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Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate
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When a superfluid flows past an obstacle, quantized vortices can be created in the wake above a certain
critical velocity. In the experiment by Kwon et al. [Phys. Rev. A 91, 053615 (2015)], the critical velocity vc

was measured for atomic Bose-Einstein condensates (BECs) using a moving repulsive Gaussian potential, and
vc was minimized when the potential height V0 of the obstacle was close to the condensate chemical potential
μ. Here we numerically investigate the evolution of the critical vortex shedding in a two-dimensional BEC
with increasing V0 and show that the minimum vc at the critical strength V0c ≈ μ results from the local density
reduction and vortex-pinning effect of the repulsive obstacle. The spatial distribution of the superflow around
the moving obstacle just below vc is examined. The particle density at the tip of the obstacle decreases as V0

increases to Vc0, and at the critical strength, a vortex dipole is suddenly formed and dragged by the moving
obstacle, indicating the onset of vortex pinning. The minimum vc exhibits power-law scaling with the obstacle
size σ as vc ∼ σ−γ with γ ≈ 1/2.
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I. INTRODUCTION

A superfluid can flow without friction but only below a
certain critical velocity. Above the critical velocity, the super-
fluid becomes dynamically unstable, generating excitations
such as phonons and quantized vortices [1]. Understanding
the critical dynamics and critical velocity of a superfluid is
of fundamental and practical importance for the study of the
transport properties of a superfluid system [2–4]. The key
questions are what induces the instability of the superfluid
flow and how the energy dissipation evolves with the increas-
ing flow velocity. At substantially high velocities, turbulent
states would be developed in the superfluid system with a
complex tangle of vortex lines, namely, quantum turbulence
[5,6].

In recent experiments with atomic Bose-Einstein conden-
sates (BECs), a localized optical potential formed by focusing
a laser beam was adopted as a movable obstacle [7]. Vari-
ous superfluid dynamics were investigated by controlling the
movement of the obstacle in a sample. From the onset of
energy dissipation with increasing obstacle speed, critical ve-
locities of various atomic superfluid gases were demonstrated
[7–12], where the measurement results tested theoretical pre-
dictions [13–18] and revealed the details of the dissipation
mechanisms [9–12,19,20]. For a fast obstacle above the crit-
ical velocity, the vortex shedding in the wake of the moving
obstacle was investigated [21–25]. A remarkable observation
was that vortex clusters consisting of like-sign vortices are
regularly shed from a uniformly moving obstacle in atomic
BECs [22]. This is analogous to the von Kármán vortex
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street in classical viscous fluids in the transition to turbulence
[24,25].

For the optical obstacle, there are two regimes with respect
to the relative magnitude of the obstacle’s peak potential V0

to the chemical potential μ of the BEC. The particle density
at the obstacle position is suppressed because of the repul-
sion of the obstacle. However, when V0 < μ, the condensate
can penetrate the obstacle, and a zero-density region is not
induced in the condensate. In this penetrable case, vortices
can be created only in the form of a dipole consisting of two
vortices of opposite circulations. When V0 > μ, which is re-
ferred to as impenetrable, a density-depleted hole is formed in
the system, and it would significantly alter the characteristics
of the vortex-shedding dynamics by allowing the generation
of vortex clusters [22]. In the experiment by Kwon et al. [9],
the critical velocity vc for vortex shedding was measured as
a function of V0, and vc was minimized sharply at a certain
critical strength V0c that was close to μ. This implies that the
onset behavior of the vortex shedding, which we refer to as
critical vortex shedding, undergoes a certain transition as the
obstacle strength changes from penetrable to impenetrable.

In this paper, we numerically study the critical vortex shed-
ding of a Gaussian obstacle in a two-dimensional (2D) BEC
and investigate its evolution with increasing obstacle strength.
We verify that the critical velocity is minimized at a critical
obstacle strength V0c close to μ and show that it arises from the
start of vortex pinning as V0 increases above V0c. We examine
the spatial distribution of the superflow around the moving
obstacle just below vc. At the critical strength, the superflow
distribution suddenly changes to form a vortex dipole that is
pinned at the tip of the obstacle. When V0 is further increased,
a density-depleted region develops, and the comoving, pinned
vortex dipole becomes virtual and is absorbed in the region.

2469-9926/2023/107(2)/023310(9) 023310-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5301-6207
https://orcid.org/0000-0003-0481-9841
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.023310&domain=pdf&date_stamp=2023-02-15
https://doi.org/10.1103/PhysRevA.91.053615
https://doi.org/10.1103/PhysRevA.107.023310


HANEUL KWAK, JONG HEUM JUNG, AND Y. SHIN PHYSICAL REVIEW A 107, 023310 (2023)

The minimum vc at V0 = V0c decreases with increasing ob-
stacle size σ . We find that it exhibits a power-law scaling of
vc ∼ σ−γ , with γ ≈ 1/2, which is in reasonable agreement
with the experimental results of Ref. [9]. Our results demon-
strate the existence of the minimum critical velocity for a
Gaussian obstacle and elucidate the transition of the critical
vortex shedding from the penetrable to impenetrable regime.

The remainder of this paper is organized as follows.
In Sec. II, we describe a theoretical model to study the
vortex-shedding dynamics in a BEC based on the 2D Gross-
Pitaevskii equation. In Sec. III, we present numerical results,
including a comparison of the shedding dynamics for penetra-
ble and impenetrable obstacles and the characterization of the
critical vortex dipole state generated by the moving obstacle
at the critical strength. Finally, in Sec. IV, a summary of this
work and the outlook for future studies are provided.

II. THEORETICAL MODEL

We consider a situation where an obstacle moves in a ho-
mogeneous BEC with a constant velocity v. In the mean-field
theory, the BEC dynamics is described by the Gross-Pitaevskii
equation (GPE),

ih̄
∂�

∂t
=

(
− h̄2

2m
∇2 + V (r − vt ) + g|�|2 − μ

)
�, (1)

where �(r, t ) is the macroscopic wave function of the BEC,
h̄ is Planck’s constant divided by 2π , m is the atom mass,
V (r) is the obstacle potential, and g is the nonlinear cou-
pling coefficient. Taking the unitary transformation �(r, t ) =
exp[−vt · ∇]ψ (r, t ), Eq. (1) is transformed into the reference
frame moving with the obstacle as

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + ih̄v

∂

∂x
+ V (r) + g|ψ |2 − μ

)
ψ, (2)

with v = vx̂. The characteristic length and time scales of the
system are given by the healing length ξ = h̄/

√
2mμ and tμ =

h̄/μ, respectively. Using the change in variables, r̃ = r/ξ and
t̃ = t/tμ, the equation can be expressed in a dimensionless
form as

i∂t̃ ψ̃ = (−∇̃2 + i
√

2ṽ∂x̃ + Ṽ (r̃) + |ψ̃ |2 − 1)ψ̃, (3)

with ψ̃ = n−1/2
0 ψ , ṽ = v/cs, ∇̃ = ξ∇, and Ṽ = V/μ. Here

n0 = μ/g is the particle density of the BEC without the ob-
stacle, and cs = √

μ/m is the speed of sound.
In this work, we study the BEC dynamics for a Gaussian

obstacle in two dimensions. This is motivated by the recent
experiments using highly oblate atomic samples [9–12,23],
where the vortex line dynamics along the tight confining
direction is energetically irrelevant. Hence, the shedding
dynamics can be well described in two dimension. In a hydro-
dynamic approximation, the dimensional reduction is carried
out by integrating the wave function component along the
short axis. It effectively modifies the speed of sound in Eq. (3)
[26,27]. The potential of the Gaussian obstacle is given by
V (r) = V0 exp[−2(r2/σ 2)], where r =

√
x2 + y2 and σ is the

1/e2 radius of the obstacle. The obstacle is located at the
origin of the reference frame.

FIG. 1. Vortex shedding from a Gaussian obstacle in a Bose-
Einstein condensate. Particle density distribution n(x, y) of a BEC
flowing past an obstacle with size σ/ξ = 20 and strength V0/μ = 0.8
for flow speed (a) v/cs = 0.25 and (b) 0.28 at time t/tμ = 1200.
n0 denotes the particle density of the BEC without the obstacle,
and the flow direction is indicated by the arrows. In (b), the flow
speed is faster than the critical velocity of vc ≈ 0.26cs, and vortices
are generated behind the obstacle. The circulation directions of the
vortices are indicated by + (counterclockwise) and − (clockwise).
(c) Temporal evolution of the drag force F experienced by the BEC
in (a) and (b). Fμ = μ/ξ .

We numerically solve Eq. (3) in the xy plane with periodic
boundary conditions, using the pseudospectral method [28].
In the simulation of vortex shedding for v > vc, we set the
initial state to be a stationary solution for a velocity vi slightly
below vc. Next, we increase the obstacle speed up to the
target velocity v for an acceleration time ta = 200tμ [29]. The
initial stationary solution is obtained using the imaginary-time
method where t is replaced by −iτ [30,31]. To realize a
constant stream at the front boundary of the obstacle, we adopt
the numerical method described in Ref. [25], where damping
zones with a thickness of 20ξ are set at the boundary to atten-
uate the wake of the BEC and recover the constant uniform
flow at the front boundary. In the calculation of a stationary
solution using the imaginary-time propagation method, the
damping zone is inactivated.

III. RESULTS AND DISCUSSION

A. Determination of critical velocity

Figures 1(a) and 1(b) display the density distributions of
the BEC, n(x, y) = |ψ |2, at t/tμ = 1200 for two different ve-
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FIG. 2. Critical velocity vc as a function of the obstacle strength
V0 for various obstacle sizes σ . The x axis has a logarithmic scale.
For σ/ξ > 4, vc is minimized at a critical strength V0c, close to the
chemical potential μ of the BEC. The dashed line denotes V0 = μ

and represents the boundary between the penetrable regime and the
impenetrable regime. The inset shows the critical obstacle strength
V0c as a function of σ .

locities, v/cs = 0.25 and 0.28, respectively [29]. The obstacle
size and strength are σ/ξ = 20 and V0/μ = 0.8. When the
speed is lower than the threshold value of vc ≈ 0.26cs, no vor-
tices are generated. The BEC remains stationary [Fig. 1(a)].
By contrast, when the obstacle velocity increases above the
threshold velocity, vortices are emitted from the obstacle in
a periodic manner [21]. The periodic vortex shedding is also
examined by inspecting the drag force exerted by the obstacle
Fx = − ∫

ψ̃∗(∂x̃Ṽ )ψ̃d2r̃ using the Ehrenfest relation [25]. We
verify that for v > vc the force oscillates in time, correspond-
ing to the periodic vortex emission. For v < vc it is stationary
and remains approximately zero [Fig. 1(c)].

We determine the critical velocity vc from the existence
of a stationary ground-state solution via the imaginary-time
propagation method [15]. The imaginary-time method gives
a converging stationary solution for v < vc or an oscillating
solution otherwise. In the oscillating solution, a pair of vor-
tices is created by the obstacle. They move away from each
other along the y direction and are annihilated at the system’s
boundary due to the periodic boundary conditions. This pro-
cess is repeated over an imaginary time. In the calculation
of stationary solutions, we employed a spatial domain of
(Lx, Ly) = (400, 400)ξ with (Nx, Ny) = (600, 600) grids and
took a time step of 
τ/tμ = 0.04. We decided the conver-
gence of a solution through its behavior up to the imaginary
time τ/tμ = 4000. The critical velocities determined from our
imaginary-time method are identical to the threshold values
from the simulation of the real-time evolution within an error
of 0.02cs.

Figure 2 displays the numerical results of the critical veloc-
ities over a range of obstacle strength 0.1 � V0/μ � 10 for
various obstacle radii 4 � σ/ξ � 30. We observe a marked
dip of vc with a minimum around V0 = μ, which agrees well

with the previous experimental observation [9]. In the limit of
V0 → 0, vc approaches the speed of sound cs. It is compatible
with the fact that the critical velocity of a microscopically
small impurity is given by the speed of sound according to
the Landau criterion, although such a small obstacle would
generate phonons or a localized rarefaction pulse called the
Jones-Roberts soliton [32,33], rather than vortices. In the limit
of V0 → ∞, the Gaussian obstacle is well represented as a
hard cylinder. vc is expected to converge to a constant value of
approximately 0.4cs. It was verified numerically [15] and an-
alytically [16] that the critical velocity of a large hard cylinder
is given by ≈0.37cs regardless of the diameter of the cylinder.

The local Landau criterion provides a qualitative interpre-
tation of the observed V0 dependence of vc. Namely, when
V0 < μ, the particle density in the obstacle region decreases
with increasing V0 as n ≈ (μ − V0)/g. This lowers the local
speed of sound at the tip of the obstacle and consequently
decreases the critical velocity. However, when V0 > μ, a
density-depleted region is formed by the obstacle. Vortices
would be generated at the flanks of the obstacle, restoring vc

to that in the hard-cylinder case. However, it is not clear why
the critical velocity sharply changes its behavior at the critical
obstacle strength V0c ≈ μ. In addition, when the obstacle size
is reduced below 10ξ , the critical obstacle strength of the
minimum vc is slightly shifted to a higher V0. Eventually,
for σ/ξ < 7 the local minimum of vc does not occur in our
investigation range of V0. The inset in Fig. 2 shows Vc0 as
a function of σ . The main purpose of this work is to probe
the underlying mechanism of the minimum vc at the critical
obstacle strength.

B. Penetrable-to-impenetrable transition

We first compare the characteristics of the vortex gener-
ation dynamics for penetrable and impenetrable obstacles.
In Fig. 3, we display a time sequence of the phase and ve-
locity field distributions around the obstacle as vortices are
generated for the two cases with V0/μ = 0.8 and 3.0, re-
spectively. The velocity field of a superfluid is determined
from the probability current j = − ih̄

2m (ψ∗∇ψ − ψ∇ψ∗) =
h̄
m |ψ |2∇� ≡ nvs, with �(r) being the phase of the macro-
scopic wave function ψ (r).

For the penetrable obstacle, two zero-velocity regions, in-
dicated by the dark blue area in Fig. 3(b), are formed at the
front and rear of the obstacle, respectively, and they have a
high-velocity region between them. The mass flow diverges
out in the front region and converges behind the obstacle. This
is a consequence of the pressure increase at the front and the
subsequent pressure drop behind the moving obstacle. As time
passes, the rear zero-velocity region gradually disappears, and
the high-velocity area evolves into a vortex pair separated
along the y direction. At the vortex nucleation moment, the
flow direction in the high-velocity region is rapidly flipped due
to the phase accumulation and slippage [14,34]. As the vortex
dipole is shed, the front zero-velocity region is separated into
two parts along the obstacle’s moving direction. The same
vortex dipole generation process is repeated.

For the impenetrable obstacle case of V0/μ = 3, two pairs
of vortices exist inside a density-depleted region [Figs. 3(c)
and 3(d)]. These virtual vortices correspond to the superflow
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FIG. 3. Vortex nucleation process. Time evolution of (a) and (c) the phase and (b) and (d) velocity field of a BEC for a penetrable obstacle
(σ/ξ = 20, V0/μ = 0.8, v/cs = 0.27) in (a) and (b) and for an impenetrable obstacle (σ/ξ = 20, V0/μ = 3.0, v/cs = 0.30) in (c) and (d). In
(b) and (d), the flow speed is normalized with the maximum speed in each panel. In (c) and (d), the red dashed circles delineate the boundary
of the region where the obstacle’s repulsive potential is larger than the chemical potential μ of the BEC. The red solid lines indicate the
particle-density contour line at 0.1% of n0. The velocity field in the zero-density region is virtual.

pattern around the obstacle. Vortex emission occurs by peeling
off the two outer vortices into the condensate. The remaining
two vortices inside the density-depleted zone come out to the
obstacle’s boundary, and simultaneously, a new vortex pair is
produced at the center of the obstacle. It forms a configuration
identical to that before the vortex emission, thus preparing
for the next emission. This vortex emission via unpinning
from the obstacle’s boundary layer is qualitatively different
from that for the penetrable obstacle, where a vortex dipole is
generated via phase slippage at the tip of the obstacle.

To investigate the evolution of the critical vortex shedding
with an increasing V0, in Fig. 4 we display the phase and ve-
locity fields of the stationary solutions at v → v−

c for σ/ξ =
20 and various V0. In the penetrable regime, as V0 increases
to V0c, the two zero-velocity regions get closer, and the in-
between high-velocity region becomes more localized. At the
critical potential strength V0c ≈ μ, the obstacle creates phase
discontinuity [Fig. 4(b)]. Subsequently, a pair of vortices,
which are pinned, i.e., stationary with the obstacle, appears
[Fig. 4(c)]. A density-depleted region is not formed yet at the
center of the obstacle even for V0/μ = 1.2 [Fig. 4(d)]. As V0

increases further, a zero-density region develops, and eventu-
ally, for V0/μ > 1.5, the pinned vortex dipole is absorbed in
the density-depleted region and becomes virtual [Fig. 4(e)].
For even higher V0, a new bound virtual vortex pair appears
in the zero-density region [Fig. 4(f)]. The evolution of the su-

perflow pattern at the critical condition shows that the sudden
formation of a vortex dipole pinned at the tip of the obstacle
represents the transition of the critical vortex shedding from
the penetrable to impenetrable regime.

The transition at the critical strength is also demonstrated
in the evolution of the particle density profile along x = 0
[Fig. 4(g)]. As the obstacle strength increases in the penetrable
regime, the density ncenter at the obstacle’s tip decreases to
zero as V0 approaches V0c. When V0 exceeds V0c, the BEC
does not develop a density-depleted region at the tip of the
obstacle. Instead, it creates a vortex pair, which is indicated by
a bifurcation of the zero-density point in the density profile.
Correspondingly, at the tip of the obstacle, ncenter shows a
sudden jump [Fig. 4(h)]. As a result, even if the obstacle
height is higher than the chemical potential, ncenter remains
finite.

The formation of a vortex dipole at V0 > V0c indicates
the onset of the pinning effect from the repulsive obstacle.
The pinning effect is checked by the fact that the bare lin-
ear velocity of the vortex pair, which is given by vd = h̄

md
with separation d [35], is smaller than the obstacle velocity.
The Magnus force exerted on the vortices points outside of
the obstacle [36]. Thus, the vortex dipole is dragged by the
moving obstacle under the pinning. The vortex-pinning effect
makes vortex shedding difficult. Therefore, we attribute the
sudden increase of vc when V0 increases above V0c to the acti-
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FIG. 4. Penetrable-to-impenetrable transition of the critical superflow around the moving Gaussian obstacle. (a)–(f) Spatial distributions
of the phase (left) and velocity field (right) of a BEC for various obstacle strengths, (a) V0/μ = 0.95, (b) 0.96, (c) 1.0, (d) 1.2, (e) 1.5, and (f)
1.8, where σ/ξ = 20. The obstacle velocity is v → v−

c , i.e., just below vc for each obstacle strength. The color map and red dashed and solid
lines have the same meaning as in Fig. 3. (g) Particle density profile n(0, y) of the BEC at the critical velocity as a function of V0. The color
bar has a logarithmic scale. Just above the critical strength V0c = 0.96μ, the density minimum is bifurcated, corresponding to the vortex dipole
formation. (h) The density ncenter at the center of the obstacle is shown as a function of V0, which corresponds to the horizontal line of y = 0 in
(g). The red dashed lines in (g) and (h) mark the critical strength V0c.

vation of the vortex-pinning effect. Recently, in Ref. [37], the
vortex-pinning mechanisms were numerically investigated for
a circular, uniform potential, and a similar stationary solution
was reported.

The onset of the vortex-pinning effect explains the ob-
servation in Fig. 2 that for small obstacles, V0c is shifted
towards a higher value and it disappears at σ/ξ < 7. Due to
the finite size of a vortex core, for sufficiently small obstacles,
a vortex dipole with separate cores could not be stably pro-
duced in a pinned configuration, and thus, vc monotonically
decreases with increasing V0. We label such a small obstacle
as a quantum obstacle [25]. In general, strong impenetrable
obstacles would generate vortex clusters, which consist of
many same-sign vortices, for high velocity. However, lacking
the pinning effect, a quantum obstacle would not lead to large
vortex cluster shedding even for high V0 [25]. Some numerical
results are presented in the Appendix.

Finally, for completeness, we calculate the critical veloc-
ities for attractive obstacles with negative V0 and present
the results in Fig. 5. As |V0| increases, the critical velocity
monotonically decreases. The inset in Fig. 5 shows the vortex-
creation process from an attractive obstacle, where a vortex
dipole is generated from a rarefaction pulse being broken in
front of the obstacle [38,39].

C. Obstacle size dependence

In the study of the critical velocity of superflow past an
obstacle, the dependence of vc on the obstacle size has at-

tracted interest because it may reflect the dispersion property
of the excitation mode involved in the critical energy dis-
sipation [18,40]. In our situation with a Gaussian obstacle,
we observe that the variations of vc around V0 = μ become

FIG. 5. Critical velocities for various attractive obstacles. The x
axis has a logarithmic scale. The inset shows the particle density
distribution n(x, y) of a BEC flowing past an attractive obstacle with
σ/ξ = 20 and V0/μ = −1, where the obstacle is accelerated from
0.7cs to 0.85cs for a time of 1000tμ.
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FIG. 6. Obstacle size dependence of the critical velocity.
(a) Minimum critical velocity vc0 (red solid circles) and vc at V0 = μ

(red open circles) as a function of σ . The blue squares are the
experimental results from Ref. [9]. All data are plotted in log-log
scale. The lines are power-law functions of vc = v0(σ/ξ )−γ , fitted
to the data sets with {v0/cs, γ } = {1.19, 0.61} for the minimum vc,
{1.09, 0.56} for vc at V0 = μ, and {2.3, 0.78} for the experimental
data. The inset displays the pair separation d of the critical vortex
dipole as a function of σ at V0 = μ. The black dashed line is a
power-law function fit to the data, yielding d = d0(σ/ξ )γd , with
d0 = 0.81ξ and γd = 0.92. Rescaled particle density profiles along
(b) y = 0 and (c) x = 0 at v → v−

c and V0 → V −
0c for various obstacle

sizes.

more pronounced for a larger σ with lowering the minimum
vc (Fig. 2).

Figure 6(a) displays the minimum critical velocity vc0 at
V0 = V0c as a function of the obstacle radius σ in a log-log
scale, together with the experimental measurement data from
Ref. [9]. First, our numerical results are in good quantitative
agreement with the experimental results [41]. Second, they
suggest a power-law dependence of vc0 on σ . From a power-
law function of vc0 = v0(σ/ξ )−γ fitted to the data points,
we obtain {v0/cs, γ } = {1.19(3), 0.61(1)} for the numerical
results and {2.3(7), 0.78(9)} for the experimental data.

To understand the origin of the scaling behavior, we con-
sider the GPE for V0 = μ in the large obstacle limit, σ 
 ξ ,
and in the obstacle center region, where the obstacle poten-
tial is approximated as V (r) ≈ μ[1 − 2(r/σ )]2. Expecting a
scaling behavior of the critical superflow state with σ , we
introduce new length and time scales as ξeff = ξsα and tμ,eff =
tμsβ , with s = σ/ξ , respectively. By changing the variables
r̄ = r/ξeff and t̄ = t/tμ,eff, we obtain a dimensionless expres-

sion for the GPE which is explicitly independent of σ . When
α = 1

2 and β = 1, Eq. (2) is recaptured in a σ -independent
form as

i∂t̄ ψ̄ = (−∇̄2 + i
√

2v̄∂x̄ − 2r̄2 + |ψ̄ |2)ψ̄, (4)

where v̄ = s1/2(v/cs), ∇̄ = ξeff∇, and ψ̄ = (n0/s)−1/2ψ . This
suggests that vc ∝ 1/

√
σ , which is close to the observed scal-

ing behavior of the minimum critical velocity vc0 with σ .
Noting that V0c is not exactly equal to μ, in Fig. 6(a), we
also plot vc at V0 = μ (red open circles) as a function of σ .
A power-law fitting gives {v0/cs, γ } = {1.09(2), 0.56(1)}. It
agrees better with the prediction of Eq. (4). The power-law
relation estimates the critical velocity with considerable accu-
racy throughout the whole range of σ , including the quantum
obstacle regime.

The dimensionless GPE of Eq. (4) suggests the charac-
teristic length scale of the system ξeff = √

ξσ . In Figs. 6(b)
and 6(c), we plot the profiles of normalized particle density

n̄ = |ψ̄ |2 = 1
n0

ξ 2
eff
ξ 2 |ψ |2 along y = 0 and x = 0, respectively, for

various σ , where the wave functions ψ (r) for the critical con-
dition of V0 → V −

0c and v → v−
c0 are calculated from Eq. (2).

The normalized number densities collapse remarkably well in
the center region of r � σ , as expected from Eq. (4). The
length scale ξeff may be regarded as an effective healing length
for the average condensate density 〈n〉 in the obstacle center
region, i.e., ξeff = h̄/

√
2mg〈n〉. Here, 〈n〉 is estimated in a

self-consistent manner as 〈n〉 = 1
πξ 2

eff

∫
r<ξeff

n(r)d2r. It is the

mean value over a disk area of radius ξeff. With n(r) = n0
2r2

σ 2

for r � σ , 〈n〉 = n0
ξ 2

eff
σ 2 , yielding ξeff = √

ξσ .
Finally, we investigate the dependence of the pair separa-

tion d of the critical vortex dipole state on the obstacle size.
In the inset of Fig. 6(a), the pair separation d at V0 = μ is
plotted as a function of σ in a log-log scale, and we observe
that d exhibits power-law scaling with σ as d ∝ σ 0.9. The
scaling exponent is not accounted for by the length scale ξeff,
which is understandable because the vortex separation is the
order of the obstacle radius, invalidating the center-region
approximation in Eq. (4).

According to Refs. [36,37], the velocity of a vortex is given
by

vv = h̄

m

(
∇� − 1

2
κ̂ × ∇ ln n

)∣∣∣∣
rv

, (5)

where rv denotes the vortex position and κ̂ is the circulation
direction of the vortex. The first term describes a velocity from
the ambient phase gradient without the vortex’s singular con-
tribution. The second term describes the one induced from the
density gradient. In the critical vortex dipole state, assuming
that the vortices generate a phase gradient equal to that in a
homogeneous BEC, the first term arising from the counterpart
vortex in the dipole is estimated as h̄

m ∇� ∼ h̄
md x̂. Taking

n(r) = n0(1 − e−2 r2

σ2 ) in the Thomas-Fermi approximation,

the second term gives vd = − h̄
m ẑ × ∇ ln n = h̄

m
n0−n( d

2 )

n( d
2 )

d
σ 2 x̂.

Then, from vv = vcx̂, the observation of d ∼ σ suggests vc ∼
1/σ , which is not compatible with the observed scaling be-
havior of vc. This implies that the velocity field around the
vortex dipole is significantly modified in the inhomogeneous
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FIG. 7. Vortex cluster shedding for strong impenetrable obstacles. The particle density (top) and phase (bottom) distributions of a BEC
flowing past a strong impenetrable obstacle with V0/μ = 100: (a) σ/ξ = 10, (b) 7, (c) 3.5, and (d) 2. The obstacles were accelerated from
0.35cs to 0.525cs in (a), from 0.4cs to 0.6cs in (b) and (c), and from 0.45cs to 0.575cs in (d) for 1000tμ. The circulation direction of each vortex
cluster is indicated by the red arrow and sign.

density distribution due to the obstacle potential [42]. The
structure and stability of the critical vortex dipole state are an
interesting subject and warrant further investigation in future.

IV. SUMMARY AND OUTLOOK

We numerically investigated the critical velocity of a Gaus-
sian obstacle in a uniform 2D BEC using the GPE. From the
existence of a stationary solution, we determined the critical
velocity as a function of the obstacle strength. It is minimized
at the critical strength V0c ≈ μ, which is consistent with the
previous experimental results in Ref. [9]. We examined the
flow pattern of the condensate around the obstacle for the
velocity just below vc. A vortex dipole is abruptly formed at
the tip of the obstacle as the obstacle strength exceeds V0c.
This sudden change in the critical flow pattern indicates the
onset of the vortex-pinning effect by the moving obstacle.
It represents the penetrable-to-impenetrable transition of the
vortex-shedding dynamics. Further, the minimum critical ve-
locity at the critical obstacle strength exhibits a power-law
dependence on the obstacle size as vc ∝ σ−γ , with γ ≈ 1/2.
Additionally, the measured exponent is explained by the scal-
ing property of the GPE near the center of the obstacle with
V0 = μ.

The superflow state where a vortex dipole is pinned and
dragged by the moving obstacle presents an interesting situa-
tion for the study of the critical vortex shedding. As mentioned
in the discussion of the σ dependences of vc and d , the struc-
ture of the critical vortex dipole state and its stability need to
be further investigated. A force-balance analysis including the
Magnus force and vortex attraction in the background with
inhomogeneous density might be fruitful [36,42,43]. Near
the critical shedding condition, small breathing motions of
the vortex dipole were observed in our numerical simulation,
where acoustic radiation from the vortex dipole-obstacle in-
teraction is anticipated [44]. At the critical obstacle strength,
the transition of the superflow distribution appears very rapid,

similar to the first order. Thus, it suggests that there might be
some hysteresis effects in the vortex shedding when the ob-
stacle changes its strength in time. In Ref. [45], the bistability
in the vortex shedding near the critical velocity was reported.
Last, the recent experimental work on the vortex-shedding
frequency fv showed that the increasing rate of fv with the
obstacle velocity is fastest at V0 ≈ μ [23]. This might have
originated from the critical vortex dipole state at the critical
obstacle strength.
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APPENDIX: VORTEX CLUSTER SHEDDING

When an impenetrable obstacle moves at high velocity
above vc, it can generate vortex clusters consisting of many
same-sign vortices [25] due to its ability to pin multiple vor-
tices. In Fig. 7, we present numerical results of the vortex
cluster shedding for various obstacle sizes. In the numerical
simulations, small Gaussian noises are added to the initial
wave function of the BEC [24], which break the left-right
symmetry of the system with respect to the obstacle moving
direction and facilitate the alternate shedding of vortex clus-
ters with different signs of net circulation via hydrodynamic
instability. The obstacle is accelerated up to above 0.5cs. The
size of the vortex clusters decreases with decreasing obstacle
size. For obstacles with further reduced radii of σ/ξs < 4,
von Kármán streets of same-sign vortex pairs are observed
[Figs. 7(c) and 7(d)] [24]. In Fig. 7(d) for our smallest obsta-
cle, we observe that the distances between the vortex clusters
are reduced and the Kármán street structure collapses due to
the interactions between adjacent clusters.
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