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Recent experimental advances in the field of cold-atom cavity QED provide a powerful tool for exploring
nonequilibrium correlated quantum phenomena beyond conventional condensed-matter scenarios. We present
the dynamical phase diagram of a driven Bose-Einstein condensate coupled with the light field of a cavity, with
a transverse driving field red-detuned from atomic resonance. We identify regions in parameter space showing
dynamical instabilities in the form of limit cycles, which evolve into chaotic behavior in the strong driving limit.
Such limit cycles originate from the interplay between cavity dissipation and atom-induced resonance frequency
shift, which modifies the phase of cavity mode and gives excessive negative feedback on the atomic density
modulation, leading to instabilities of the superradiant scattering. We find interesting merging of the limit cycles
related by a Z, symmetry, and identify a limit cycle formed by purely atomic excitations. The effects of quantum

fluctuations and atomic interactions are also investigated.
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I. INTRODUCTION

In the past several decades, the interaction between atoms
and electromagnetic field of cavities has been well studied
in both theory and experiment [1-5], showcasing rich cav-
ity quantum electrodynamics (cavity-QED) physics ranging
from few-body problems such as Jaynes-Cummings model
[6,7] to many-body physics such as the polariton condensation
[8,9] and the Dicke superradiance [10—12]. On the application
side, such light-atom hybrid systems play important roles in
quantum information processing [2,13—17]. For fundamental
research, they provide an ideal setup for implementing and
simulating solid-state Hamiltonians [3-5,18-20] and explor-
ing nonequilibrium many-body phases beyond conventional
condensed-matter scenarios [3-5,21-26]. A landmark exam-
ple of nonequilibrium phenomena in the atom-cavity system
is the Dicke superradiance, as observed experimentally with
a Bose-Einstein condensate (BEC) inside a cavity, the BEC
breaks translational symmetry by self-organizing onto a lattice
pattern determined by the cavity mode [27-36]. Consider-
able experimental progress in BEC-cavity coupled systems
has led to the study of various many-body problems such as
long-range photon-mediated atom-atom interactions [35-39],
supersolidity and complex dynamics in multiple cavities or in
a multimode cavity [40—44].

Recently, interesting dynamical instabilities in the superra-
diant self-organization have attracted much attention [45-61],
where nonsteady behavior such as the limit cycle may emerge
without an explicit time-dependent external driving, which
shares strong similarities with time crystals [62,63]. To obtain
stable limit cycles in the BEC-cavity system, prior studies
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have employed the blue-detuned driving [45—49], or utilized
the spinor BECs with competing density and spin couplings
with cavity mode [51-53]. For the blue-detuned BEC-cavity
system, the limit cycle results from the interplay between col-
lective coherent scattering and low-field dragging dipole force
[46]; for the spinor-BEC-cavity system, it results from the
cavity field mediated nonreciprocal coupling between the two
collective spins, which is due to the competing density- and
spin-wave scattering together with the dissipation-induced
phase shift of the cavity mode [53]. In contrast, for the ex-
perimentally more accessible single-component BEC-cavity
system with a red-detuned pump, most previous studies have
focused on the stable steady-state superradiance [5], the insta-
bility properties are not well explored.

In this paper, we investigate dynamical instabilities of a
BEC inside a high-finesse optical cavity, with a transverse
driving field red-detuned from the relevant atomic resonance.
We map out the dynamical phase diagram and uncover insta-
bilities induced by the interplay between cavity dissipation
and atom-induced resonance shift. By increasing the pump
rate, the system first undergoes a transition from normal phase
to superradiant phase, spontaneous symmetry breaking takes
place between two possible stable steady states related by a Z,
symmetry [28-30]. Then the system enters the unstable region
where each steady state evolves into a superradiant limit cy-
cle that spontaneously breaks the time translation symmetry.
Interestingly, we find that before the system enters the chaotic
region in the strong driving limit, the two limit cycles (related
by the Z, symmetry) may first merge together as the pump rate
increases, leading to a single limit cycle and restoring the Z,
symmetry. Moreover, we identify a limit-cycle phenomenon
with purely atomic excitation, the cavity field is suppressed
to zero by the interference between scatterings from different
momentum states. In contrast to previous works [45-54], here
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FIG. 1. (a) Schematic of the proposed experimental setup. A
BEC trapped inside an optical cavity is transversely driven by a pump
laser. (b) Energy levels of the atoms and couplings induced by the
red-detuned pump and cavity fields with Rabi frequencies €2 and g,
respectively.

the atom-induced frequency shift of the cavity resonance gives
excessive negative feedback on the atomic density modulation
through shifting the phase of cavity mode, which is respon-
sible for the instability. We find that the limit cycles with
purely atomic excitation are not affected by quantum fluctua-
tions. While for the superradiant limit cycles, the time-domain
oscillations of order parameters averaged over stochastic tra-
jectories are suppressed, but the frequency-domain peaks
persist. All the dynamical phases mentioned above survive
in the presence of atom-atom interaction, though the phase
boundaries may be modified accordingly.

II. MODEL

We consider a gas of ultracold atoms forming a BEC
trapped inside a high-finesse optical cavity, as sketched in
Fig. 1(a). The BEC is transversely pumped by a coherent light
that is red-detuned to an atomic transition, the detuning A,
is large and the excited atomic level can be eliminated adi-
abatically. Therefore, the BEC couples with the single mode
of the cavity through a two-photon Raman scattering process
between the cavity and the driving fields [see Fig. 1(b)],
accompanied by transitions between the BEC ground state
|g, k) and the excited momentum states |g, k + Kk.), with k.
the wave vector of the cavity mode. The dynamics of such
driven-dissipative atom-cavity systems is well described by
the following coupled equations of motion [12,46]:

7292
iho,W(x, 1) = [— 5 X 2| W+ AU || cos® (kex)
m

Iin
+—N(a +a™) cos(kcx)] W(x,t)

7%
ido = [Ac — ik + UyNBla + nv/NO + i, (1)

where W(x, t) is the BEC wave function and « is the expec-
tation value of the cavity field. We restrict the motion of the
atoms along the cavity axis x by assuming additional trapping
in the other directions. N is the atom number, g,, is the atom-

atom interaction strength, and Uy = —iz—o is the ac-Stark shift

induced by a single photon as well as the frequency shift of
the cavity resonance induced by a single atom (at antinodes).

n= @ is the effective pump rate, A, is the detuning of

the cavity mode [see Fig. 1(b)], « is the cavity dissipative
rate. For our red-detuned system, one has Uy < 0 and A, > 0.
® = [ p(x,t)cos(k.x)dx and B = [ p(x,t)cos®(k.x)dx are
the atomic order parameters associated with the superradi-
ance, with p(x,t) = |¥|>/N the normalized atomic density.
To take into account the effects of quantum fluctuation, we
included in Eq. (1) the stochastic noise term &(¢) associated
with cavity dissipation [4], for the mean-field (MF) solutions,
we simply drop the £ term. In the following, we will first focus
on the MF results, and discuss the quantum fluctuation effects
later.

Notice that the system possesses a Z, symmetry, associated
with invariance under the transformation of cavity field and
BEC wave function such that {«, ®} — {—«a, —©} [28-30].
In the following numerical simulation, we will consider the
experimentally realistic 3’Rb BEC [31-33] with atom number
N = 10 and recoil frequency wg = hik?/2m =~ 27 x3.7 kHz.
Both the cavity detuning A, and dissipative rate are on the
order of tens of kHz, and we set k = 10wy all through the
paper for simplicity. For the cavity resonance, we consider a
strong atom-induced shift |[Ug|N 2 A., which is crucial for
the emergency of limit cycles.

III. PHASE DIAGRAM

We present in Figs. 2(a) and 2(b) the MF dynamical phase
diagrams in the n-A. and n-|Up|N planes, respectively, which
are obtained by solving Eq. (1) and analyzing their long-time
behaviors. We choose a homogeneous BEC W = \/N/L as
initial conditions with L the system size and an infinitesimally
occupied cavity a(0)/+/N < 1 as a seed. We will consider
a fixed pump strength during the evolution, we have verified
that the dynamical phenomena discussed in this paper are not
affected by considering an initial ramping protocol for the
pump strength. We find five different dynamical phases: (N)
normal phase, with vanishing cavity field and homogeneous
BEC as the stable steady state; (S) superradiant phase, with
self-organized striped BEC and finite cavity field as the stable
steady state; (SL) superradiant limit-cycle phase without a
stable steady state, where both the superradiant cavity field
and the density pattern of the BEC develop into periodic self-
sustaining oscillations; (AL) atomic limit-cycle phase with
only atomic excitations and vanishing cavity field, where the
stripe pattern of the BEC oscillates periodically due to in-
terference between different momentum states; (C) chaotic
phase with irregularly oscillating order parameters «, B, ©.
In Fig. 2(c) (from the top panel to the bottom panel), we plot
the typical time evolution of the renormalized cavity mode
intensity I(t) = |a|?/N for the S, SL, AL, and C phases.

To identify the boundary between the superradiant limit-
cycle (SL) and chaotic (C) dynamics, we examine ||
in the frequency domain I(w)= 7 f;‘+T I(t)e ™ dt with
wgrT, wgt; > 1 and define the inverse participation ratio (IPR)
as

IPR = ) " [I(w))*, 2)
J

which measures the locality [64] of the frequency distribution.
Where I(w;) is obtained by discretizing and renormalizing
I(w) such that Zj [ (w j)|2 = 1, the discretized frequencies

023311-2



SELF-ORGANIZED LIMIT CYCLES IN RED-DETUNED ...

PHYSICAL REVIEW A 107, 023311 (2023)

10
n/wr
0 3
II ~
<2 A ©
= 0 o 0 2 w/wr 4 6
s () | ——A, = 8.0wr
(]) ) V| 505 —— A, =9.0wgr
0 50 100 150 200 6 8 10 12 14
wrt n/wr

FIG. 2. (a) and (b) Dynamics phase diagrams in the A.-n and
|Up|N-n planes, with UyN = —12wg and A, = 10wy, respectively.
The red solid line denotes the N (left white area) to S (gray area)
phase boundary, the black solid line gives the boundary between
S and SL phase. The color bars represent the IPR of cavity field
intensity in the frequency domain, with sudden drops across the black
dotted lines which signal the transition from SL to C phase. The
right white area corresponds to AL phase. (c) The time evolution of
cavity field in different phases, the parameters in panels I, IL, III, and
IV are n = 5.2wg, 6.4wg, 8.8wg, 14wy, and A, = 9.0wg, as marked
by the dots in (a). (d) Typical frequency distributions of cavity-field
intensity in the SL (red line) and C (blue line) phases, with parame-
ters given by dots II and IV in (a). (e) Spectrum IPR of cavity field
intensity along the lines A, = 8.0wg (blue) and A, = 9.0wg (red) in
(a). In all plots, we have g,, = 0.

w; > 0 are equally separated with Aw = w;;1 — w; the dis-
cretization step, forming a lattice in the frequency domain
(see Appendix for more details). For limit cycles, I(w) in-
volves several well-defined frequency components (with one
dominant) as shown in Fig. 2(d), and thus the SL phase has
a high IPR. For the chaos, /(w) involves indefinite number
of frequencies [see Fig. 2(d)], leading to a low IPR. We find
sharp jumps of the IPR from the value close to 1 to the value
well below 0.5 [see Fig. 2(e)], which marks the boundary
between SL and C phases. Note that the IPR defined in Eq. (2)
is not applicable in the AL phase. The color bars in Figs. 2(a)
and 2(b) denote the corresponding IPR and the dashed lines
separate the SL and C phases. In Fig. 2(e), we note that the
IPR for A, = 8wy has a dip within the SL phase, which is
due to the merging of the limit-cycle pairs related by the Z,
symmetry, as we will discuss in more detail later.

In the weak pumping region, the system is in a normal
phase [the white areas on the left of Figs. 2(a) and 2(b)],
and undergoes a transition to the superradiant phase (gray
areas) as we increase the pump rate. At the vicinity of the N-S
phase boundary, the cavity field « is weak and the 7 cos(k.x)

term dominates the dynamics, where the system is charac-
terized by the conventional two-mode superradiant physics,
and our numerical critical pump rate [red solid lines in
Figs. 2(a) and 2(b) is perfectly in agreement with the analyt-
ical result /i*n? = (hwg/2 4 gaaN/L) (8o + k2/8) [12] with
8o = A, + UgN/2. We see that the transition towards a sta-
ble superradiant phase occurs only for § > 0 (i.e., A, >
|Up|N/2). As we further increase the pump rate, the long-time
superradiant cavity field |«|> and atomic order parameters
®, B become stronger, the effect of the Uj term in Eq. (1)
becomes significant. Here the cavity has a strong decay rate,
for our analytical considerations, we can eliminate the cavity
field by assuming that its value follows ® adiabatically as

= %, with Sep = A, + UyN B the effective cavity detun-
ing, which can alter the phase of « significantly. On one hand,
a larger ® leads to a stronger cavity field |«| and thereby a
larger ac-Stark potential depth Up|a|?, which gives a stronger
B. On the other hand, a larger B would reduce Re[«] through
changing the cavity resonance (i.e., d¢f), leading to a weaker
Raman scattering potential % (¢ + ™) cos(k.x), which tends
to reduce ®. Such negative feedback between B and ® be-
comes excessive such that the system cannot find a stable
steady state beyond some critical pump rate [black solid lines
in Figs. 2(a) and 2(b)]. The dynamical instability can also be
seen by looking at the imaginary part of the eigenvalue of the
maximally growing mode resulting from the linear stability
analysis of the steady-state solution (see Appendix for more
details) [12,46], and we find that the maximal growth rate
changes from zero to positive across the above critical pump
rate. Such instability does not simply lead to heating and
collapse of the order. Instead, the BEC starts to periodically
oscillate between different ordered patterns (together with an
oscillating cavity field), and the system enters the SL phase.
The oscillation frequency is on the order of wg.

In the strong pump limit, the limit cycles turn into chaotic
dynamics as the BEC and cavity field oscillate irregularly with
indefinite number of frequencies. We expand the wave func-
tion as W = /N/LY_, c,e™* (with integer n) and find that
a strong pump rate leads to the macroscopic populations of
the BEC on high momentum states (see Appendix). Neverthe-
less, the momentum distribution is still well localized around
n = 0 since the cooling effects of cavity dissipation prevents
unbounded increase of the kinetic energy [46]. Notice that the
scattering of the pump light into the cavity is associated with
the coupling between adjacent momentum states of the BEC,
when high momentum states are populated, the destructive
interference of scattered light from left and right momentum
neighbors may suppress such scattering process. An attractor
is developed where the cavity field vanishes at long time while
the BEC occupies only the momentum states with even n (i.e.,
n=20,2,...),asindicated by the white areas (where the long-
time intensity e |? averaged over wgt € [1500, 2000] is less
than 1072) at the right unstable regions in Figs. 2(a) and 2(b).
The superposition of different momentum states leads to the
periodic self-sustained oscillations between different ordered
patterns of the BEC, with dominant oscillating frequency 4wg
(due to interference between n = 0 and n = 2), and we denote
such oscillations as the atomic limit cycles. The AL phase
possesses the Z, symmetry due to the vanishing cavity field.
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FIG. 3. (a)—(d) Orbits of the atomic correlation x, in the S, SL,
AL, and C phases, with parameters marked by the dots I, II, III, and
IV in Fig. 2(a), respectively. The two orbits related by the Z, symme-
try are shown in red and blue. () Merging of two limit cycles related
by the Z, symmetry with n = 7wgr and A, = 8w, corresponding to
the dip of the IPR in Fig. 2(e). (f) Z, symmetric limit cycle after the
merging with n = 7.2wg and A, = 8wg. We have used n = 2 for AL
phase in (c) and n = 1 for other subfigures. Other parameters are the
same as that in Fig. 2(a).

Besides the cavity field, the oscillations and recurrences
can also be seen in the condensate wave function for the
limit cycles. We consider the momentum-space correlations
Xxn = col(c; + ¢*,) and plot their orbits in the Re[x,]-Im[x,]
plane in Fig. 3. The orbits reduce to fixed points in the stable
superradiant phase (S), as shown in Fig. 3(a). There are two
fixed points corresponding to the two steady-state solutions
related by the Z, symmetry. Each fixed point involves into
a periodic orbit in the SL phase, as shown in Fig. 3(b).
Figure 3(c) shows the periodic orbit for x, in the AL phase
where only the even recoil momenta are populated, while
Fig. 3(d) shows the irregular orbit of x; in the chaotic phase.
As we mentioned before, the SL phase may merge the limit
cycles related by a Z, symmetry before evolving into C phase,
the periodic orbits (i.e., limit cycles) in Fig. 3(b) become
larger and larger as the pump rate increases. At some crit-
ical pump rate, the two orbits related by the Z, symmetry
may close their gap at the origin and merge into a single
Z,-symmetric orbit, which can be clearly seen from Figs. 3(e)
and 3(f). At the merging point, the system can switch between
the two orbits and the dynamics losses the periodicity, leading
to the drop of the IPR as observed in Fig. 2(e). Depending on
the value of A, and UyN, a single but larger limit cycle may
be generated after the merging [see Fig. 3(f)], and further in-
creasing the pump rate would drive the dynamics into chaotic
behavior, as shown in Fig. 2(e) with A, = 8wg. Right after the
merging, the periods of the oscillations remain the same for
|oe|2, but are doubled for ®, «, and x;, whose orbits are twice
larger. Also, the system may directly enter the chaotic phase
at the merging point, as shown in Fig. 2(e) with A, = 9wy
(after the merging, the IPR drops to about 0.4 corresponding
to weak chaotic motion). For even larger A, the SL phase
may change into the C or AL phases before the merging.

IV. QUANTUM FLUCTUATION EFFECTS

In order to investigate the robustness of the dynamical
phases against imperfections such as the quantum fluctuation,
we adopt truncated Wigner approximation (TWA) [65,66] as
used in Ref. [47]. The TWA simulates the dynamics of quan-
tum fields by treating quantum operators as classical numbers
and then solving classical equations of motion, with initial
conditions drawn from the quantum Wigner distribution, and
the Langevin quantum fluctuation operator is replaced by
classical stochastic noise term &(¢) satisfying (£§*(1)&(t")) =
k38(t — t'). Accurate results can be obtained by the TWA when
the particle number N is large and the two-body interac-
tion g,, is weak. In our simulations, we sample the initial
state by including the quantum noise of the BEC in zero-
momentum mode as well as the vacuum fluctuations of the
high-momentum atomic modes and the cavity mode [65,66].
In particular, the initial state of the cavity field is sampled
based on the Wigner distribution W (a) = %e‘”“'z; for the
BEC, the corresponding initial-state distributions are W (c,) =
2N ,=2Nlcu=8nol*

The time evolution of the cavity field in different phases is
shown in Figs. 4(a)—4(d), the results with a single trajectory
as well as averaged over 6x 103 trajectories are both shown.
For the S phase [see Fig. 4(a)], the TWA predicts a finite
and stable cavity field with long-time expectation values in
good agreement with the MF results, fluctuations on top of
the mean value are observed for a single trajectory. For the
AL phase [see Fig. 4(b)], the TWA and MF results are also
in good agreement, in fact, every trajectory will end up with
vanishing cavity field, though the short-time evolution at the
beginning may vary from one trajectory to another, indicating
that the AL phase is robust against quantum fluctuations.
The limit cycles in AL phase persist (i.e., the oscillation
is infinitely long lived) even in the presence of quantum
fluctuations.

However, for the C and SL phases, the TWA results are
very different from the MF results [see Figs. 4(c) and 4(d)].
The average over an ensemble of chaotic trajectories in TWA
results in a cavity field dynamics with smaller temporal fluc-
tuations [see Fig. 4(c)], meanwhile, the fluctuations in the
frequency domain are also suppressed [see Fig. 4(e)]. Unfor-
tunately, the emergent temporal oscillations in the SL phase
decay with time for the TWA results, which means that the
long-time temporal coherence of the limit cycles is lost due
to the quantum fluctuations; nevertheless, the system exhibits
clear quasiperiodic oscillations in each trajectory, and thus
there must exist a sharp peak in the frequency domain [see
Figs. 4(d) and 4(f)] even after the TWA average. Different
from the MF results, here the TWA frequency peak is slightly
broadened by the quantum fluctuations, the width of the peak
broadening in the frequency domain is inversely related with
the temporal width of the oscillating envelope. Moreover, we
find that the effects of quantum fluctuations is dominated by
the stochastic noise term & (), the initial state fluctuations only
slightly shift the phase of the oscillations, without affecting
the periods of the limit cycles in SL phase. Therefore, in the
absence of the stochastic noise term & (¢), long-time temporal
coherence of the superradiant limit cycles would persist even
in the presence of quantum fluctuations in the initial state.
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FIG. 4. The effects of quantum fluctuations on the dynamics according to TWA. The cavity fields in the S, AL, C, and SL phases are shown
in (a), (b), (c), and (d), with A, and n marked by the dots I, III, IV, and II in Fig. 2(a), respectively. The corresponding frequency distributions
in the C and SL phases are shown in (e) and (f). Red lines are results averaged over 6x 10° trajectories based on TWA, blue lines are the results
from a single trajectory. We verified that the TWA oscillation amplitude in (c) decays to zero eventually at long times. Other parameters are

the same as that in Fig. 2(a).

We notice that quantum-fluctuation induced decay rate
(~wg/200) of the oscillation in SL phase is much smaller
than the cavity decay rate (k) and the oscillation frequency
(approximately wg), therefore, limit cycles in SL phase can be
considered as metastable in the sense that the oscillations exist
in the interval [1y, #;] satisfying #; > to [67]. The long lifetime
of the oscillation comes from the enhanced cavity field inten-
sity due to the collective scattering of N atoms, and a simple
analysis (see Appendix) indicates that the lifetime should be
on the order of |a|?/k ~ 0.1N/k ~ 1000/wg, qualitatively in
agreement with the observed decay rate wg/200.

V. INTERACTION EFFECTS

In this section, we study the effects of atom-atom inter-
actions on the dynamical phases. Our numerical simulations
show that all the five dynamical phases survive in the pres-
ence of atom-atom interactions, though the phase boundaries
may be modified. The time evolutions of BEC wave function
and the cavity field are illustrated in Fig. 5 with g,,N/L =
0.5hwg, besides, periodic orbits similar to that shown in
Fig. 3 are also observed. The red-detuned atom-cavity system
shows similar phase slippage dynamics as that obtained in
the blue-detuned system [46]. In the presence of atom-atom
interaction, the oscillating BEC may create phase singularities
to lower the kinetic energy due to its superfluid nature [68].
Such phase slips occur periodically in the SL and AL phases
[see Figs. 5(a) and 5(b)], and appear irregularly with a faster
rate in the C phase [see Fig. 5(c)]. As discussed in Ref. [46],

the cavity dissipation counteracts this phase slip process [see
Figs. 5(d)—(f)] by subtracting energy from the system, which
prevents phase slip proliferation and ensures the validity of
the MF approach. That is, the cavity cooling compensates the
heating due to the dynamical instabilities. The corresponding
cavity-field evolution is shown in Figs. 5(g)—(i) for different
phases, which shows similar behavior as the noninteracting
gaa = 0 case. In all phases, the BEC is well localized near
n = 0 in the momentum space, therefore the kinetic energy
fluctuates around a finite value after an initial increase, as
shown in Fig. 5(j), and a larger pump rate generally leads to
a broader momentum-space distribution and thereby a larger
kinetic energy of the BEC.

VI. DISCUSSION AND CONCLUSION

We emphasize that in contrast to previously blue-detuned
[46] or spinor-BEC systems [53], here the strong atom-
induced cavity resonance shift (i.e., |Up|N 2 A.) is essential
for the emergence of instabilities and limit cycles. Such res-
onance shift would modify the phase of cavity field through
the dissipation process, which may lead to excessive negative
feedback on the atomic density modulation, making the sys-
tem unstable. A semiclassical analysis based on an atomic gas
inside a ring cavity had predicted frustration phenomena in
the region |UyN| 2 A, [69], and the instability was confirmed
in Ref. [27]. By investigating the BEC-cavity dynamics in
such strong Uy region with a red-detuned transverse pump, we
show that not only stable superradiance, but also interesting
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FIG. 5. The evolution of the BEC wave function and the cavity field in the presence of atom-atom interactions. Thanks to the cavity
dissipation that compensates the heating due to the dynamical instabilities, the short-range atom-atom interactions do not lead to proliferation
of phase singularities (zero-density points) in the oscillating BEC. The periodic oscillations of the BEC density in the SL and AL phases are
clearly seen in (a) and (b), with n = 6wy and n = 8.8wg, respectively. Irregular evolution is observed in (c) for the C phase with n = 17.6wg.
(d)—(f) The creation and annihilation of phase singularities [i.e., 7-phase jumps of W(x, ¢) and density zeros of |¥(x, ¢)|?] during the evolution
shown in (c), solid (dashed) lines are the phases (density) of the condensate. (g)—(i) The evolution of cavity field corresponding to (a)—(c).
(j) The kinetic energy of the BEC, blue, red, and green lines correspond to the evolution of the SL, AL, and C phases shown in (a), (b), and
(c) respectively. Common parameters are: A, = 8.8wg, UyN = —12wg, and g,,N/L = 0.5hwg.

limit cycles can be generated at sufficient pump strength. In
the future, it would be interesting to investigate the effects
of realistic harmonic traps, transverse dynamics, and atomic
correlations in the system.

In summary, we have presented the dynamical phase di-
agrams of a red-detuned atom-cavity system. We identified
regions with stable superradiance as well as dynamical insta-
bilities in the form of limit cycles, which evolve into chaotic
behavior in strong pump limit. We predicted two types of limit
cycles, one is characterized by self-sustained oscillations of
both the condensate density and cavity field, the other is for
condensate oscillation only. We find interesting merging of
limit cycles (related by the Z, symmetry), which leads to a
single Z, symmetric limit cycle. As shown in Figs. 2(a) and
2(b), the limit cycles can emerge in a wide range of parameters
A, and |Uy|N, and they are very robust against quantum fluc-
tuations and atom-atom interactions (though for the SL phase,
the time-domain coherence is lost due to quantum fluctuation,
the sharp peak in frequency domain persists). Our work paves
the way for exploring many-body limit cycle dynamics and
provides a feasible scheme for ongoing research on dissipative
time crystals.
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APPENDIX

IPR calculation. Here we discuss in more detail on
how to calculate the IPR (i.e., how to obtain I(w )5
as well as how to choose w; and the time inter-
val [t;,t; + T] of the Fourier transform). First, let us
consider a simple form of the intensity I(t) =1y +
21 cos(@t), then I(w) = Ipsinc(wT /2)e ™ + I;sinc[(w —
)T /2]e @~ 4 [1sinc[(w + @)T /2]e @+ with ¢, =
t} +T/2, and I(w) has three peaks located at w = 0, £o.
We are interested in positive frequencies with w > 0, and we
write I(w) = I;sinc[(w — ®)T /2]le”"“~®"+ for w around @,
the peak takes the form of a sinc function with polynomial
decay in w — @ due to I(w) « [(w — @)T]~". The height of
the peak is I;, and the width of the peak is on the order of
several 25t /T. That is to say, even the signal /(¢) has a single
oscillation frequency @, its Fourier transform over some finite
interval T has a finite spectral width (of several 2z /T).

Therefore, the discretization step Aw should be large com-
pared to the peak width 27 /T, but small compared to the
typical oscillation frequency @ ~ wg. As a result, we can
choose 27 /T « Aw <K wg. Numerically, we first calculate
the cavity field 7(¢) and make discrete Fourier transform to
obtain /(w) at discrete frequencies w = 2w//T with integer
. Then, the discretized and renormalized spectral distribu-
tion I(w;) at frequency site w; is given by averaging I(w =
2ml/T) over the frequency interval w € [w; — Aw/2, w; +
Aw/2] and multiplying a normalization factor. In this pa-
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per, we have adopted wgT = 1500 and Aw = 27 wg/50 to
calculate the IPR, leading to 27 /T ~ 0.03Aw K Aw ~
0.1wg <K wg. Also, the starting time of the Fourier transform
interval #; is chosen to be large enough at which the sys-
tem dynamics already enters the stable oscillation region. We
have chosen wgt; = 500 in calculating the IPR. Moreover, we
choose the frequency lattice site @; such that the highest peak
of I(w) coincides with some lattice site w;.

Steady state and stability. Here we show how to solve for
the steady state (stationary point) of Eq. (1) and determine
the stability of these solutions by linearizing Eq. (1) around
the steady state. For simplicity, we will set g,, = 0 in the
following. We first rewrite the equation of motion as

2

. haxx 2 2
i0,V(x,t)=|— 3 + Upla|” cos”(k.x)
m

+%(a + a*)cos(kcx)]‘-ll(x, ) (AD)

ido = [A. — ik + UNBla + nv/NO.  (A2)
The steady state satisfies id;x = 0, which leads to
NO
o= 1NE (A3)
Betf — ik

with 8er = A, + UpNB. Then by substituting Eq. (A3) into
Eq. (A1), we arrive at the dynamical equation of W(x, t) with
effective long-range nonlinear interactions. The steady-state
solution of W(x, t) satisfies id, W(x, t) = uW(x, t) with u the
chemical potential. To obtain the steady-state solution, we
use a variant of the imaginary time evolution method, which
consists of propagating W(x, t) in imaginary time 7 = it ac-
cording to Eq. (A1), with cavity field replaced by « = ;’fﬁz
The N-S phase transition can also be determined by examining
the steady-state cavity field o, which changes from zero to a
finite value.

To analyze the stability of the steady state, we work in the
momentum space W(x, 1) = /N/LY", ¢,(t)e" and rewrite
the equation of motion in the ¢, basis

i9,C = MC (A4)

id,a = [A. — ik + UpNBla + nv/NO, (A5)

where C=[..., ¢y, cpp1 ... 17 and M = (n*wg + L|a?)s© +
LlalPs® + @ +a*)s?, B = it + i ) and

@:C*%C. The matrix 8 has elements [S(j)]n,n/ =8|, j-
The steady-state solution then can be obtained from Eqs. (A4)
and (AS5), using the aforementioned imaginary time evolution
method.

The stability of these solutions can be determined by
linearizing Eqs. (A4) and (AS5) around the steady state.
We consider the quantum fluctuation on top of the steady
state ¢, — ¢, + 6c, and o« — o + S, substitute them into
Eqgs. (A4) and (AS5) and keep terms up to the first order of

0 0.1 0.2 0 0.1 0.2
o<
§ i
~ 8 = 16
< S
77/ wR n/ WR

FIG. 6. Growing rate of the maximally growing mode, with pa-
rameters same as that used in the main text Fig. 2(a) for (a) and
Fig. 2(b) for (b). The black solid lines separate the stable region
(left side with zero growing rate) and unstable region (right side with
positive growing rate).

the fluctuation, we obtain

i9,89 = S8y (A6)
with 8y = [..., 8¢, ..., 8¢, ..., 2, %]T and
Sll 0 S13
S=|0 82 s3], (A7)
S31 S32 S33
where S =M —u, S?=-M*+pu, SP =[0*C, QC],

§23 = [-0*C, —QC*], and

o-lee | oot ]
_ CT Q* ’ _ CT Q* >
o |:AC — ik + UoNB 0 }
0 —A, — ik —UyNB
with Q = aUpN (% 5(2)) + "8(1) The imaginary parts of
the eigenvalues of S correspond to the growing rates of the
collective fluctuation, the eigenvalue for the maximally grow-
ing mode has the largest imaginary part. In Fig. 6, we plot the
growing rate of the maximally growing mode with parameters
same as that in Figs. 2(a) and 2(b) in the main text. The
maximal growing rate changes from zero to positive across
the transition to instability.

Momentum space distribution. As we discussed in the main
text, the BEC is well localized around n = 0 in the momentum
space even in the chaotic phase. Here we show the time-
averaged momentum space distribution in Fig. 7 for different
dynamical phases. We see clearly that strong pump rate in
general leads to broader distribution, and in the AL phase, we
see that only the even recoil momenta withn = 0, 2,4, ... are
occupied.

Noise-induced damping of limit cycles. The limit-cycle
oscillation in SL phase decays over time due to the stochastic
noise &(¢) associated to Langevin quantum fluctuation of the
cavity. To give a qualitative analysis of the decay rate or
lifetime of the oscillation, we assume the noise does not affect

023311-7



GAO, ZHOU, GUO, AND LUO

PHYSICAL REVIEW A 107, 023311 (2023)

? (a) ® (b)
0.8
_ 0.6
$05
04
I | 0.2
0% g
0.6
) o @
0.6
0.4
S04
0.2
0.2
0 0
-10 0 10 -10 0 10
n n

FIG. 7. Time-averaged amplitudes |c,| of momentum-space dis-
tribution for (a) n = 5.2wg (S phase), (b) n = 6.4wr (L phase),
(c) n = 8.8wg (AL phase), and (d) n = 14wy (C phase), with A, =9,
UyN = —12wg, and 8aa = 0.

the mean-field dynamics, and thus it only leads to a field
fluctuation da(r) ~ fot &(t)dt’, and the fluctuation of cav-
ity field intensity is (Sa*(t)da(t)) ~ [y [y (E(t)E@"))dt'dt"
~ kt. Therefore, the stochastic noise £(¢) would perturb the
cavity field intensity in the rate «, this would significantly
affect the system dynamics after an evolution time t such that
kT ~ |a|?, and we expect an oscillation lifetime ~7. Different
from the single-atom system, here the cavity field intensity is
significantly enhanced by the collective scattering of N atoms.
Typically, we have |&|*> ~ 0.1N, leading to T ~ 0.1N/«x. So,
the lifetime is also enhanced by the large atom number N. For
N ~ 10’ and « ~ 10wg, one has v ~ 103 /wg. The lifetime
obtained from our numerical simulation is about ~200/wg,
qualitatively in agreement with the above analysis (the inter-
play between mean-field dynamics and the noise may further
enhance the effects of noise and lead to a lifetime smaller
than 7). On the other hand, the limit cycles in AL phase
persist (i.e., the oscillation is infinitely long lived) even in the
presence of quantum fluctuations, and the long-time dynamics
always leads to nearly vanishing cavity field with BEC popu-
lating on even recoil momenta. The effects of £ (¢) is negligible
since the cavity field is close to zero.
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