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Reference-frame-independent model of a collective-excitation atom interferometer
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We theoretically analyze the operating principles of a proposed matter-wave Sagnac interferometer utilizing
Bose-Einstein-condensate (BEC) phonon modes as an interference medium. Previous work found that the orbital
angular momentum phonon modes of a ring-trapped BEC are split in frequency by rotations, leading to a
measurable rotation signal. We develop an alternate description in which an imbalance in the counterpropagating
modes’ amplitudes (populations) is induced by the rotation of the system during condensation. This description
gives analytic forms for the interferometic phase shift in one dimension and is readily generalized to include
mean-field interactions. To validate our findings, we simulate a ring-trapped BEC Sagnac interferometer in one
dimension and demonstrate that measurement of an unknown rotation rate can be performed using a modified
analysis. Our simulation data show strong agreement with our analytic results, and we further employ simulations
to explore and clarify the role of superfluidity in this matter-wave Sagnac interferometer.

DOI: 10.1103/PhysRevA.107.023314

I. INTRODUCTION

The Sagnac effect links the phase shift between waves
counterpropagating within an enclosed loop with the exter-
nal rotation of such a system [1]. This has been exploited
to allow high-precision interferometric measurement of rota-
tions, useful in inertial sensing and navigation (for examples
see Ref. [2]). Current state-of-the-art Sagnac interferometers
utilize counterpropagating light, with a large enclosed area to
boost sensitivity [3]. Matter-wave systems appear to have a
sensitivity advantage when considering the energy difference
between optical and atomic systems [4]. Despite this, matter-
wave Sagnac interferometers are yet to surpass their optical
counterparts in terms of precision.

Recent proposals have made use of advances in Bose-
Einstein-condensate (BEC) research and experimental tech-
niques, providing an alternative medium to atomic-beam-
based and guided matter-wave interferometry schemes [5–23].
In particular, proposals to measure the Sagnac phase shift
of an interference pattern produced by counterpropagating
orbital angular momentum (OAM) modes in a trapped BEC
offer a way to utilize the high levels of control and coherence
available in modern experimental systems [23–25]. This can
be achieved through imparting optical OAM onto the conden-
sate [24] or by exciting standing-wave collective excitations
[25]—the latter is the focus of this work.

The use of collective-excitation modes is expected to
ameliorate technical difficulties often associated with BEC
interferometric protocols that require condensate splitting or
spin-dependent transitions [7,11,13,15,26–29]. A protocol for
collective-excitation Sagnac interferometry in a ring-trapped
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BEC has been proposed and tested for rotation sensing [25].
This protocol imprints a standing-wave excitation on ring-
trapped atoms through a weak azimuthally modulated optical
potential while cooling through the BEC transition. By impos-
ing this potential during condensate formation then releasing
the BEC to freely evolve in the ring, rotation of the standing-
wave pattern is observable in the rotating laboratory frame, as
illustrated in Fig. 1.

Reference [25] analyzed the standing-wave rotation in
terms of a frequency splitting between the standing wave’s
constituent counterpropagating traveling-wave components in
a three-mode model. However, the frequency-splitting effect
requires observation in an inertial frame, something that can-
not be achieved when attempting to experimentally measure
unknown rotations.

This work is an alternate analysis of the theory in Ref. [25],
in which we develop a frame-independent theory of operation
for this protocol. By analyzing the dynamics in the context of
mode amplitudes we reveal multiple features of the interfero-
metric design that were not previously apparent. The splitting
of counterpropagating modes in a rotating waveguide via the
Sagnac effect has been exploited in optical systems to produce
nonreciprocal propagation of light, analyzed in terms of both
mode amplitude [30] and frequency splitting [31,32]. For the
purposes of matter-wave Sagnac interferometry for precision
rotation sensing, we show that a mode amplitude-splitting
analysis provides further insight into achieving high precision.

In Sec. II we describe the three-mode model and use
it to derive the relationship between the rotation rate and
standing-wave mode amplitudes, showing that rotation in-
duces a splitting in the amplitudes of counterpropagating
modes. Section III details our numerical simulations of the
interferometer, which show that rotation measurements can be
performed by examining the evolution of the Fourier phase of
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FIG. 1. Marti et al.’s [25] proposed schematic illustration, with a 2D top-down view (top) and 1D representation (bottom). (a) Begin with
atoms confined to a ring with constant density and impose an optical potential with azimuthally dependent modulations V (θ ) while condensing
to form a BEC with density modulations. At t = 0, remove the optical potential, and allow the density modulations to undergo standing-wave
oscillation, where at each half cycle, the density modulation pattern is inverted. (b) In the presence of rotation, the modulation peaks shift
position with each half cycle.

the imprinted density modes. In Sec. IV we show numerically
that the imbalanced state is the ground state of the ring system
in the presence of both rotation and an imprinting potential. In
Sec. V we extend our analysis to low-temperature BECs de-
scribed by the Gross-Pitaevskii equation (GPE) and examine
practical considerations of our results.

II. THREE-MODE MODEL

In this section we introduce the three-mode model and use
it to derive the Sagnac phase shift for the ring geometry in both
inertial and rotating frames. In the rotating frame we directly
relate the mode imbalance to the rotation rate.

Our initial analysis considers a simple model of the pro-
posed phonon-mode interferometer: a noninteracting system
confined to a one-dimensional ring. This ideal phonon-mode
interferometer with wave function ψ (θ ) populates only three
angular momentum eigenstates,

ψ (θ ) = φ0 + φ+l + φ−l , (1)

φ0 = a0, (2)

φl = (a + �) eilθ , (3)

φ−l = (a − �) e−ilθ . (4)

Here φk is an angular momentum eigenstate with quantized
circulation k ∈ {0, l,−l}, a is the mean amplitude of the k =
±l modes, � is the mode splitting, and θ is the positional
parameter (angle) around the one-dimensional (1D) ring. The
wave function is normalized such that

∫ |ψ |2dr = 1. There-
fore, φ0 is the constant background on which the angular
momentum modes (i.e., phonon modes) with OAM quantum
number ±l are imprinted. Nonzero values of � result in an
imbalance between counterpropagating mode amplitudes.

A. In the inertial frame

To begin, we first note that Ref. [25] assumes an equal
superposition of counterpropagating modes, i.e., � = 0. Our
analysis proceeds without this assumption. For each mode
[Eqs. (2) to (4)], the time evolution operator Ut = e−iĤt/h̄ is

given by

Utφ0 = a0 e−iE0t/h̄, (5)

Utφl = (a + �) ei(lθ−Et/h̄), (6)

Utφ−l = (a − �) e−i(lθ+Et/h̄), (7)

where E0 is the energy of the background mode and E = El =
l2h̄2/2mr2 is the degenerate energy of the counterpropagat-
ing modes, with m representing particle mass and r being
the ring’s radius, both of which we set to 1 without loss of
generality.

The time-dependent density profile can be decomposed
into the sum of a standing wave and a traveling wave oscil-
lating on a time-independent background,

|ψ (t )|2 = a2
0 + (a + �)2 + (a − �)2

+ 2(a + �)(a − �) cos(2lθ )

+ 4a0� cos[lθ − (E − E0)t/h̄]

+ 2a0(a − �){ cos[lθ − (E − E0)t/h̄]

+ cos[lθ + (E − E0)t/h̄]}. (8)

Note that when � = 0, the traveling-wave component of
Eq. (8), 4a0� cos[lθ − (E − E0)t/h̄], is zero, consistent with
a nonrotating standing-wave state. The rotation rate is deter-
mined through the evolution of the complex phase shift in the
single-frequency Fourier transform of the density profile,

ϕ(t ) = arctan

[∫
|ψ (t )|2e−ilθ dθ

]
, (9)

for a single mode l .
From Eqs. (8) and (9), the phase shift in the inertial frame

takes the form

ϕ(t ) = arctan

[
−�

a
tan[(E − E0)t/h̄]

]
. (10)

In the limit �
a → 1, Eq. (10) gives a constant phase gradient—

a linear phase accumulation consistent with a pure traveling
wave. Conversely, taking the limit � → 0 results in a constant
zero phase gradient, as expected for a pure standing wave.
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Considering Eq. (10) at stroboscopic measurement times,

τs = nπ h̄

E − E0
, (11)

where n is a natural number encoding the number of oscilla-
tions since t = 0, the phase shift is always zero. The rotation
of the density profile relative to the measurement frame (in
this case the inertial frame) is given by the time derivative
of the phase shift at stroboscopic times—when the standing-
wave component is at its maximum amplitude,

dϕ

dt
= −�(E − E0)

h̄a
. (12)

In the inertial frame this depends only on the mode imbalance
and choice of excited mode number. In a sensing application,
the measurement frame is expected to rotate with the system
at an unknown rate. By analyzing the phase shift ϕ(t ) in the

rotating frame, we can determine the relationship between the
rotation rate 	 and mode imbalance �.

B. In the rotating frame

In the rotating frame, we can perform an analysis similar to
that above with the inclusion of a time-dependent coordinate
transform,

θ → θ ′ + 	t . (13)

Repeating the calculation of the time-dependent density, the
Fourier-transform result for a rotating system is given by∫

|ψ (θ ′, t )|2e−ilθ ′
dθ ′ = a0(a + �)e−i(E−E0 )t/h̄ +il	t

+ a0(a − �)ei(E−E0 )t/h̄ +il	t . (14)

The phase angle subsequently depends on the rotation rate,

ϕ(t ) = arctan

[−� sin[(E − E0)t/h̄] cos(l	t ) + a cos[(E − E0)t/h̄] sin(l	t )

� sin[(E − E0)t/h̄] sin(l	t ) + a cos[(E − E0)t/h̄] cos(l	t )

]
. (15)

For 	 = 0, this reduces to Eq. (10). At stroboscopic times τs

[Eq. (11)] we find explicit dependence of the phase shift on
the rotation rate,

ϕ(τs) = n π h̄ l 	

E − E0
. (16)

This phase shift increases with each oscillation due to the
n dependence of Eq. (16). At exactly t = τs, the rotation of
the density profile is zero relative to the rotating frame. At
other times, it follows the general form of the phase-shift time
derivative in the rotating frame,

dϕ

dt
= l	 − �(E − E0)

h̄a
. (17)

As dφ

dt = 0 at stroboscopic measurement times, we can di-
rectly relate the mode imbalance � to the rotation rate 	 using
Eq. (17),

�

a
(E − E0) = l h̄	. (18)

This result demonstrates that a rotating system develops an
imbalance in the amplitudes of imprinted counterpropagat-
ing OAM modes which is intrinsically linked to the rate of
rotation—with nonzero rotation there is always a nonzero
imbalance.

Experimentally, the rotation rate is measured by imaging
the atomic density at one or more stroboscopic measurement
times and determining the Fourier phase shift. The linear gra-
dient between stroboscopic phase shifts according to Eq. (16)
is proportional to l	; therefore, an unknown rotation rate can
be measured in a frame where the laboratory is also rotating.

III. NUMERICAL SIMULATIONS

To test and extend our analytic results, we simulate the
dynamics of a one-dimensional ring-trapped condensate in

two parameter regimes: the phonon regime and the mean-field
regime. In the phonon regime, excitations are of sufficiently
small amplitude that inter-particle interactions are negligible,
allowing simulation of dynamics using the Schrödinger equa-
tion for wave function ψ (θ, t ),

−ih̄
∂ψ (θ, t )

∂t
=

( −h̄2

2mr2

∂2

∂θ2
+ V (θ, t )

)
ψ (θ, t ). (19)

In the mean-field regime, interactions are non-negligible and
are described by the GPE,

−ih̄
∂ψ (θ, t )

∂t
=

(−h̄2

2mr2

∂2

∂θ2
+ V (θ, t ) + g|ψ (θ, t )|2

)
ψ (θ, t ),

(20)

where g is the interaction strength parameter, r is the radius of
the ring, V (θ, t ) is the time-dependent imprinting potential,
and in the GPE ψ (θ, t ) is the 1D order parameter for the
bosonic field. Simulation is performed using a three-point
Crank-Nicolson method on a grid of 105 points. We simulate
the full protocol: condensation (via imaginary-time evolution)
in an |l| = 5 imprinting potential and removal of the im-
printing potential at t = 0 for free evolution of the system.
The Fourier components at select frequencies corresponding
to OAM modes l = [−15, 15] are calculated at each time
step, including the phase shift extracted from the density
profile. Rotation of the system was independently set for the
imaginary-time and real-time portions of the simulation via
the rotation parameters 	I and 	R, respectively. Density plots
and extracted phase shifts for the noninteracting system are
presented in Fig. 2.

Several features of our numerical results support our
analytic solution from Sec. II. In the inertial frame
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FIG. 2. Space-time density profiles and extracted phase for different rotating-reference-frame configurations from simulations without
interactions. (a)–(d) Space-time density profiles for the ideal 1D ring system. Each case is labeled with the rotation rate of the system during
imaginary-time evolution 	I , which corresponds to condensate formation, and the real-time rotation rate 	R, which corresponds to the free
evolution of the system once the imprinting potential is removed. Dashed vertical lines indicate full oscillations of the standing-wave component
from t = 0, while dashed horizontal lines indicate angular positions around the ring to guide the eye. (e)–(h) Plots of the extracted phase for
each of the simulation conditions matching the density-profile plot immediately above. The purple curve is from simulations using the ground
state found via imaginary time, while the green points are from simulations that numerically optimize Eq. (22). The numerics in Ref. [25]
correspond to (b) and (f), while a physical experiment necessarily corresponds to (d) and (h).

(	I = 	R = 0) the phase shift at stroboscopic times is zero,
as shown in Fig. 2(e). Similarly, Fig. 2 shows the time deriva-
tive of the phase shift in the rotating frame (	I = 	R = 	) is
zero, and the phase shift accumulates by a fixed amount pro-
portional to l	 for each oscillation, as predicted by Eq. (16).

Figure 2 highlights the differences in both phase shift and
density oscillations under different rotation conditions. The
rotating-frame analysis in Sec. II corresponding to Figs. 2(d)
and 2(h) matches the conditions of an experimental measure-
ment of an unknown rotation—the condensate is prepared
under rotation and freely evolves in the ring trap under
rotation.

IV. NUMERICAL CALCULATION
OF THE GROUND STATE

The protocol in Ref. [25] requires an imprinting potential
during condensation to form the initial state. According to the
three-mode model, the ground state in the imprinting potential
will depend on model parameters a0, a, and �. In this section,
we calculate the expectation value of the imprinting Hamil-
tonian using a three-mode state and compare its numerically
calculated minimum value to the ground state found using
imaginary-time evolution.

We simulate the 1D particle-in-a-ring Hamiltonian with
imprinting potential in a rotating frame,

Ĥ = − h̄2

2mR2

∂2

∂θ2
+ [V0 − α cos(lθ )] + ih̄	

∂

∂θ
. (21)

Here m is the particle mass, R is the ring radius, 	 is the
rotation rate, and V = [1 − α cos(lθ )] is the imprinting poten-
tial with modulation amplitude α. We choose as our ansatz ψ

from Eq. (1), with normalization factor N = [2π (a2
0 + 2a2 +

2�2)]−1/2. We then calculate the expectation value of the
Hamiltonian 〈Ĥ〉,

〈Ĥ〉 =
h̄2l2

2mR2 (2a2 + 2�2) + 4l	a� − 2αa0a

a2
0 + 2a2 + 2�2

. (22)

Full details of the calculation are available in Appendix A.
The ground state of the system is defined by the values of
a0, a, and � that minimize this expectation value for given
values of the ring radius, rotation rate, and imprinting poten-
tial amplitude. Note that for nonzero rotation |	| > 0, there
is an explicit coupling of a and �; therefore, the ground state
of a nonrotating system will have a different value for a than
that of an identical system that is rotating. This can be seen
by careful examination of Fig. 3. As the normalization factor
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FIG. 3. Mode decomposition of the simulated state following imaginary-time evolution with and without rotation for increasing interaction
strength g: (a) g = 0, (b) g = 1, (c) g = 10, and (d) g = 100. The mode splitting is clear between the nonrotating and rotating cases. The
dominant l = 0 mode has been omitted for visual clarity. Note that the amplitude in the nonrotating case is not the mean amplitude for the
corresponding rotating case due to coupling between parameters a and � in Eqs. (22) and (23). As g is increased, we see a suppression
of the imprinted mode.

couples the derivatives with respect to our three main param-
eters, we use a numerical gradient-descent method to obtain
values for a0, a, and � and compare to the converged ground
state obtained by simulating the system in one dimension with
imaginary-time evolution. The main result of this comparison
is shown in Figs. 2(e)–2(h), where the extracted phase of
both the three-mode model and imaginary-time simulations
are shown with strong agreement.

V. MEAN-FIELD EXCITATIONS

To investigate the effects of imprinting deeper modula-
tions, we consider the 1D GPE from Eq. (20) to describe
mean-field condensate dynamics.

As we increase the interaction parameter g > 0, the ampli-
tude of the primary (l) mode Fourier component decreases as
the repulsive interactions of the mean-field potential suppress
modulations, as shown in Fig. 3.

The ground state for the interacting case is determined
by using the GPE Hamiltonian from Eq. (20). This gives an
expectation value modified from that in Sec. IV, although it
can be numerically minimized in the same way as Eq. (22),

〈Ĥ〉 = 1

a2
0 + 2a2 + 2�2

(
h̄2l2

2mR2
(2a2 + 2�2) + 4l	a�

− 2αa0a + g
[
8a2

0a2 + (a2 − �2)2a4
])

. (23)

As shown in Fig. 4, the interacting ground-state result pro-
vides strong agreement between optimized parameters and
those found via imaginary-time evolution in numerical sim-
ulations.

An additional feature of Fig. 4 when viewed in comparison
to Fig. 2 is the dependence of the density oscillation period
on the interaction strength. In Fig. 5 we compare the oscilla-
tion periods of simulations with varying interaction strengths
and find that in the mean-field approximation the oscillation
frequency is dependent on the Bogoliubov mode energy,

ε(p) =
√(

p2

2m

)2

+ p2gn

m
, (24)

where p is the mode’s momentum and n is the atomic density.

A. The Hess-Fairbank effect

The Hess-Fairbank effect describes the formation of a
nonrotating superfluid condensate in a container rotating suffi-
ciently slowly [33]. It is in this slowly rotating regime that the
three-mode model is obtained exactly, as shown in Fig. 6—
higher external rotation rates induce a global circulation in
the condensed state, shifting the mode occupation. This cor-
responds to a global phase factor in the wave function, which
does not alter the mode structure of the density nor the evolu-
tion of the Fourier phase (except for the expected scaling with
rotation rate). This is explored further in Appendix B.
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FIG. 4. Same as Fig. 2, but with mean-field interaction strength g = 10. Note the lighter color in the density plots in (a)–(d) due to
interactions suppressing the imprinted mode amplitudes. The temporal oscillation frequency is also increased due to the extra energy in the
system. The Fourier phase evolution of the three-mode model [green crosses in (e)–(h)] agrees with that of the ground state found through
imaginary time (purple curve).

A condensate formed in a rotating Sagnac interferometer
is not irrotational as described by the Hess-Fairbank effect.
In the slowly rotating regime, the rotation of the imprinted
density profile indicates flow without global circulation. This
is where classical fluid analogies break down, as they can-
not describe the superposition state of the condensate. A
simple experimental test of the Hess-Fairbank effect in the
collective-excitation interferometer can be performed using
a rotating imprinting potential to simulate different external

FIG. 5. Dependence of the temporal oscillation period on inter-
action strength g. Points are the oscillation periods extracted from
numerical simulations; the curve corresponds to the analytic Bogoli-
ubov mode energy from Eq. (24). Natural units are set such that
h̄ = m = c = 1.

rotation rates as in Fig. 6 without requiring rotation of the
entire experimental apparatus.

B. Experimental considerations

The rotating reference frame and mean-field effects
described above impact the feasibility of the original inter-
ferometric scheme. In a typical inertial sensing application,
the time dependence of the phase shift requires stroboscopic

FIG. 6. Heat map of normalized mode amplitudes for quantized
angular momentum modes formed under rotation. Imaginary-time
evolution of an initial Gaussian state under external rotation at 	

produces the expected three-mode state at low rotation rates and
induces a global rotation of the system at higher rates.
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measurements to be precisely timed for maximum accuracy.
This is complicated by the dependence of the stroboscopic
measurement time on the interaction strength, which in an ex-
periment is related to the atom number and cannot be precisely
controlled between iterations. Using the Bogoliubov mode
energy as a guide to ideal measurement time can mitigate this
where interactions are sufficiently weak.

VI. CONCLUSION

In conclusion, the three-mode model with imbalanced
mode amplitudes is a frame-independent model for studying
the rotation signal in a phonon-mode Sagnac interferometer.
We have shown that this model is accurate in describing the
one-dimensional behavior of this system and that absolute
rotation measurement is possible. The three-mode state is not
irrotational per the Hess-Fairbank effect even at low rotation
rates, and we have suggested a simple experiment to demon-
strate this.

Given the results of this work, the ideal rotation-
measurement scheme involves measuring the extracted phase
at as close to the first stroboscopic measurement time as pos-
sible. We have shown that there are multiple subtleties in the
reference frame and interaction effects that must be consid-
ered when designing ring-trapped interferometric schemes.
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APPENDIX A: NUMERICAL GROUND-STATE
CALCULATION

In order to numerically determine the three-mode model
parameters that define the ground state in a rotating ring
system, we calculate the expectation value of the Hamiltonian
for numerical minimization. The 1D particle-in-a-ring Hamil-
tonian with imprinting potential is given in a rotating frame
by

Ĥ = − h̄2

2mR2

∂2

∂θ2
+ [V0 − α cos(nθ )] + ih̄	

∂

∂θ
, (A1)

where m is the particle mass, R is the ring radius, 	 is
the rotation rate, and V = [1 − α cos(nθ )] is the imprinting
potential with modulation amplitude α. We choose as our
ansatz ψ from the three-mode model, with normalization
factor [2π (a2

0 + 2a2 + 2�2)]−1/2. We can then determine the

expectation value of the Hamiltonian 〈Ĥ〉:

〈Ĥ〉 =
∫ 2π

0
ψ∗Ĥψ dθ

= 1

2π (|a0|2 + 2|a|2 + 2|�|2)

×
∫ 2π

0
[V0 − α cos(mθ )]|a0|2

+
(

h̄2l2

2mR2
+ [V0 − α cos(nθ )] − h̄l	

)
|a + �|2

+
(

h̄2l2

2mR2
+ [V0 − α cos(nθ )] + h̄l	

)
|a − �|2

+
[(

h̄2l2

2mR2
+ [V0 − α cos(nθ )] − h̄l	

)

× a∗
0(a + �)eilθ

]

+
[(

h̄2l2

2mR2
+ [V0 − α cos(nθ )] + h̄l	

)

× a∗
0(a − �)e−ilθ

]

+ [V0 − α cos(nθ )](a + �)∗a0 e−ilθ

+ [V0 − α cos(nθ )](a − �)∗a0 eilθ

+
[(

h̄2l2

2mR2
+ [V0 − α cos(nθ )] − h̄l	

)

× (a − �)∗(a + �)e−2ilθ

]

+
[(

h̄2l2

2mR2
+ [V0 − α cos(nθ )] + h̄l	

)

× (a + �)∗(a − �)e−2ilθ

]
dθ. (A2)

This integral is simplified by noting that all terms with a
single oscillatory factor integrate to zero, leaving only the
nonoscillatory terms and terms with a product of cos(nθ ) and
an exponential. The latter can be calculated as follows.

To determine the contribution of the imprinting poten-
tial modulations to the integral in Eq. (A2), we calculate
the potential matrix element for generic OAM eigenstates
|k〉 = ψk = (2π )−1/2eikθ :

〈l|Vm|n〉 =
∫ 2π

0
ψ∗

l (θ ) [V0 − α cos(mθ )] ψn(θ ) dθ

=
∫ 2π

0
ψ∗

l (θ ) V0 ψn(θ ) dθ

− α

2π

∫ 2π

0
ψ∗

l (θ ) cos(mθ ) ψn(θ ) dθ

= V0 δl,n − α

2π

∫ 2π

0
cos(mθ ) e−i(l−n)θ dθ
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FIG. 7. Occupation of select orbital angular momentum (OAM) modes after condensation into an l = 5 imprinting potential for increasing
the external rotation rate during condensation. Values below 10−6 are equivalent to zero due to a finite convergence threshold.

= V0 δl,n − α

2π

∫ 2π

0

1

2
{cos[(l − n + m)θ ]

+ cos[(l − n − m)θ ]} − i

2
{sin[(l − n + m)θ ]

− sin[(l − n − m)θ ]} dθ. (A3)

The integral is nonzero if and only if either l − n + m = 0 or
l − n − m = 0. In either of these cases, the matrix element
reduces to

〈l|Vm|n〉 = −α

2
. (A4)

For the three-mode model, there are four such terms, resulting
in the −2αa0a term in the final expression for the expectation

value of the Hamiltonian:

〈Ĥ〉 = 1

a2
0 + 2a2 + 2�2

×
(

h̄2l2

2mR2
(2a2 + 2�2) + 4h̄l	a� − 2αa0a

)
. (A5)

This process is repeated using the Gross-Pitaevskii equation to
obtain the nonlinear expectation value presented in the main
text.

APPENDIX B: THE HESS-FAIRBANK EFFECT

First observed in liquid helium [33], the Hess-Fairbank
effect describes the formation of a nonrotating superfluid in

FIG. 8. Amplitudes of select density Fourier modes after condensation into an l = 5 imprinting potential for increasing the external rotation
rate during condensation. Values below 10−6 are equivalent to zero due to a finite convergence threshold.
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a container rotating sufficiently slowly during the transition
to the superfluid phase. In a simply connected cylindrical
container of radius R, rotation proportional to nh̄

mR2 is sufficient
to generate n vortices of quantized circulation. This places an
upper limit on the rotation rate of such a container such that
the ground state has zero circulation.

In the ring geometry of the phonon-mode interferometer,
it is straightforward to calculate the rotation rate at which
an energy crossing between two OAM modes (Figs. 7 and
8) occurs for a noninteracting superfluid by equating their
eigenenergies:

El = Ek, (B1)

h̄2l2

2mR2
− h̄l	 = h̄2k2

2mR2
− h̄k	, (B2)

h̄

2mR2
(l2 − k2) = 	(l − k), (B3)

	 = h̄

mR2

l2 − k2

2(l − k)
. (B4)

For the lth mode and the mode directly adjacent (in the
direction of rotation), the crossing occurs at 	 = h̄

mR
2l+1

2 .
However, in the three-mode model each mode does not shift
to the adjacent mode; instead, there is a patterned shift where

TABLE I. Rotation rates as multiples of h̄
mR2 that produce energy

crossings from OAM mode k to mode l; determined using Eq. (B4).
Bold entries show the mode shifting for the three-mode model stud-
ied in the text. Note that the observed shift is not due to adjacent
modes coupling for l = ±5.

�
��k

l −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−5 − 9
2 −4 − 7

2 −3 − 5
2 −2 − 3

2 −1 − 1
2 0 1

2

−4 − 9
2 − 7

2 −3 − 5
2 −2 − 3

2 −1 − 1
2 0 1

2 1

−3 −4 − 7
2 − 5

2 −2 − 3
2 −1 − 1

2 0 1
2 1 3

2

−2 − 7
2 −3 − 5

2 − 3
2 −1 − 1

2 0 1
2 1 3

2 2

−1 −3 − 5
2 −2 − 3

2 − 1
2 0 1

2 1 3
2 2 5

2

0 − 5
2 −2 − 3

2 −1 − 1
2

1
2 1 3

2 2 5
2 3

1 −2 − 3
2 −1 − 1

2 0 1
2

3
2 2 5

2 3 7
2

2 − 3
2 −1 − 1

2 0 1
2 1 3

2
5
2 3 7

2 4

3 −1 − 1
2 0 1

2 1 3
2 2 5

2
7
2 4 9

2

4 − 1
2 0 1

2 1 3
2 2 5

2 3 7
2

9
2 5

5 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

11
2

6 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 11

2

the ±lth mode shifts to the ∓(l + 1)th mode for rotation
about the positive z axis [or shifts to the ∓(l − 1)th mode for
rotation about the negative z axis], as shown in Table I.
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