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Crystalline phases of laser-driven dipolar Bose-Einstein condensates
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Although crystallization is a ubiquitous phenomenon in nature, crystal formation and melting still remain
fascinating processes with several open questions yet to be addressed. In this work we study the emergent crys-
tallization of a laser-driven dipolar Bose-Einstein condensate due to the interplay between long-range magnetic
and effectively infinite-range light-induced interactions. The competition between these two interactions results
in a collective excitation spectrum with two-roton minima that introduce two different length scales at which
crystalline order can emerge. In addition to the formation of regular crystals with simple periodic patterns
due to the softening of one of the rotons, we find that both rotons can also soften simultaneously, resulting
in the formation of exotic, complex periodic, or aperiodic density patterns. We also demonstrate dynamic
state-preparation schemes for achieving all the crystalline ground states found for experimentally relevant and
feasible parameter regimes.
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I. INTRODUCTION

Ultracold atomic gases with long-range interactions are
a platform with unprecedented properties to realize exotic
many-body phenomena in a well-controlled environment [1].
Long-range interactions in Bose-Einstein condensates (BECs)
can either originate from the intrinsic magnetic dipole mo-
ment of atomic species [2–6] or be imposed by manipulating
the BEC with external laser fields [7–16] or quantized dy-
namic cavity fields [17–20]. In addition to supersolid and
crystalline (droplet array) phases precipitated by the long-
range interactions, competition between diverse interactions
in such systems can also lead to other interesting emer-
gent physics. These include frustration in BECs confined to
multimode cavities [21–23] and quasicrystalline order in dipo-
lar BECs with spin-orbit interactions [24–26] or nondipolar
BECs interacting with multiple cavities [27].

In this paper we focus on the interplay between long-range
magnetic dipole and effectively infinite-range light-induced
interactions in a cigar-shaped elongated BEC illuminated by
two counterpropagating laser beams with orthogonal polariza-
tions [see Fig. 1(a)]. In the absence of light this system is
expected to exhibit a phase transition to supersolid [28–31]
or droplet crystalline phases [32,33]. Alternately, it has been
shown that for a nondipolar laser-driven BEC the translational
invariance of the system can be broken, leading to the simul-
taneous formation of a crystalline atomic state and optical
potential with an intrinsically chosen period comparable to
that of the laser field’s wavelength [10–12]. The formation of
these phases is related to the instability of a magnetic [34,35]
or a light-induced roton mode in the excitation spectrum
[10–12], respectively, similar to the one originally predicted
for superfluid 4He [36].

The fundamental question we pose here is the follow-
ing: What are the phases that emerge from the competition

between these two distinct interactions? We show that this
comprises an intriguing scenario leading to the formation of
a rich variety of crystalline and supersolid phases. Specifi-
cally, from the collective excitation spectrum we find regimes
with biroton softening arising from the competition between
the two long-range interactions, indicating the existence of
two possible crystallization length scales. We confirm this
by calculating the ground-state phase diagram which hosts,
besides the two individual ordered states corresponding to
each long-range interaction, an intertwined emergent phase
with periodic or aperiodic density patterns corresponding to
the biroton softening. Ultimately, we outline state prepara-
tion schemes to achieve the different crystalline ground-state
phases dynamically for experimentally feasible conditions.

The paper is organized as follows. In Sec. II we describe
the system and set up the governing equations. In Sec. III
we analyze the elementary excitations of a uniform conden-
sate to demonstrate the emergence of the biroton spectrum.
Section IV highlights the unique density modulations char-
acterizing the crystalline ground states we obtain as a direct
consequence of the various instabilities arising in the spec-
trum. In Sec. V we delineate the phase diagrams in terms
of different observables demarcating the domains associated
with various crystalline states found. The state preparation dy-
namics is detailed in Sec. VI. We summarize in Sec. VII. We
provide some additional details that supplement the discussion
in the paper in Appendixes A–E.

II. MODEL

We consider a dipolar BEC at zero temperature con-
fined by a transverse harmonic trap with frequency ωρ in a
cigar-shaped geometry in the z direction [see Fig. 1(a)]. The
magnetic dipoles are oriented in the x direction. In addition,
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FIG. 1. (a) Schematic of a dipolar BEC in the presence of
two counterpropagating laser beams of orthogonal polarization.
(b) Stability diagram of a homogeneous BEC as a function of dipole-
interaction strength gd and light amplitude E0 calculated from the
excitation spectrum. The insets in the four regimes show examples
of the typical spectrum that is stable (S) or consisting of either light
roton instability (LRI) or magnetic roton instability (MRI), or biroton
instability (LMRI). The gray dashed lines are a guide to the eye for
the location of any roton instabilities. (c)–(f) Atomic density patterns
in the crystalline ground-state phases. (c) Magnetic droplet crystal
(MC) for {gd/g,

√
αE0/

√
Erec} = {1.52, 0} and (d) light crystal (LC)

for {gd/g,
√

αE0/
√

Erec} = {0.92, 12}. (e) and (f) Light-magnetic
crystal (LMC) for {gd/g,

√
αE0/

√
Erec} = {1.42, 4.2} and {1.7, 5},

respectively, for (e) droplets of supersolid and (f) an aperiodic
crystal. Common parameters for (b)–(f) include L = 50λ0, ωρ =
100Erec/h̄, ζ = 0.1, a = 70a0 (a0 is the Bohr radius), and N = 105

atoms.

the BEC is subject to two counterpropagating far-off resonant
and orthogonally polarized, i.e., noninterfering, plane-wave
laser beams. For atoms (with mass m) confined by an axial box
potential Vbox(z) of extent L, the BEC order parameter is de-
composed as �(r, t ) = ψ (z, t )e−(ηx2+y2/η)/2l2

/
√

π l , where the
transverse width (anisotropy) l (η) remains a variational pa-
rameter following the reduced three-dimensional (3D) theory
[37,38]. The dynamics of ψ (z, t ) is governed by the extended
Gross-Pitaevskii equation (eGPE) including the Lee-Huang-
Yang (LHY) correction term [32,33]

ih̄ψ̇ =
(
Eρ − h̄2∇2

z

2m
+ V (z) + �ρ (z) + gLHYN3/2|ψ |3

)
ψ,

(1)

with
∫

dz|ψ (z, t )|2 = 1. The interaction term is given by

�ρ = gN

2π l2
|ψ |2 + gd N

2π l2

∫
dkze

izkzVd (kz )n(kz ), (2)

with the first term representing the short-range interaction
of strength g = 4π h̄2a/m (a denoting the s-wave scattering
length) and the second term the dipole-dipole interaction
(DDI) with magnitude gd = μ0d2/3 for atoms with a dipole

moment d . Furthermore, n(kz ) is the Fourier transform of
the density and Vd (kz ) is the dipole interaction in mo-
mentum space given by Vd (kz ) = 3(1 − q2eq2

�[0, q2])/(1 +
η) − 1, with q = k2

z l2√η/2 and �[a, b] denoting the in-
complete Gamma function. The transverse energy Eρ =
(h̄2/4ml2 + ml2ω2

ρ/4)(η + 1/η). The magnitude of the LHY
correction term proportional to |ψ |3 is given by gLHY =
(64ga3/2/15π2l3)(1 + 3g2

d/2g2).
The potential V (z) in Eq. (1) consists of Vbox(z) = 0 if

|z| � L/2 and ∞ otherwise and Vopt (z) induced by the incom-
ing light beams, i.e., V (z) = Vbox(z) + Vopt (z). The optical
potential depends only on the sum of the individual intensity
distributions of the left EL(z) and right ER(z) propagating laser
fields as Vopt(z) = −α[|EL(z)|2 + |ER(z)|2], with α denoting
the real part of the polarizability of the atoms. The laser fields
individually satisfy the Helmholtz equation with the atomic
density acting as a refractive medium,

∂2

∂z2
EL,R(z) + (2π )2

λ2
0

[1 + ζλ0|ψ (z, t )|2]EL,R(z) = 0, (3)

subject to appropriate boundary conditions (see Appendix A).
Here λ0 = 2π/k0 denotes the wavelength of the incom-
ing plane-wave laser field. The dimensionless quantity ζ =
αN/2πε0l2λ0 characterizes the coupling between the atomic
density and the light. Note that for running-wave laser fields in
the absence of the atomic backaction, Vopt(z) amounts simply
to a position-independent constant energy shift.

The coupled equations (1) and (3) have to be solved
in conjunction with the minimization of the following
energy functional with respect to the parameters l and
η that determine the full 3D order parameter �(r, t ) =
ψ (z, t )e−(ηx2+y2/η)/2l2

/
√

π l:

E(ψ ; l, η) =Eρ +
∫

dz ψ∗(z, t )

(
− h̄2

2m
∇2 + V (z)

+ �ρ

2
+ 2gLHYN3/2

5
|ψ |3

)
ψ (z, t ). (4)

The method used to solve the Helmholtz equations [10] is
covered in Appendix A.

III. COLLECTIVE EXCITATIONS AND INSTABILITIES
OF A HOMOGENEOUS CONDENSATE.

To understand the nature of the ground states of the
coupled equations (1) and (3) in the absence of Vbox, we
analyze the collective excitation spectrum of the system by
linearizing the equations of motion about a homogeneous
atomic wave function ψ0(z) = 1/

√
L and plane-wave fields

E0
L,R(z) = E0e±ikeff z, with E0 denoting the amplitude of the

driving laser fields far away from the BEC. The effective
propagation number keff = 2π

√
1 + ζλ0|ψ (z)|2/λ0 in a ho-

mogeneous atomic cloud. We can write

ψ (z) = [ψ0(z) + ue−i(kzz−ωt ) + v∗ei(kzz−ωt )]e−iμt/h̄,

EL,R(z) = E0
L,R(z) + δE .

Using the above Ansätze in Eqs. (1) and (3) and keeping
terms up to linear order in the fluctuations δE , u, and v∗,
the calculations are easily performed in Fourier space. The
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expression for δE after reverting to position space is given by

δE = − (2π )2ζE0

λ0

√
L

(
(u + v)e−i(k+keff )+iωt

k2
eff − (k + keff )2

+ (u∗ + v∗)ei(k−keff )−iωt

k2
eff − (k − keff )2

)
.

Using the above expression, the eGPE is linearized in a stan-
dard way. The resulting dispersion relation reads

ε(kz ) =
[

h̄2k2
z

2m

(
h̄2k2

z

2m
+ gN

π l2L
+ gd N

π l2L
Vd (kz ) + 3gLHYN3/2

L3/2

− 32π2ζα|E0|2
Lλ0

(
k2

z − 4k2
eff

)
)]1/2

. (5)

Clearly, the spectrum has features from both the magnetic
DDI and light-induced interactions (LIIs). Note that the terms
corresponding to the interactions and the quantum fluctuation
have a dependence on the variational parameters l and η,
which are obtained from the minimization of a reduced form
of the energy functional in Eq. (4),

Ehom =Eρ + gN

4π l2L
+ gd N

4π l2L

(
3

1 + η
− 1

)

+ 2

5

gLHYN3/2

L3/2
− 2αE2

0 . (6)

By looking at Eq. (5) it is clear that there exists a singular-
ity at kz = 2keff which sets the light crystal (LC) periodicity
[10]. In principle, this divergence is compensated by the in-
finitely large L where the reflection of incident light at the
edge of the condensate boundary can be neglected, which
is a purely finite-size effect incorporated in our model. The
singularity is easily avoided by considering finite L which en-
forces quantization of the momentum values, i.e., kz can only
take discrete values in the multiple of 2π/L. The divergence
in the truly infinite L limit is a limitation of the model which
can be overcome when the retardation effects of the light fields
are taken into account.

In Fig. 1(b) we show the three distinct types of instabilities
[ε2(kz ) < 0] which can occur in this system, according to
Eq. (5), as a function of the strength of magnetic dipolar
interaction gd/g and the amplitude of the light fields E0.1

Insets in Fig. 1(b) show the representative spectrum for each
parameter region. We see that for a fixed small value of√

αE0/
√

Erec � 6 the system develops a magnetic roton as
gd/g is increased. This roton eventually softens at the wave
number km, signaling a transition from the stable (S) regime
to the magnetic roton instability (MRI) regime [34]. Similarly,
increasing E0 at a fixed and sufficiently small gd/g � 1.3 leads
to a roton induced by the light fields. This roton softens at 2keff

to enter the light roton instability (LRI) regime [10].

1Note that in Figs. 1 and 2 gd/g is varied by modifying the dipole
moment as 7 < d/μB < 10 with a constant. Though not realistic
from an experimental point of view, this helps in a direct comparison
of the interplay purely between the two long-range interactions.
Nonetheless, it is conceivable that every point on the phase diagram
can also be attained by varying a for fixed values of d .

In addition to these expected instabilities where one of the
two long-range interactions is dominant, we also find a third
type of instability when both gd/g and E0 are comparatively
strong to enter a biroton instability (LMRI) region. Here the
magnetic and the light-induced rotons are simultaneously un-
stable.2 As we discuss later, contributions from both wave
numbers km as well as 2keff (>km) give rise to a new phase
with periodic or aperiodic density patterns. Moreover, the
nonlinearity of the phase boundaries in Fig. 1(b) clearly shows
the interplay between the rotons. The S-LRI and MRI-LMRI
transition boundaries are significantly altered when gd/g is
increased as the nonlinear dependence of DDI on kz helps
soften the higher momentum modes and lower the critical E0

needed to instigate the transition. Alternately, an increase in
E0 pushes the S-MRI and LRI-LMRI transition boundaries to
higher gd/g values as the light fields counteract the unstable
magnetic roton and cure it. This can be well understood by the
low-momentum behavior of the spectrum ε(kz � 2keff ) where
the last term in Eq. (5) becomes dominantly positive requiring
a higher magnitude of gd/g for magnetic roton softening. An
important distinction between the two rotons is while LRI re-
mains sharply peaked at 2keff, the MRI can span a broad range
of momenta. This greatly influences the density distribution
of the corresponding ground states.

IV. PERIODIC AND APERIODIC CRYSTALLIZATION

In order to obtain the density-wave ground states precip-
itated from the various roton instabilities, we look for the
stationary states of the system in the potential Vbox of finite
extent L.3 We employ imaginary-time evolution and conjugate
gradient methods [40,41] along with a fourth-order Runge-
Kutta method to simultaneously solve the eGPE (1) and the
Helmholtz equation (3). Deep in the MRI and the LRI regimes
a straightforward mapping exists to the stationary states of the
magnetic crystal (MC) [see Fig. 1(c)] [34] and light crystal
[see Fig. 1(d)] [10] phases, respectively. The periodicity of
these density patterns for the MC (LC) is set by the softened
momenta associated with the magnetic (light) roton.

Apart from these two known phases, the biroton instabil-
ity engenders peculiar light-magnetic crystal (LMC) states,
where the two long-range interactions compete with one an-
other. This can result in density waves with either periodic
or aperiodic order [see Figs. 1(e) and 1(f)] [42]. Figure 1(e)
shows an example of the former. The density exhibits a peri-
odic envelope of droplets (induced by the DDI) where each of
them supports intradroplet crystals (set by the LII) of smaller
periodicity, thus forming a unique “droplets of supersolid”

2This biroton instability owes its existence to the distinct functional
form of the two interactions considered here. It is not an immediate
consequence of having two long-range interactions (see Ref. [39] for
a counterexample).

3Note that within our present model, which neglects propagation
effects in the Helmholtz equation, the usual thermodynamic limit
N, L → ∞ and finite N/L lead to diverging energy [10], while the
modified thermodynamic limit L → ∞ with finite N [10] nullifies
the effect of dipole and contact interactions but keeps the light-
induced interactions finite.
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FIG. 2. (a) Maximum energy difference between converged
states of the eGPE for six different initial guesses for three
gd/g values. (b)–(d) Mean-field phase diagram as a function of
{gd/g,

√
αE0/

√
Erec} characterized by (b) reflection coefficient rc,

(c) density contrast �n, and (d) superfluid fraction fs. White dashed
lines are the stability diagram boundaries from the excitation spec-
trum. The yellow dotted curve demarcates the droplets of supersolid
phase and the gray strip highlights the domain where density patterns
are always periodic. All other parameters are the same as in Fig. 1(b).

state. Note that the parameters gd/g = 1.42 and
√

αE0 =
4.2

√
Erec used for Fig. 1(e) indicate that the LII effects are

prominent even below the LMRI threshold in Fig. 1(b) due
to finite-size effects as discussed further below. This is in
contrast to the aperiodic ordered pattern in Fig. 1(f) that is
observed for higher E0 values away from the MRI-LMRI
boundary. The lack of discrete translational symmetry in such
structures can be attributed to contributions from a broad
range of momenta associated with the softened magnetic ro-
ton. Furthermore, note that the emergence of atomic density
patterns shown in Figs. 1(d)–1(f) is accompanied by the devel-
opment of a standing-wave light field [10] (see Appendix A).

V. PHASE DIAGRAM

The biggest challenge in determining the numerical phase
diagram of this system is the highly nonconvex nature of the
energy landscape in the regimes with strong DDI, where the
simulations converge to different local minima for different
initial guesses irrespective of the numerical methods used. For
purely magnetic crystals this is taken care of by starting from
different multi-Gaussian Ansätze and comparing their final en-
ergies [43]. However, when the applied light fields E0 are also
increased, not only are the energetically dense local minima
potentially numerous but also the choice of initial guesses is
no longer obvious. Therefore, convergence to the true global
minimum remains ambiguous. In Fig. 2(a) we parametrize
the nonconvexity of the energy landscape via the maximum
energy difference �E obtained from different initial Ansätze.
Deviation of �E from zero indicates that the converged
solutions are quasistationary states, associated with different

local minima. The recovery of convexity in the energy land-
scape for high E0 can be intuitively attributed to the curing of
the unstable magnetic roton due to increasing LII.

Interestingly, the nonconvexity does not hinder the detec-
tion of the phase boundaries as the qualitative nature of the
density patterns obtained from all initial guesses remains same
(we provide the expressions for the different initial guesses
used in Appendix B). To obtain the structural transition
boundaries we focus on three key observables, namely, the
reflection coefficient rc (defined in Appendix A) which mea-
sures the backreflection of the incoming light fields due to the
dynamic formation of a density grating, the density contrast
�n = |nmax − nmin|/(nmax + nmin) in the bulk of the conden-
sate, and the superfluid fraction fs = (L/n)(

∫ |ψ |−2dz)−1

[38,44,45]. The mean-field phase diagrams are shown in Fig. 2
in the parameter space of gd/g and E0.

The reflection coefficient rc acts as a robust parameter to
detect the onset of dominant light effects and as a nonde-
structive experimental probe of the emergent light crystalline
and light-magnetic crystalline order. Although the excitation
spectrum boundaries are in qualitative agreement with the
numerical simulations, the influence of the box-potential-
induced edge effects lowers the threshold E0 at which LII
effects can become prominent, as seen in Fig. 2(b). It is further
lowered at gd/g � 1.35 when strong DDI leads to increasingly
denser droplets. This effect is captured by the increase in rc as
the medium gets more opaque from the LC phase to the LMC
phase. Additionally, the structural transition curve from the
MC phase to the LMC phase is much steeper than that from
the S phase to the LC phase due to higher gd/g. We find that
this transition region precisely hosts the droplets of supersolid
phase and demarcates the same in Fig. 2(b). Furthermore, the
nonconvexity of the energy landscape can also be seen in the
behavior of rc (see Appendix A). The contrast �n is used to
faithfully mark any transition from the S to the crystalline
phases (LC, MC, and LMC) and varies smoothly across the
crystalline phases [see Fig. 2(c)].

Finally, the superfluid fraction fs shown in Fig. 2(d) de-
creases as gd/g increases for any fixed E0 in the LC and LMC
phases. For gd/g � 1.5, there is a recovery of superfluidity as
the LMC phase is entered from the MC phase accompanied
by the emergence of the peculiar droplets of supersolid states.
Clearly, light-induced interactions play a significant role in
enhancing the supersolid properties. This is further validated
by evaluating the phase coherence [46] in numerical simu-
lations of the state preparation including thermal noise (see
Appendix C).

VI. STATE PREPARATION AND DYNAMICS

Finally, we demonstrate in Fig. 3 that despite the noncon-
vexity of the energy landscape, all crystalline phases can be
prepared dynamically. This is in contrast to a recent work
where the combination of nonconvexity and symmetry led
to amorphous behavior for a self-organized BEC in a cav-
ity with Rydberg-excitation-induced long-range interactions
[47]. For the experimentally relevant d = 10 μB (Dy atoms)
and ωρ/2π = 100 Hz, beginning with a uniform bulk con-
densate at a = 100a0 and E0 = 0 in the S phase, the three
different crystal phases are obtained by either quenching gd/g
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FIG. 3. Preparation of (a) MC, (b) LC, and (c) LMC states starting from an unordered state and (d) the LMC state starting from a MC
for Dy atoms with their corresponding ramping schemes of gd/g and the light intensities E0 shown in the middle row. (e)–(h) Corresponding
densities in momentum space at the final time. For concreteness, the final-time density distributions in real space are shown in the insets. All
other parameters are the same as in Fig. 1(b).

(by varying a) or ramping E0 up in a box trap. The sweeping
schemes are plotted in the second row of Figs. 3(a)–3(c).

The dynamics reveals several crucial distinctions between
the emergence of the MC [Fig. 3(a)] vs the LC [Fig. 3(b)]. In
the MC, the crystalline order sets in locally from the edges
[48] and grows towards the center, while in the LC, the onset
of order is sharp and global. The MC excitation due to the
sweeping involves both lattice vibrations and amplitude oscil-
lations. In contrast, the phononic modes are almost frozen for
the LC once it sets in. This pinning effect is a by-product of
the singularly dominant momentum peak at ±2keff as well as
the light-field boundary conditions.

During the emergence of the LMC phase [see Fig. 3(c)]
both these behaviors are observed as gd/g and E0 are swept
sequentially. Interestingly, depending on the holding time af-
ter gd/g is quenched and before E0 is ramped, very different
LMC density patterns can be obtained due to the pinning
effect. In Fig. 3(d) the MC is chosen as the initial state, as
opposed to the homogeneous state in Figs. 3(a)–3(c). This
provides greater control over the desired LMC state. For ex-
ample, the droplets of supersolid state can be prepared by
ramping E0, which allows the deterministic manipulation of
the intradroplet contrast. The momentum space distribution
and spatial patterns (inset) of the densities at final times are
illustrated in Figs. 3(e)–3(h). A visual comparison between
Figs. 3(e) and 3(f) clearly shows that the fat-tailed distribution
in the case of the MC correlates with the softness of the
crystalline order, while the single peak corresponding to the
LC indicates the stiffness of the spatially pinned LC [49].
In Appendix C we supplement the ideal state preparation
dynamics presented here with those including thermal noise
and find good qualitative agreement between them.

VII. CONCLUSION AND OUTLOOK

We have demonstrated that competing long-range interac-
tions in a laser-driven dipolar BEC can lead to a rich phase
diagram with a variety of crystalline phases. An important
challenge to realize the predicted crystalline structures is
to minimize the laser-induced heating rate which scales as
R ∼ (�3/8�2

a)(I/Isat ) for an optical transition with linewidth
�, detuning �a, saturation intensity Isat, and laser intensity
I = cε0|E0|2/2. We show in detail in Appendix E that this
heating rate takes manageable values in state-of-the-art setups
with erbium or dysprosium BECs. For instance, the 741-nm
transition of Dy with � = 2π × 1.8 KHz, a laser intensity
I = 0.6 W/cm2, and detuning �a = 2π × 1.6 MHz leads to
R ∼ 34 Hz. Comparing this to our state preparation timescales
of approximately 100h̄/Erec, it becomes clear that the phases
we predict are achievable in current experimental setups. Our
work also opens up a promising direction for next-generation
experiments and theoretical studies involving dipolar BECs
where the addition of a laser drive would lead to fascinat-
ing phenomena. Some pertinent follow-up questions, to be
addressed elsewhere [50], include a detailed analysis of the
phase coherence in the LMC phase (beyond what is presented
in Appendix C) and the impact of harmonic trapping in the
axial z direction.
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APPENDIX A: HELMHOLTZ EQUATION SOLUTION

We now detail the procedure to solve the Helmholtz equa-
tion specified by Eq. (2) [or in Eq. (7) in a dimensionless
form] for a given condensate order parameter ψ (z, t ) inside
the finite-size box potential extending within −L/2 < z <

L/2. Consider the incident beam on the BEC of size L from
the left. The boundary conditions to solve the Helmholtz

equation for either the left or the right propagating light field
within the BEC can be determined by first recognizing that the
light field to the left of the condensate is given by E left(x) =
Aeik0(x+L/2) + Be−ik0(x+L/2) and the field to the right is given by
E right(x) = Deik(x−L/2) [10]. The relation between the incident
(A), reflected (B), and transmitted (D) amplitudes is given by

B = rcA, (A1)

D = tcA (A2)

and defines the reflection and transmission coefficients
rc and tc, respectively. Note that |rc|2 + |tc|2 = 1.
The electric field at the boundary of the BEC is

FIG. 5. (a) and (b) Density profiles shown in Figs. 1(d) and 1(e), respectively. (c) Density profile corresponding to {gd/g,
√

αE0/Erec} =
{1.7, 10} with all other parameters the same as in Figs. 1(d) and 1(e). (d)–(f) Light field intensity profiles corresponding to (a)–(c), respectively,
obtained from the solution of the Helmholtz equation; the curves with the decreasing (increasing) amplitude of oscillations as a function of z
represent |EL|2 (|ER|2).
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FIG. 6. Preparation of (a) MC, (b) LC, and (c) LMC states starting from an unordered state with additional thermal noise and (d) a LMC
starting from a MC with added thermal noise for Dy atoms with their corresponding ramping schemes of gd/g and the light intensities E0

shown in the middle row, the same as in Fig. 3. (e)–(h) Corresponding incoherence plots with time, which is an average of at least three pairs of
droplets where the droplets have length scales of either (e) MC or (f)–(h) LC. The inset in (h) is the incoherence plot when the chosen droplets
are of the MC length scale.

given by

E left

(
−L

2

)
= A + B,

∂E left

∂z

(
−L

2

)
= ik0(A − B),

E right

(
L

2

)
= D,

∂E right

∂z

(
L

2

)
= ik0D. (A3)

In order to compute rc we take an arbitrary value for the
incident amplitudes E left(− L

2 ) and ∂E left

∂z (− L
2 ) as the Cauchy

boundary condition and solve the Helmholtz equation in
the region − L

2 � z � L
2 using the fourth-order Runge-

Kutta method. This allows us to determine E right( L
2 ) and

∂E right

∂z ( L
2 ). From the ratios r1 = E left(− L

2 )/E right( L
2 ) and r2 =

Ė left(− L
2 )/Ė right( L

2 ) (where Ė = ∂E
∂z ), we obtain the reflection

coefficient as

rc = r1 − r2

r1 + r2
(A4)

for a given atomic order parameter ψ (z, t ). Once we have rc,
we can now set the amplitude of the incident light as the laser
driving field amplitude A = E0 and solve the Helmholtz equa-
tion with boundary conditions given by Eqs. (A1)–(A3) to
determine EL(z). A similar approach can be used to solve for
ER(z) using the light beam incident from the right. Since we
have only considered symmetric driving strength from the left
and right, we will get the same rc for both cases. As we saw in
Fig. 2, rc is a good order parameter for identifying the different
ordered crystalline phases. Moreover, as we show in Fig. 4, rc

also clearly tracks the nonconvexity of the energy landscape
of converged eGPE solutions. We see clearly that rc shows
oscillations in the same region with �E 	= 0 in Fig. 1(b),
indicating the curing of the MRI due to the LII for higher E0

values.

As an example of the behavior of the electric fields, in
Fig. 5 we plot densities and their corresponding left and right
propagating light fields corresponding to Figs. 1(d) and 1(e)
and for a region with both strong LII and DDI [Fig. 5(c)]. The
development of a periodic potential breaking the translation
symmetry of the light field intensity accompanying the devel-
opment of the periodic crystalline structures for the atomic
density is clearly shown. One feature to note in Fig. 5 is that
in general we find that the peak intensity of the standing-wave
light monotonically decreases (in the direction of propagation
of the applied traveling wave) in a region with an atomic
density wave. Interestingly, this feature helps us also identify
gaps between atomic density waves as in Figs. 5(b) and 5(e)
by noticing that the peak intensity is preserved in atomic
grating free regions.

APPENDIX B: INITIAL GUESSES

The different initial guesses used to obtain Fig. 2 are ei-
ther multi-Gaussian (ψGaussian), tanh (ψtanh), or Thomas-Fermi
(ψTF) profiles, where

ψGaussian = AGaussian

ν∑
i=1

e−(z−zi )2/2σ 2
,

ψtanh = Atanh

√
tanh(z + σ ) − tanh(z − σ ),

ψTF = ATF

√
1 − z2

σ 2
.

The prefactors A j for j ∈ [Gaussian, tanh, TF] are normal-
ization constants and σ is proportional to the spatial widths.
In the case of multi-Gaussian Ansätze we have used cases
with 6 � ν � 10 and σ/λ0 ∼ 2. For tanh and Thomas-Fermi
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FIG. 7. Threshold value of the LC captured by the parameter rc as N is varied for (a) gd/g = 0.9 and (b) gd/g = 1.88 with the other
parameters similar to those in Fig. 1. (c)–(h) Two cases from the LMC phase where gradually reducing N results in shifts of the phase
boundaries and the LMC state either changing to an MC and eventually unordered state or changing into an LC state. (c)–(e) correspond to
Fig. 1(e) except with (d) N = 80 000 and (e) N = 50 000. (f)–(h) correspond to Fig. 1(f) with (g) N = 50 000 and (h) N = 10 000.

Ansätze σ has been chosen such that |ψtanh, TF|2 spans the
entire numerical box width.

In the LMC phase, the energy landscape consists of numer-
ous local minima around the global minima for strong DDI.
For S different Ansätze listed above, solutions converge to
qualitatively similar yet quantitatively different ground states
with P different energy values (Ep with p ∈ P) where P � S.
We employ the parameter �E = |Emax

p − Emin
p |, the span be-

tween the maximum and minimum energies obtained from S
different initial guesses, to characterize the nonconvexity of
the energy landscape. We used S = 6 for Fig. 2.

APPENDIX C: COHERENCE PROPERTIES

We aim to quantify the coherence properties, following
Ref. [46], of different types of crystals generated in Fig. 3.
In Figs. 6(e)–6(h) we plot the incoherence I, where the value
zero signifies coherence and π/2 refers to incoherence. At
time t = 0 we have included noise in our initial state as

ψ (z) = ψ0(z) +
∑

n

αnφn(z), (C1)

where φn(z) are single-particle states and αn are complex
Gaussian random variables that obey the relation

〈|αn|2〉 = (eεn/kBT − 1)−1 + 1
2 . (C2)

We have restricted the sum to condition that εn � 2kBT with
T = 10 nK. The initial noise plays an important role in the
emergence of instabilities while quenching sequences. Con-
sequently, the dynamic phase incoherence is given by

I(t ) =
∫
C dz|ψ (z, t )|2[θ (z, t ) − 〈θ (z, t )〉]∫

C dz|ψ (z, t )|2 . (C3)

The phase is denoted by θ (z, t ) and 〈θ (z, t )〉 is chosen such
that I is minimized at every iteration.

We evaluate incoherence between at least three pairs of
droplets (of smallest length scale) and average over them for
all cases. A comparison between Figs. 6(a) and 6(b) clearly
shows that the coherence is better maintained in the LC phase,
though as time progresses both monotonically lose coherence.
In Figs. 6(c) and 6(d) the behavior of coherence is extremely
nonmonotonic, but still the incoherence remains small in
comparison to purely magnetic crystals. In fact, both these
cases display significant recovery of coherence after the light
amplitude quench and formation of light crystals.
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APPENDIX D: DEPENDENCE ON THE NUMBER
OF ATOMS

In this Appendix we aim to have a preliminary understand-
ing of the behavior of the ordered phases of Fig. 2 with respect
to a change in the number of atoms. In the case of MC phases
this has been thoroughly covered both experimentally [31] and
theoretically [33,43] in previous studies. We will focus on the
LC and LMC phases.

The behavior of the LC phase with respect to the number
of atoms is well captured by the rc. In Fig. 7 the two extreme
cases of gd/g = 0.9 and 1.88 with respect to number of atoms
are shown for different light amplitudes. As the number of
atoms decreases, the LC is eventually lost. This behavior
can be understood by the density dependence of the optical
potential. A higher density enhances the coupling and in turn
precipitates the LC phase. The loss of crystal order at lower
N can then be compensated by increasing the light intensity.
Note that the curves in Fig. 7(a) are smoother than those in
Fig. 7(b) because in the latter case, nonconvexity of the energy
functional makes it difficult to determine the true ground state
quantitatively.

The characterization of LMC states with N is however non-
trivial. We have used the same parameters used in Figs. 1(e)
and 1(f) to highlight the contrasting behavior the density pat-
terns can show when N is reduced. In Figs. 7(c)–7(e) we begin
with N = 105 with a droplets of supersolid density pattern.
When atom numbers are reduced there is a quick change in
phase and the light crystalline order is lost to give rise to
a density modulated state with the length scale of the MC.
Further reduction in N results in an unordered state. On the
other hand, in Figs. 7(f)–7(h) we begin with a state closer to
the LC-LMC boundary. Here reduction of atoms eventually
results in obtaining a LC phase. This would eventually be lost
to give an unordered state in accordance with the behavior
displayed in Fig. 7(a).

APPENDIX E: HEATING RATE CALCULATION

The frequency-dependent polarizability of a two-level
atom subject to a light field with detuning �a is given by
[for �a 
 �, with � denoting the linewidth (spontaneous
emission rate) of the transition] [51]

α(ω) = α0ω
2
0

ω2
0 − ω2

≈ ω0α0

2�a
, (E1)

where α0 = 2μ2/h̄ω0 is the static polarizability for a
transition frequency ω0 and transition electric dipole mo-
ment μ. Note that the light-atom coupling parameter ζ =
αN/2πε0λ0l2 is determined by the polarizability α(ω). Since
in all calculations presented in the main text we chose ζ =
0.1, we will choose detuning �a to ensure this is satisfied. The
heating rate due to spontaneous emission for atoms subject to
light of intensity I is given by

R = �3

8�2
a

I

Isat
, (E2)

TABLE I. Detuning �a and heating rates for different lines of Dy
with (N, A ≡ 2π l2

ρ ) = (105, 4 × 10−12 m2).

λ0(nm) I(W/m2) �(Hz) μ(D) α(Hz cm2/V2) �a(MHz) R (Hz)

1001 3 × 103 330 0.032 265h 0.5 20
741 4.4 × 103 1.12 × 104 0.12 370h 10 34
626 5 × 103 8.5 × 105 0.81 337h 500 52
598 5 × 103 7.7 × 104 0.22 332h 50 59
421 7.3 × 103 2 × 108 6.93 221h 5.5×104 113

with the saturation intensity Isat given by

Isat = 2π h̄ω0�

6λ2
0

(E3)

for a two-level atom model. Focusing on dysprosium, we find
that the data for � and Isat for different optical transitions are
presented in Ref. [52]. Since the dipole moment strength μ is
not directly available, we estimate the same using Eq. (E3) and
the expression for spontaneous emission rate of a two-level
atom � = ω3

0μ
2/3πε0 h̄c3 as

μ =
√

cε0h̄2�2

4Isat
,

with c and ε0 denoting the speed of light and permittivity
of free space, respectively. Choosing the λ0 = 741 nm transi-
tion in Dy with Isat = 0.57 µW/cm2 and � = 1.12 × 104 Hz
[52], we find that a detuning of �a ∼ 2π × 1.6 MHz leads
to ζ = 0.1 for our chosen system parameters with N = 105

atoms confined in a transverse trap ωρ/2π = 100 Hz. Note
that we use the transverse trap frequency to estimate the cross
section as l2 ∼ l2

ρ = h̄/mωρ in the expression of ζ . This leads
to the estimate of the heating rate of R ∼ 34 Hz presented in
the main text.

For the sake of completeness and to show that there is
enough room in terms of choice of experimental parameters,
we first present Table I, which gives the detuning �a choices
and heating rates for different lines of Dy with (N, A ≡
2π l2

ρ ) = (105, 4 × 10−12 m2). In a similar manner we also
find the possibilities for erbium with (N, A) = (5 × 105, 4 ×
10−12 m2) in all cases, listed in Table II.

TABLE II. Same as Table II but for Er with N = 5 × 105.

λ0(nm) I(W/m2) �(Hz) μ(D) α(Hz cm2/V2) �a(MHz) R(Hz)

1299 1.1 × 104 5.6 0.006 142 0.07h 6
841 1.7 × 104 5 × 104 0.3 93 250h 6
631 1.8 × 104 1.8 × 105 0.37 91 400h 13
582 1.8 × 104 1 × 106 0.77 90 1700h 18
400 1.7 × 104 1.7 × 108 5.85 91 95000 55
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