the Raman coupling 2. The optical lattice depth is
V = 3. (a) Linear Bloch spectrum as a function of 2. The shaded
areas represent energy bands. (b) Dependence of the solitonic atom
number on 2 for a fixed chemical potential [labeled by the hori-
zontal line in (a)]. The two types are completely degenerate in the
(N, ©2) plane. The coordinate-space and momentum-space density
distributions of the first type of gap solitons [labeled by the dot in
(b)] are demonstrated in (c) and (d), respectively. The shaded areas
in (c) represent —V cos(2x)/2 > 0. (e) Stable time evolution of the
first type of gap soliton [labeled by the dot in (b)] with 10% random
noise.

profiles of the first type of spinor gap soliton at a large Raman
coupling €2 = 4 are shown in Figs. 4(c) and 4(d). This soliton
looks like the previous result of €2 = 1 in Fig. 3. However, the
difference between them is that there is a small occupation
in the |0) component [see the olive line in Fig. 4(c)]. The
Raman coupling transfers a small number of atoms to the |0)
component from the | — 1) and |1) components, during which
momentum is conserved. Consequently, the |0) component
becomes a superposition of two very small packets located
at —y and y in the momentum space.
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The stability of the whole branch in Fig. 4 is also checked
by the nonlinear evolution. All solitons are stable. We present
a typically stable evolution of the first type of solution [rep-
resented by the dot in Fig. 4(b)] in Fig. 4(e). The soliton can
exist stably for a very long time.

V. SPIN-ORBIT-COUPLED SPINOR GAP SOLITONS WITH
A LARGE EFFECTIVE QUADRATIC ZEEMAN SHIFT

In the above, due to a very large negative §, the occupation
of the |0) component is almost negligible, [1/y|> = 0. The first
type of spinor gap soliton has |y_;|> = |v/;|*> obeying the
spin-dependent parity symmetry O. The second type spon-
taneously occupies one of |Yy_;|> or |¢|> and therefore is
ferromagneticlike. This type breaks the spin-dependent parity
symmetry. In the following we consider § = 0, which leads to
a large effective quadratic Zeeman shift ¢ = 15.2 in the GP
equations. There is no constraint on the occupation of the |0)
component. The gap solitons are sought inside the energy gap
shown in Fig. 2(f).

We find that there are two different families for the funda-
mental gap solitons. They are demonstrated in Fig. 5. The two
families have different atom numbers in the (N, ) plane; the
first family has a slightly larger number [see the dotted line in
Fig. 5(a)]. Both families exist in whole energy gap, excepting
for a regime very close to the third linear band. The typical
density profiles of the first family are shown in Figs. 5(b)
and 5(d) in the coordinate and momentum space, respectively.
The first family features a dominating occupation of the |0)
component, and the | — 1) and |1) components have the same
density with a very small population || > [¥_1|*> = ||
The momentum of the |0) component is at k = 0. This can be
seen from the momentum density peak in Fig. 5(d) (note that
the small-amplitude splitting still exists due to the tail of soli-
tons). The density profiles of the second family are described
in Figs. 5(c) and 5(e). This family features |_|> = |¢1]? >
[¥o]>. The momentum of the | — 1) component is at k = —y
and the |1) component is peaked around k = y. It is very in-
teresting to note that both families respect the spin-dependent
parity symmetry O. The symmetry requires wave functions to
satisfy Oy (x) = ¢ (x) with the eigenvalues +1, leading to

Voi1(x) = Y1 (=x),  Yo(x) = £Yo(—x).  (12)

This result further gives rise to (Fy) = (F;) = 0. The first
family belongs to the eigenstate with eigenvalue +1, i.e., even
spin-dependent parity; this can be inferred from there being
no node in the density of the |0) component, as shown by the
olive line in Fig. 5(b). In contrast, the second family has odd
spin-dependent parity with the eigenvalue —1, as there is a
node at x = 0 in the density of the |0) component [see the
olive line in the inset in Fig. 5(c)].

The spin-dependent parity symmetry of the two families
indicates their origin. We note that densities of these two
fundamental families are mainly confined inside a unit cell of
the optical lattice. To give a simple physical picture for these
two families, we develop an approximate model to replace the
optical lattice by a harmonic trap. With the approximation, the
single-particle Hamiltonian becomes

H}, = Hyoe + Sma’x?, (13)
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FIG. 5. Two different families of spin-1 spin-orbit-coupled
spinor gap solitons with a large effective quadratic Zeeman shift
€ =15.2, i.e., § = 0. The other parameters are V =3 and Q = 1.
(a) Existence of two families in the (, n) plane. The first (second)
family is represented by the dotted (solid) line. The wave functions
of the labeled points are shown in (b) and (c). The shaded areas
correspond to linear bands. (b) Density profile of the first family in
the coordinate space |Y_;|> = |y ]*> < |¥o]?. (c) Density profile of
the second family in the coordinate space |¥_;|> = |]* > |¥o|*. In
(b) and (c) the red, olive, and blue dashed lines correspond to |_; |?,
[¥o)?, and | |2, respectively. The shaded areas indicate the regimes
for the lattices —V cos(2x)/2 > 0. In (c) the inset shows a close-up of
the density distributions around x = 0. (d) and (¢) Momentum-space
density distributions corresponding to (b) and (c).

where w is the harmonic trap frequency. We use the har-
monic oscillator basis to diagonalize H by introducing
x = /i 2mw(a’ + a) and p, = i/hom/2(a" — a), where
a and a' are the annihilation and creation operators, re-
spectively. Consequently, the single-particle Hamiltonian
becomes
Sin T e
e a'a+1 A
We have renormalized the energy by using the energy unit
hiw. The spin-orbit coupling coefficient is ' = 2kram~/Ai/mw
and Q' = Q/liw. Using the harmonic trap w/27 = 1 kHz,
we have y’ = 5.4. Diagonalizing the Hamiltonian in Eq. (14)
gives rise to the energy and associated eigenstates. The en-
ergies of ground state and the first excited state are shown
in Fig. 6(a). When Q' = 0, these two states are degenerate.
They decrease with the increase of €. The wave functions of
the ground state and the first excited state are demonstrated
in Figs. 6(c) and 6(d) and Figs. 6(e) and 6(f), respectively.
It is well known that the eigenstates of a harmonic trapped
system have well-defined parity symmetry and the two neigh-
boring states have opposite signs of parity. In the presence
of the spin-orbit coupling, the symmetry becomes the spin-
dependent parity O. The spin-dependent parity of the ground

2
(@' — a)F. + %Ff +V2QF. (14)
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FIG. 6. (a) Ground state and first excited state of H,, in Eq. (14).
The wave functions of labeled points are shown in the following
plots. (b) Spectrum of Hy, in the momentum space. Three local
minima in the lowest band are labeled by circles. The density
distributions of a ground state are shown in (c) coordinate and
(d) momentum space. The olive line is the |0) component and the
red (blue dashed) line is the | — 1) (]1)) component. The density
distributions of a first excited state are shown in (e) coordinate and
(f) momentum space. In (e) the inset shows a close-up of the density
distribution of the |0) component around x = 0.

state is even and it is odd for the first excited state. This can be
inferred from the density distributions of the |0) component in
Figs. 6(c) and 6(e); for the ground state, there is no node in the
density of the |0) component, while for the first excited state
there is a node at x = 0 in the |0) component [see the olive
lines in Fig. 6(c) and in the inset in Fig. 6(e)]. The ground
state has only a population in the |0) component, while the
first excited state has an equal occupation of the | — 1) and |1)
components and has a little occupation in the |0) component.

Without the harmonic trap, the Hamiltonian Hy,. can be di-
rectly diagonalized in the momentum space. The spectrum of
Hj, has three energy bands, as shown in Fig. 6(b). The lowest
band features a three-parabola-like structure with three local
minima which are labeled by circles in the figure. The right
and left minima are degenerate and their energy is a bit higher
than the middle one. The ground state of H;, comes from the
occupation of the middle minimum. Since the middle parabola
is mainly generated by the |0) component, the ground state
possesses the dominating population in the |0) component and
its momentum is peaked at k = 0, which is demonstrated in
Fig. 6(d). The first excited state of H, originates from an
equal superposition of the right and left minima. In order
to obtain odd spin-dependent parity symmetry, the superpo-
sition should be out of phase. As the right (left) parabola
is generated by the | — 1) (]1)) component, the first excited
state becomes proportional to exp(—ikminx)(¥—1, 0, 0 —
exp(ikminx)(0, 0, ¥ )T, where kyin = ¥’ is the location of the
left minimum. Therefore, in the momentum space, the first
excited state features two momentum peaks located at £y,
which are demonstrated in Fig. 6(f).

The first (second) family of spin-orbit-coupled spinor gap
solitons is strongly reminiscent of the ground state (first
excited state) of the harmonic trapped system. For a fixed
atom number, the chemical potential of the first family
should be smaller than that of the second family. This causes

2
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FIG. 7. Two families of fundamental spin-orbit-coupled spinor
gap solitons with a large effective quadratic effect € = 15.2 can exist
in a broad range of Raman coupling 2. The optical lattice depth is
V = 3. (a) Linear Bloch spectrum as a function of 2. The shaded
areas represent energy bands. We search for gap solitons along the
horizontal line. (b) Dependence of the solitonic atom number on €2
for a fixed chemical potential [labeled by the horizontal line in (a)].
The dotted (solid) line is for the first (second) family. Also shown
are the (c) and (d) coordinate-space and (e) and (f) momentum-space
density distributions of two families [labeled by the dots in (b)]. The
shaded areas in (c) and (d) represent —V cos(2x)/2 > 0.

the first family to be above the second one in the (N, w)
plane in Fig. 5(a). All features of two families, such as the
spin-dependent parity symmetry, spin composition, and mo-
mentum distribution, are the same as those of the ground
state and first excited state. Therefore, the features are a
single-particle effect and are induced solely by the spin-orbit
coupling, while the spinor interactions guarantee the existence
of gap solitons.

By examining the stability of these two families, we find
that the whole branch of the second family in Fig. 5(a) is
dynamically stable. The first family is also stable, except for
a very small regime close to the third band where they are
weakly unstable.
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The two families with opposite spin-dependent parity can
exist and are stable in a wide range of Raman coupling €2.
The linear Bloch spectrum as a function of 2 is shown in
Fig. 7(a). It demonstrates that the size of the energy gap
between the third and fourth bands decreases with increasing
Q2. Therefore, the existence of gap solitons in this gap is not
preferred in the regime of large 2. We find their existence in
the regime of 0 < 2 < 2.5 for a fixed chemical potential as
u = 0. The dependence of the solitonic atom number N on 2
is demonstrated in Fig. 7(b). The first family is always higher
than the second one. As €2 increases, the difference in the atom
number between two families becomes large. This can be
understood from the approximate model of the harmonic trap.
The energy of the ground state decreases more dramatically
than the first excited state with the increase of 2, which is
described in Fig. 6(a). For the gap solitons in Fig. 7(b), the
chemical potential of two families is fixed to be equal. The
atom number must be adjusted to generate the same effect as
the energy in the harmonic trapped case. Typical coordinate-
space and momentum-space densities at 2 = 2 are shown in
Figs. 7(c) and 7(e) for the first family and in Figs. 7(d) and
7(f) for the second one. All features of densities are the same
as those shown in Figs. 5(b)-5(e).

VI. CONCLUSION

Stimulated by the experimental realization of the spin-1
spin-orbit-coupled BEC in Ref. [50], we have studied the
spin-orbit-coupled spinor gap solitons in this system. They
can exist in the wide energy gaps of the corresponding linear
system. The spinor interactions possess spin rotation symme-
try, while the spin-orbit coupling breaks this symmetry by
respecting a particular spin-dependent parity symmetry which
is a specific spin rotation accompanying an orbital parity.
In the case of a large effective quadratic Zeeman shift e,
we uncovered two different families of gap solitons having
opposite spin-dependent parity. By developing a spin-orbit-
coupled model with a harmonic trap, these two families of
gap solitons can be considered as the ground state and first

excited state of the harmonic trapped system. The spin-orbit
coupling introduces intriguing features, including spin com-
positions and momentum distributions, to the two families.
For the zero effective quadratic Zeeman shift, the two-photon
detuning § dominates, which prevents the population from
being in the |0) component. In this case, we revealed that
spin-orbit-coupled spinor gap solitons have two types: One
type obeys the spin-dependent parity symmetry and is polar-
like and the other type spontaneously breaks the symmetry
and is ferromagneticlike. All gap solitons in our study are
fundamental modes whose main density peaks are confined
inside a unit cell of the optical lattice. Using the fundamental
modes as building blocks, higher-order modes with rich spa-
tial structures are expected to be constructed.

In our parameter regimes, there always exists some kind of
gap solitons. They occupy the | — 1) and |1) components and
have a negligible population in the |0) component. Using the
idea of synthetic dimension, the | — 1) and |1) components
are the two edges of three-leg ladders. Therefore, this kind of
soliton belongs to edge states. However, different from usual
edge states which are extended waves along the edges, due
to a solitary property, these states are also spatially localized
along the edges. Physically, the spin-orbit coupling induces a
nonzero magnetic flux to the three-leg ladders. The magnetic
flux guarantees the existence of the edge states, which can
have a dispersion along the edges, while the nonlinearities can
be used to balance the dispersion to generate solitons along
the edges. It is of interest that for the zero effective quadratic
Zeeman shift, such edge state solitons can spontaneously oc-
cupy only one of the two edges. Our study fully relies on
the experimental system and all parameters are within the
experimental accessibility. These make it possible to observe
edge state solitons experimentally in the future.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China through Grants No. 11974235 and No.
11774219.

[1] Y. S. Kivshar and B. A. Malomed, Dynamics of solitons in
nearly integrable systems, Rev. Mod. Phys. 61, 763 (1989).

[2] H. A. Haus and W. S. Wong, Solitons in optical communica-
tions, Rev. Mod. Phys. 68, 423 (1996).

[3] Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in
nonlinear lattices, Rev. Mod. Phys. 83, 247 (2011).

[4] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in
PT -symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).

[S] W. Chen and D. L. Mills, Gap Solitons and the Nonlinear Opti-
cal Response of Superlattices, Phys. Rev. Lett. 58, 160 (1987).

[6] D. L. Mills and S. E. Trullinger, Gap solitons in nonlinear
periodic structures, Phys. Rev. B 36, 947 (1987).

[7] E. Lederer, G. L. Stegemanb, D. N. Christodoulides, G. Assanto,
M. Segev, and Y. Silberberg, Discrete solitons in optics,
Phys. Rep. 463, 1 (2008).

[8] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein con-
densates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).

[91 Y. Zhang, Z. Liang, and B. Wu, Gap solitons and Bloch
waves in nonlinear periodic systems, Phys. Rev. A 80, 063815
(2009).

[10] Y. Zhang and B. Wu, Composition Relation between Gap
Solitons and Bloch Waves in Nonlinear Periodic Systems,
Phys. Rev. Lett. 102, 093905 (2009).

[11] T. J. Alexander, Self-guiding of matter waves in optical lattices,
Phys. Rev. A 83, 043624 (2011).

[12] C. Bersch, G. Onishchukov, and U. Peschel, Optical Gap
solitons and Truncated Nonlinear Bloch Waves in Temporal
Lattices, Phys. Rev. Lett. 109, 093903 (2012).

[13] D. Mandelik, R. Morandotti, J. S. Aitchison, and Y. Silberberg,
Gap Solitons in Waveguide Arrays, Phys. Rev. Lett. 92, 093904
(2004).

[14] D. Neshev, A. A. Sukhorukov, B. Hanna, W. Krolikowski, and
Y. S. Kivshar, Controlled Generation and Steering of Spatial
Gap Solitons, Phys. Rev. Lett. 93, 083905 (2004).

023316-9


https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1103/RevModPhys.68.423
https://doi.org/10.1103/RevModPhys.83.247
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/PhysRevLett.58.160
https://doi.org/10.1103/PhysRevB.36.947
https://doi.org/10.1016/j.physrep.2008.04.004
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/PhysRevA.80.063815
https://doi.org/10.1103/PhysRevLett.102.093905
https://doi.org/10.1103/PhysRevA.83.043624
https://doi.org/10.1103/PhysRevLett.109.093903
https://doi.org/10.1103/PhysRevLett.92.093904
https://doi.org/10.1103/PhysRevLett.93.083905

JING YANG AND YONGPING ZHANG

PHYSICAL REVIEW A 107, 023316 (2023)

[15] E. Smirnov, C. E. Riiter, D. Kip, Y. V. Kartashov, and L. Torner,
Observation of higher-order solitons in defocusing waveguide
arrays, Opt. Lett. 32, 1950 (2007).

[16] B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein,
K.-P. Marzlin, and M. K. Oberthaler, Bright Bose-Einstein Gap
Solitons of Atoms with Repulsive Interaction, Phys. Rev. Lett.
92, 230401 (2004).

[17] P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S.
Kivshar, Bose-Einstein condensates in optical lattices: Band-
gap structure and solitons, Phys. Rev. A 67, 013602 (2003).

[18] N. K. Efremidis and D. N. Christodoulides, Lattice solitons in
Bose-Einstein condensates, Phys. Rev. A 67, 063608 (2003).

[19] R.-K. Lee, E. A. Ostrovskaya, Y. S. Kivshar, and Y.
Lai, Quantum-noise properties of matter-wave gap solitons,
Phys. Rev. A 72, 033607 (2005).

[20] V. Ahufinger and A. Sanpera, Lattice Solitons in Quasiconden-
sates, Phys. Rev. Lett. 94, 130403 (2005).

[21] D. L. Wang, X. H. Yan, and W. M. Liu, Localized gap-
soliton trains of Bose-Einstein condensates in an optical lattice,
Phys. Rev. E 78, 026606 (2008).

[22] S. Mardonov, M. Modugno, E. Y. Sherman, and B. A.
Malomed, Rabi-coupling-driven motion of a soliton in a Bose-
Einstein condensate, Phys. Rev. A 99, 013611 (2019).

[23] E. A. Ostrovskaya and Y. S. Kivshar, Localization of Two-
Component Bose-Einstein Condensates in Optical Lattices,
Phys. Rev. Lett. 92, 180405 (2004).

[24] A. Gubeskys, B. A. Malomed, and I. M. Merhasin, Two-
component gap solitons in two- and one-dimensional Bose-
Einstein condensates, Phys. Rev. A 73, 023607 (2006).

[25] A. Gubeskys and B. A. Malomed, Symmetric and asymmetric
solitons in linearly coupled Bose-Einstein condensates trapped
in optical lattices, Phys. Rev. A 75, 063602 (2007).

[26] B. J. Dabrowska-Wiister, E. A. Ostrovskaya, T. J. Alexander,
and Y. S. Kivshar, Multicomponent gap solitons in spinor Bose-
Einstein condensates, Phys. Rev. A 75, 023617 (2007).

[27] S. K. Adhikari and B. A. Malomed, Two-component gap soli-
tons with linear interconversion, Phys. Rev. A 79, 015602
(2009).

[28] Z. Chen and B. A. Malomed, Gap solitons in Rabi lattices,
Phys. Rev. E 95, 032217 (2017).

[29] Y. V. Kartashov, V. V. Konotop, and F. K. Abdullaev, Gap
Solitons in a Spin-Orbit-Coupled Bose-Einstein Condensate,
Phys. Rev. Lett. 111, 060402 (2013).

[30] V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Funda-
mental, Multipole, and Half-Vortex Gap Solitons in Spin-Orbit
Coupled Bose-Einstein Condensates, Phys. Rev. Lett. 112,
180403 (2014).

[311 Y. Zhang, Y. Xu, and T. Busch, Gap solitons in spin-
orbit-coupled Bose-Einstein condensates in optical lattices,
Phys. Rev. A 91, 043629 (2015).

[32] Y. V. Kartashov, V. V. Konotop, M. Modugno, and E. Y.
Sherman, Solitons in Inhomogeneous Gauge Potentials: In-
tegrable and Nonintegrable Dynamics, Phys. Rev. Lett. 122,
064101 (2019).

[33] Y.-J. Lin, K. Jiménez-Garcia, and 1. B. Spielman, Spin-orbit-
coupled Bose-Einstein condensates, Nature (London) 471, 83
(2011).

[34] N. Goldman, G. Juzelitinas, P. Ohberg, and 1. B. Spielman,
Light-induced gauge fields for ultracold atoms, Rep. Prog.
Phys. 77, 126401 (2014).

[35] J. Zhang, H. Hu, and X.-J. Liu, Fermi gases with synthetic spin-
orbit coupling, Annu. Rev. Cold At. Mol. 2, 81 (2014).

[36] H. Zhai, Degenerate quantum gases with spin-orbit coupling:
A review, Rep. Prog. Phys. 78, 026001 (2015).

[37] Y. Li, G. I. Martone, and S. Stringari, Bose-Einstein condensa-
tion with spin-orbit coupling, Annu. Rev. Cold At. Mol. 3, 201
(2015).

[38] S. Zhang, W. S. Cole, A. Paramekanti, and N. Trivedi, Spin-
orbit coupling in optical lattices, Annu. Rev. Cold At. Mol. 3,
135 (2015).

[39] Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang,
Properties of spin-orbit-coupled Bose-Einstein condensates,
Front. Phys. 11, 118103 (2016).

[40] Y. Cheng, G. Tang, and S. K. Adhikari, Localization of a
spin-orbit-coupled Bose-Einstein condensate in a bichromatic
optical lattice, Phys. Rev. A 89, 063602 (2014).

[41] X. Zhu, H. Li, Z. Shi, Y. Xiang, and Y. He, Gap solitons in
spin-orbit-coupled Bose-Einstein condensates in mixed linear-
nonlinear optical lattices, J. Phys. B 50, 155004 (2017).

[42] Y. Li, Y. Liu, Z. Fan, W. Pang, S. Fu, and B. A. Malomed, Two-
dimensional dipolar gap solitons in free space with spin-orbit
coupling, Phys. Rev. A 95, 063613 (2017).

[43] T. F. Xu, Y. F. Zhang, Z.-D. Li, C. Zhang, and R. Hao,
Gap solitons in spin-orbit-coupled Bose-Einstein condensates
in bichromatic optical lattices, Optik 168, 140 (2018).

[44] H. Sakaguchi and B. A. Malomed, One- and two-dimensional
gap solitons in spin-orbit-coupled systems with Zeeman split-
ting, Phys. Rev. A 97, 013607 (2018).

[45] Y. V. Kartashov and D. A. Zezyulin, Stable Multiring and
Rotating Solitons in Two-Dimensional Spin-Orbit-Coupled
Bose-Einstein Condensates with a Radially Periodic Potential,
Phys. Rev. Lett. 122, 123201 (2019).

[46] Z. Fan, Z. Chen, Y. Li, and B. A. Malomed, Gap and embedded
solitons in microwave-coupled binary condensates, Phys. Rev.
A 101, 013607 (2020).

[47] D. A. Zezyulin, Y. V. Kartashov, and I. A. Shelykh, Polariton
gap and gap-stripe solitons in Zeeman lattices, Phys. Rev. B
101, 245305 (2020).

[48] J. Su, H. Lyu, Y. Chen, and Y. Zhang, Creating moving
gap solitons in spin-orbit-coupled Bose-Einstein condensates,
Phys. Rev. A 104, 043315 (2021).

[49] C. Hamner, Y. Zhang, M. A. Khamehchi, M. J. Davis, and
P. Engels, Spin-Orbit-Coupled Bose-Einstein Condensates in a
One-Dimensional Optical Lattice, Phys. Rev. Lett. 114, 070401
(2015).

[50] D. Campbell, R. Price, A. Putra, A. Valdés-Curiel, D.
Trypogeorgos, and I. B. Spielman, Magnetic phases of spin-1
spin-orbit-coupled Bose gases, Nat. Commun. 7, 10897 (2016).

[51] Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates,
Phys. Rep. 520, 253 (2012).

[52] T. M. Bersano, V. Gokhroo, M. A. Khamehchi, J. D’ Ambroise,
D. J. Frantzeskakis, P. Engels, and P. G. Kevrekidis, Three-
Component Soliton States in Spinor F =1 Bose-Einstein
Condensates, Phys. Rev. Lett. 120, 063202 (2018).

[53] X. Chai, D. Lao, K. Fujimoto, R. Hamazaki, M. Ueda, and C.
Raman, Magnetic Solitons in a Spin-1 Bose-Einstein Conden-
sate, Phys. Rev. Lett. 125, 030402 (2020).

[54] O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein, Quantum
Simulation of an Extra Dimension, Phys. Rev. Lett. 108, 133001
(2012).

023316-10


https://doi.org/10.1364/OL.32.001950
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1103/PhysRevA.67.013602
https://doi.org/10.1103/PhysRevA.67.063608
https://doi.org/10.1103/PhysRevA.72.033607
https://doi.org/10.1103/PhysRevLett.94.130403
https://doi.org/10.1103/PhysRevE.78.026606
https://doi.org/10.1103/PhysRevA.99.013611
https://doi.org/10.1103/PhysRevLett.92.180405
https://doi.org/10.1103/PhysRevA.73.023607
https://doi.org/10.1103/PhysRevA.75.063602
https://doi.org/10.1103/PhysRevA.75.023617
https://doi.org/10.1103/PhysRevA.79.015602
https://doi.org/10.1103/PhysRevE.95.032217
https://doi.org/10.1103/PhysRevLett.111.060402
https://doi.org/10.1103/PhysRevLett.112.180403
https://doi.org/10.1103/PhysRevA.91.043629
https://doi.org/10.1103/PhysRevLett.122.064101
https://doi.org/10.1038/nature09887
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1142/97898145901740002
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1142/97898146677460005
https://doi.org/10.1142/97898146677460003
https://doi.org/10.1007/s11467-016-0560-y
https://doi.org/10.1103/PhysRevA.89.063602
https://doi.org/10.1088/1361-6455/aa7ba1
https://doi.org/10.1103/PhysRevA.95.063613
https://doi.org/10.1016/j.ijleo.2018.04.097
https://doi.org/10.1103/PhysRevA.97.013607
https://doi.org/10.1103/PhysRevLett.122.123201
https://doi.org/10.1103/PhysRevA.101.013607
https://doi.org/10.1103/PhysRevB.101.245305
https://doi.org/10.1103/PhysRevA.104.043315
https://doi.org/10.1103/PhysRevLett.114.070401
https://doi.org/10.1038/ncomms10897
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1103/PhysRevLett.120.063202
https://doi.org/10.1103/PhysRevLett.125.030402
https://doi.org/10.1103/PhysRevLett.108.133001

SPIN-ORBIT-COUPLED SPINOR GAP SOLITONS IN ...

PHYSICAL REVIEW A 107, 023316 (2023)

[55] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman,
G. Juzelitinas, and M. Lewenstein, Synthetic Gauge Fields in
Synthetic Dimensions, Phys. Rev. Lett. 112, 043001 (2014).

[56] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M.
Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L.
Fallani, Synthetic Dimensions and Spin-Orbit Coupling with
an Optical Clock Transition, Phys. Rev. Lett. 117, 220401
(2016).

[57] Z.-H. Li, L. Zhou, and Y. Li, Chiral Bloch-Zener oscillations of
spin-orbit coupled cold atoms in an optical superlattice, J. Phys.
B 54, 035004 (2021).

[58] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Observation of chiral edge states with neutral fermions
in synthetic Hall ribbons, Science 349, 1510 (2015).

[59] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Visualizing edge states with an atomic Bose gas in
the quantum Hall regime, Science 349, 1514 (2015).

[60] T. Ohmi and K. Machida, Bose-Einstein condensation with
internal degrees of freedom in alkali atom gases, J. Phys. Soc.
Jpn. 67, 1822 (1998).

[61] T.-L. Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev.
Lett. 81, 742 (1998).

[62] E. G. M. van Kempen, S.J. J. M. F. Kokkelmans, D. J. Heinzen,
and B. J. Verhaar, Interisotope Determination of Ultracold Ru-
bidium Interactions from Three High-Precision Experiments,
Phys. Rev. Lett. 88, 093201 (2002).

[63] J. Ieda, T. Miyakawa, and M. Wadati, Exact Analysis of Soliton
Dynamics in Spinor Bose-Einstein Condensates, Phys. Rev.
Lett. 93, 194102 (2004).

[64] L. Li, Z. Li, B. A. Malomed, D. Mihalache, and W. M. Liu,
Exact soliton solutions and nonlinear modulation instability in
spinor Bose-Einstein condensates, Phys. Rev. A 72, 033611
(2005).

[65] P. Szankowski, M. Trippenbach, E. Infeld, and G. Rowlands,
Oscillating Solitons in a Three-Component Bose-Einstein Con-
densate, Phys. Rev. Lett. 105, 125302 (2010).

[66] S.Yi, O.E. Miistecaplioglu, C. P. Sun, and L. You, Single-mode
approximation in a spinor-1 atomic condensate, Phys. Rev. A
66, 011601(R) (2002).

[67] Z. Lan and P. Ohberg, Raman-dressed spin-1 spin-orbit-coupled
quantum gas, Phys. Rev. A 89, 023630 (2014).

[68] S. S. Natu, X. Li, and W. S. Cole, Striped ferronematic ground
states in a spin-orbit-coupled S = 1 Bose gas, Phys. Rev. A 91,
023608 (2015).

[69] Z.-Q. Yu, Phase transitions and elementary excitations in spin-1
Bose gases with Raman-induced spin-orbit coupling, Phys. Rev.
A 93, 033648 (2016).

[70] K. Sun, C. Qu, Y. Xu, Y. Zhang, and C. Zhang, Interacting spin-
orbit-coupled spin-1 Bose-Einstein condensates, Phys. Rev. A
93, 023615 (2016).

[71] G. 1. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S.
Stringari, Tricriticalities and Quantum Phases in Spin-Orbit-
Coupled Spin-1 Bose Gases, Phys. Rev. Lett. 117, 125301
(2016).

[72] S. Mardonov, M. Modugno, and E. Y. Sherman, Dynamics of
Spin-Orbit Coupled Bose-Einstein Condensates in a Random
Potential, Phys. Rev. Lett. 115, 180402 (2015).

[73] Y.-K. Liu and S.-J. Yang, Exact solitons and manifold mix-
ing dynamics in the spin-orbit—coupled spinor condensates,
Europhys. Lett. 108, 30004 (2014).

[74] S. Mardonov, V. V. Konotop, B. A. Malomed, M. Modugno,
and E. Y. Sherman, Spin-orbit-coupled soliton in a random
potential, Phys. Rev. A 98, 023604 (2018).

[75] D. Ma and C. Jia, Soliton oscillation driven by spin-orbit cou-
pling in spinor condensates, Phys. Rev. A 100, 023629 (2019).

[76] S. K. Adhikari, Phase separation of vector solitons in spin-orbit-
coupled spin-1 condensates, Phys. Rev. A 100, 063618 (2019).

[77]1 J. Sun, Y. Chen, X. Chen, and Y. Zhang, Bright solitons
in a spin-tensor-momentum-coupled Bose-Einstein condensate,
Phys. Rev. A 101, 053621 (2020).

[78] J. Fan, G. Chen, and S. Jia, Dynamical Zeeman resonance in
spin-orbit-coupled spin-1 Bose gases, Phys. Rev. A 102, 063311
(2020).

[79] S. K. Adhikari, Symbiotic solitons in quasi-one- and quasi-
two-dimensional spin-1 condensates, Phys. Rev. E 104, 024207
(2021).

[80] L.-Z. Meng, Y.-H. Qin, and L.-C. Zhao, Spin solitons in spin-1
Bose-Einstein condensates, Commun. Nonlinear Sci. Numer.
Simul. 109, 106286 (2022).

023316-11


https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevLett.117.220401
https://doi.org/10.1088/1361-6455/abd879
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1143/JPSJ.67.1822
https://doi.org/10.1103/PhysRevLett.81.742
https://doi.org/10.1103/PhysRevLett.88.093201
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevA.72.033611
https://doi.org/10.1103/PhysRevLett.105.125302
https://doi.org/10.1103/PhysRevA.66.011601
https://doi.org/10.1103/PhysRevA.89.023630
https://doi.org/10.1103/PhysRevA.91.023608
https://doi.org/10.1103/PhysRevA.93.033648
https://doi.org/10.1103/PhysRevA.93.023615
https://doi.org/10.1103/PhysRevLett.117.125301
https://doi.org/10.1103/PhysRevLett.115.180402
https://doi.org/10.1209/0295-5075/108/30004
https://doi.org/10.1103/PhysRevA.98.023604
https://doi.org/10.1103/PhysRevA.100.023629
https://doi.org/10.1103/PhysRevA.100.063618
https://doi.org/10.1103/PhysRevA.101.053621
https://doi.org/10.1103/PhysRevA.102.063311
https://doi.org/10.1103/PhysRevE.104.024207
https://doi.org/10.1016/j.cnsns.2022.106286

