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We study binary atomic boson-fermion mixtures confined in one dimensional box potentials by few-body
theory with contact interactions and mean-field many-body theory with density-density interactions. A variety

of correlations and structures arise as the inter- and intraspecies interactions are tuned. Both few-body and
many-body results show that miscible phase and three-chunk phase separation are directly observable in the
density profiles. Meanwhile, two-chunk phase separation can be inferred from the few-body correlations and
many-body density profiles. We present phase diagrams of selected types of atomic mixtures to show where
different structures survive. The few-body analysis demonstrates that two-body correlation functions can reveal
information relevant to the results from many-body calculations or experiments. From the many-body density
profiles in the phase-separation regime, we extract the healing lengths of both species and explain the scaling

behavior by an energy-competition argument.

DOI: 10.1103/PhysRevA.107.023308

I. INTRODUCTION

Advancement in trapping and cooling atoms has made it
possible to study quantum many-body physics using ultra-
cold atoms. After the realizations of Bose-Einstein condensate
(BEC) in a single-component atomic gas [1-3], experimental
groups have created condensates in atomic boson-boson mix-
tures [4,5] and BEC of molecules in two-component Fermi
gases with tunable interactions [6,7]. Those experiments ex-
plored two-component mixtures using two hyperfine states
of the same species. Later, fermionic atoms were mixed
with bosonic atoms in several examples, including "Li-°Li
mixtures [8,9], Z2Na—C°Li mixtures [10], ¥’Rb—*"K mixtures
[11-13], ¥Rb-°Li mixtures [14], ¥’Sr-*Sr mixtures [15],
41K -OLi mixtures [16], and '33Cs-°Li mixtures [17]. In gen-
eral, binary atomic boson-fermion mixtures with repulsive
interspecies interactions demonstrate a bosonic BEC and a
single-component normal Fermi gas since pairing mechanism
is not involved.

On the other hand, theoretical investigations have been
carried out to characterize multicomponent ultracold atomic
systems. For example, the ground-state properties of two-
component bosons confined between hard walls [18], phase
separation in harmonically trapped and mass-imbalanced
fermion-fermion mixtures [19,20], one-dimensional (1D) har-
monically trapped boson-fermion mixtures [21], ground-state
densities of repulsive two-component Fermi gases [22], and
repulsive boson-fermion mixtures in harmonic traps [23,24]
have been studied, to name a few. It has been demonstrated
that the structures of atomic mixtures depend on the inter-
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and intraspecies interactions. For example, repulsion between
bosons and fermions in a binary mixture leads to spatial sepa-
ration, minimizing the overlapping region [23,24]. In contrast,
attraction in a mixture may lead to collapse [12,13] or droplet
formation [25,26]. There have been studies of thermodynam-
ics and structural transitions of binary atomic boson-fermion
mixtures using path integral formalism [27]. Reference [28]
on binary boson-boson or fermion-fermion mixtures in 1D
box potentials has suggested different phase-separation struc-
tures, including those induced by the mass imbalance. Many
interesting phenomena of 1D atomic mixtures have been
reviewed in Ref. [29]. When compared to purely bosonic
or fermionic gases, boson-fermion mixtures are particularly
interesting as the two components follow different spin statis-
tics. For example, sympathetic cooling may use bosons to cool
down fermions, as summarized in Ref. [30].

Conventionally, ultracold atomic gases have been trapped
in harmonic potentials, causing inhomogeneous density pro-
files. Recent progress in engineering optical potentials has
brought us box potentials [31-37], which simplify the com-
parison between theories [38—40] and experiments in the bulk.
Homogeneous BEC of trapped bosonic atoms in quasi-1D
[31,34], 2D [33], and 3D [32] have been realized. For two-
component fermions, homogeneous 3D Fermi gases [35] and
2D Fermi gases [36] have been realized. Recently, dipolar
dimers of nonreactive fermionic *Na“’K molecules have
been realized experimentally to analyze the collision of ul-
tracold molecules in optical box potentials for a comparison
with those in dipole traps [37].

Here we envision future combinations of research on mul-
ticomponent atomic gases and box potentials. Explicitly, we
study binary atomic boson-fermion mixtures in quasi-1D box
potentials to explore the rich phase diagrams, ground state
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properties, and interface structures. The bosons can interact
with themselves and with the fermions through two-body s-
wave scattering, but identical fermionic atoms do not interact
with each other due to Pauli exclusion principle that sup-
presses two-body s-wave scattering [41]. We will begin with
the Hamiltonian and divide our analyses into two parts: Exact
treatments of few-body systems and mean-field approxima-
tions of many-body systems. The methods are complementary
and allow us to take a closer look at different regimes. The
former reveals the exact properties of the ground state and
the correlations that explain the macroscopic picture. The
latter gives access to the macroscopic structures, including
those with broken symmetry. The many-body picture is also
typical in experiments probing single-particle properties, such
as those measuring the density profiles. More sophisticated
measurements could look within multiparticle correlations.
Such state-of-the-art experiments are possible both in few-
body [42—44] and many-body [45,46] regimes, and tools are
known as atomic microscopes.

We will diagonalize the few-body Hamiltonian via the
single-particle basis to obtain the ground state, through which
the density profiles and two-body correlations can be eval-
vated. The complexity of the few-body calculation grows
rapidly, calling for an approximate treatment for many-
body systems. By coupling the Gross-Pitaevskii equation of
the bosonic condensate and Hartree approximation of the
fermions with boson-fermion interactions, the many-body ap-
proximation will show a variety of density profiles in the
ground state and maps out the phase diagrams for the most
stable configuration. We then analyze effects of mass imbal-
ance and interactions on the density profiles and two-body
correlations. Both few-body and many-body results show that
the hard-wall boundary condition leads to structures different
from those in a harmonic trap due to differences in the single-
particle spectra. For example, the harmonic trap favors the
core-plus-shell structure while a box potential can accommo-
date sandwich structures or two-chunk separation.

The rest of the paper is organized as follows. Sec. II sum-
marizes the few-body and many-body formalisms of binary
boson-fermion mixtures and the numerical procedures for
simulations. Section III presents the phase diagrams, density
profiles, and correlation functions from our few-body cal-
culations. The analysis of the correlations will reveal more
details of the structures than the density profiles. Section IV
shows the phase diagrams and density profiles from the many-
body mean-field calculations. By analyzing the widths of
the density variations, we present the healing lengths of the
bosons and fermions. A scaling argument from energy com-
petitions captures the main features of the healing lengths.
Section V discusses possible measurements of the phase-
separation properties and implications for exotic phases of
matter in atomic boson-fermion mixtures. Section VI con-
cludes our work.

II. THEORETICAL FRAMEWORK

Here we summarize the theoretical frameworks of both
few- and many-body pictures. For the whole analysis, we
assume equal population of the bosons and fermions with
Ny =Ny =N confined in a quasi-1D box of length L.

Depending on the picture considered, N will be of the order
of 1 or 100. We denote the masses of the bosons and fermions
as my, and my, respectively.

For a binary boson-fermion mixture, there are two cou-
pling constants from the two-body s-wave collisions: The
intraspecies interactions between bosons, gp», and the in-
terspecies interaction between bosons and fermions, gpr.
For single-component fermions, the Pauli exclusion princi-
ple suppresses two-body s-wave collisions between identical
fermions, hence gyy = 0. The nonvanishing coupling con-
stants gy, and g, can be, respectively, expressed in terms of
the two-body s-wave scattering lengths a;, and a5 away from
resonance by [41]

&> = 2@}’ Imy, (1)

with the reduced mass mpy = (1/my + 1/my,)~", where o €
{b, f}. Here a > 0 (or <0) corresponds to a repulsive (or at-
tractive) 1nteract10n. In experiments, a magnetic-field-induced
Feshbach resonance can be utilized to tune the 3D s-wave
scattering length aba, leading to tunable interactions [41,47].
In experiments, g, and g,y may change together with the
external magnetic field. Here we assume the two coupling
constants can be tuned independently and map out the phase
diagrams for selected atomic mixtures.

Quasi-one-dimensional atomic gases can be realized by
freezing the motion (with a tight confinement) in the trans-
verse directions. Away from resonance, the coupling constant
gip of a 1D atomic gas can be expressed in terms of azp via
[48] gi2 = (2h*a;P)/a%, where a, is the length scale asso-
ciated with the tight confinement in the transverse directions.
Hence, g2 can be tuned by adjusting the ratio between a;”
and a; . In the following, we will drop the superscript 1D
in the coupling constants and introduce the dimensionless
parameters 8py to rewrite the coupling constants as gp, =
8ba f/ kY. Here E}’ is the Fermi energy and k0 = Ns/2L is
Fermi wave vector of a 1D noninteracting Ferm1 gas with the
same particle number as the fermions of the mixture in the
same 1D box potential.

A. Few-body theory

Here we consider a mixture of equal numbers of bosons
and fermions confined in a box of length L. The few-body
Hamiltonian of the Bose-Fermi mixture reads

2 d2
H= Z/ dx\w(x)<———)w (x)

+‘% dx\i/;(x)@;(x)\ifb(x)\i/b(x)

0
L

+ by [ dx b)WY Px0), ()
0

where o € {b, f} denotes bosons and fermions, respectively.
The consecutive lines represent the single-particle Hamilto-
nian consisting only of the kinetic energy, the intrabosonic
interactions, and the interspecies interactions between the
bosons and fermions. The bosonic (fermionic) field operator
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@y (x) (U/(x)) annihilates a particle at position x. The opera-
tors obey appropriate (anti)commutation relations:

(9] (x), ¥, (x)] = 8(x — X)), (3a)
(W), ()} = 80x = X, (3b)
[Wp(x), ¥ (x)] = 0. (3c)

Note that the last commutation relation, Eq. (3¢), is defined for
distinguishable particles. It means that our choice of bosonic
commutation relation is arbitrary as long as it is employed
systematically throughout the analysis [49], and the choice
of the fermionic anticommutation relation would not alter the
results.

The field operators can be expanded in a single-particle
basis ¢,(x) as

Vo) =) ux)atan, )

where n runs over the complete basis spanned by {¢,(x)}, and
the operator d,,, annihilates a particle of type « in state n. The
single-particle basis ¢, (x) is the same for both species in the

box:
2 . /nm
b (x) = \/; sin (Tx> (5)

and does not depend on the mass of the particles. In contrast,
the single-particle energy depends on the inverse of the mass:
R2m?n?

2L%m,
Moreover, the number of particles is conserved in the few-

body calculations, therefore the Hamiltonian Eq. (2) can be
diagonalized independently in each subspace of fixed Ny, Ny.

Eyy = (6)

1. Observables

Similar to our previous study of atomic Bose-Bose and
Fermi-Fermi mixtures [28], we are mainly interested in the
correlations and structures of the boson-fermion mixtures.
The single-particle density of species o for the ground state
|Dy) reads

Pe(x) = (Po] W] ()T, (x)Dy). 7

To quantify the homogeneity of the system, we introduce the
following definition of homogeneity:

L —
1o [F 0ol "
0 Ny + Ny

Here the definition by construction gives h = 0 for the misci-
ble (homogeneous) phase and h = 1 for total phase separation
with no overlap between the densities of the two species.
We mention that other indicators, such as a weighted sum of
the entropy of mixing or entropy of localization [50], have
been introduced to characterize the structures of boson-boson
mixtures.

The homogeneity gives important information about the
structure but does not tell the whole story. First of all, the
above consideration concerns the ground-state properties.
However, a ground state can be in a superposition, which
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FIG. 1. The dimension Dy of the Hilbert space H of a mixture
with N bosons and N fermions with a cutoff parameter n.. The
exponential growth is very rapid in the limit of large n.. The dashed
horizontal line shows the maximal dimension considered in the fol-
lowing studies.

cannot be observed directly via single-particle measurements
in experiments. After a measurement, the wave function col-
lapses, and one realization is observed. Therefore, to shed
light on the underlying structures of boson-fermion mixtures,
we analyze two-body correlations. In particular, we will focus
on the density-density correlations in real space from the
ground state |®), defined by

Con(x, y) = (Do ¥ ()T, (), ), ()| Do), (9a)
Crr(x,y) = (@] ¥ )TN, ()T, ()| Do), (9b)
Cop(x,y) = (Do ) )T )T, ()T, (1) Do). (%)

Here x, y denote two points inside the 1D box.

2. Numerical calculation

The formalism introduced in Eq. (4) assumes an infinite
sum. In practice, to calculate the properties of desired few-
body states, one introduces a cutoff in the number of single-
particle orbitals used. With such a numerical approximation,
the matrix elements of the Hamiltonian (2) are calculated. It
is worth noting that the dimension Dy of the Hilbert space H
grows exponentially with n, as shown in Fig. 1.

In our calculations, the dimension D4, is around 2 x 10°,
and the results do not change significantly with increasing
n. We note that the Hamiltonian is an operator and has
dimension D%_L. However, the Hamiltonian matrix for the
boson-fermion mixture studied here is sparse. Therefore, we
can very effectively use the Arnoldi package [51] to perform
exact diagonalization and obtain the lowest-energy eigenstate.
Since we use the method of exact diagonalization extensively
for many years, the details can be found, for example in
Ref. [28] or in the Appendix of Ref. [52]. For each given
N =4, mass ratio mp/my, and cutoff n. = 10, we performed
100 diagonalizations to obtain the g;,-g5s phase diagram.

It is worth noting that there is a crucial difference be-
tween the boson-fermion mixtures and our previous studies of
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Bose-Bose mixtures and Fermi-Fermi mixtures [28]. When
both components obey the same spin statistics, the only dif-
ference in the energy scale in the single-particle picture comes
from the relation Eq. (6), i.e., the mass dependence. For
boson-fermion mixtures, however, there is another difference
at the single-particle level: The Fermi energy of the fermions
differs significantly from the last level occupied by the bosons.
The difference in the energy scales leads to more demanding
overhead in the calculations.

B. Mean-field many-body theory

In a mean-field treatment of many-body systems, the
contact interaction is coarse-grained into a density-density
interaction [41], which ignores the details of the wave function
and only accounts for the energy change due to the overlap
of the density profiles. The ground-state energy functional
E[Yp, Y1, -+, ¥y, ] of a binary boson-fermion mixture in
a 1D box potential can be written as

E—/Ld h2N|81ﬂ|2+ i > 1l
- o X 2mb b19x¥Yb 2mf x VY f,i

i<N;

1

T3

gy 1 l* + o Nolyn” D 19rpal® | (10)

i<Nf

Here /Ny, is the condensate wave function and v ; is
the ith fermionic eigenstate. The normalization conditions
i dx|y,> = 1and [ dx|yy;|> = 1 for all i are imposed.

In the mean-field description of the ground state, the
condensate wave function describing the bosons is gov-
erned by the Gross-Pitaevskii equation [41,53]. To find the
minimal-energy configuration, we implement the imaginary-
time formalism [41,54] by searching for the stable solution to
the imaginary-time evolution equation —dv,/0t = 8E /5,
in the T — oo limit, starting from a trial initial configura-
tion. The normalization f |¥p|?dx = 1 is imposed at each
imaginary-time increment to project out higher-energy states.
Here t = it is the imaginary time. Explicitly,

I Vb + oo Vs + 8o oY (11)
a7 2my b T b PbYb T 8bf Pf Vb,
where, p, with o € {b, f} denotes the bosonic and fermionic
density, respectively. Meanwhile, we describe the fermions
by using the Hartree approximation, which leads to a set of
eigenvalue equations:

R 3%y,
2my  9x?

+8vropVyi = Eithy.i. (12)

We choose the units so that i = 2my = 1. The coupled equa-
tions of the bosons and fermions are then solved together to
obtain a configuration for the boson-fermion mixture.

The density profiles can be obtained from the condensate
wave function and fermion wave functions via

oo = Nplyl*, pr = D Wil (13)

i<Ny

The total number of particles of each species is given by

L
Na:/ dXpg. (14)
0

It is possible to obtain different solutions from different ini-
tial conditions that respect or violate the parity symmetry. In
our numerical calculations, we have tried as many different
initial states as possible and collected their final solutions. By
comparing the ground-state energies via Eq. (10) from those
different solutions, the lowest-energy state can be identified.

III. FEW-BODY RESULTS

The boson-fermion mixtures have multiple parameters,
implying rich structures and phenomena. Moreover, these pa-
rameters are not merely theoretical variables but associated
with quantities that can be controlled in experiments either by
choosing atomic species to vary the masses m, or by tuning
the inter- and intraspecies interactions gp, -

A. Limiting cases

Before focusing on particular results, we consider some
limits of the parameters and simple scenarios to give us
physical intuition. First of all, when g, = 0, the two species
are independent of each other, so they can be treated on
their own. Especially, for strongly interacting bosons (i.e., for
&y, — 00,) the density profile of the bosons tends to that of
noninteracting fermions. Due to the equal numbers of both
species, the density profiles will overlap perfectly, giving rise
to a homogeneous mixture. Note that in this limit, the mass
ratio is irrelevant since the bosons and fermions are decou-
pled. Therefore, the bottom of the g;, — &, phase diagrams
are similar for different types of mixtures. As the interspecies
interaction g, increases, the differences start to come in while
the homogeneity is lost. Those features are clearly shown in
Fig. 2.

In contrast, by setting g, = 0, the only interaction is be-
tween the bosons and fermions, which should favor phase
separation. This is because the bosons are noninteracting and
can be described by just the lowest single-particle orbital,
where the bosons bunch together because of their spin statis-
tics. Due to the parity symmetry of the box, one species will
stay in the middle, and the other is divided into two parts
on the two sides. Since the Pauli exclusion principle favors
separation of fermions, the rule of thumb suggests that the
bosons will stay in the middle while the fermions extend to
the two sides. That is the case under the assumption that both
species have comparable kinetic energies. However, here the
kinetic energy strongly depends on the mass. In particular,
by increasing the mass of one species, the single-particle
energy goes down as 1/m,, favoring the species for accom-
modating spatial distortion and staying near the walls. In
lithium-rubidium mixtures, the masses differ by an order of
magnitude. It means in practice, for sufficiently large g,
the lithium atoms will stay in the middle and the rubidium
atoms will spread towards the walls. The miscible-immiscible
transition occurs sharply in a narrow regime, see Figs. 2(a)
and 2(h). For a huge mass imbalance, the kinetic energy plays
an important role in determining the structure.
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FIG. 2. The g;,-8,s phase diagrams for various boson-fermion mixtures with N, = Ny = N = 4, showing the homogeneity b of different
mixtures with increasing mass ratio n,/m;. We smoothed the results obtained for interactions changing by Ag,, = 0.64. While the diagrams
becomes featureless for large mass imbalances, in the region of mj,/m; ~ 1.55, the structures are very rich. The yellow regions (h ~ 1) mark
a miscible mixture while the blue region (h ~ 0) shows phase separation. Here the quantities b, g,,, and g, are dimensionless.

We remark that the main features of those results are due
to the confinement of the box. Moreover, the fermion density
is strongly modulated due to the Pauli exclusion principle,
which alters how the components mix and separate. In the
many-body treatment, those features are still observable. We
also note that particular features may emerge in the few-body
results. For instance, one can observe islands of homogeneity
in the regime of phase separation in Figs. 2(b)-2(d). Those
particular features stem from the subtle interplay between
the interactions, spin statistics, and the kinetic energies that
strongly depend on the masses.

B. Miscible and two-chunk structure

As a concrete example, we first focus on the 133Cg - 85Rp
mixture with a mass ratio nmy/my ~ 1.55. We choose three
representative states with (g5, 857) given by A: (4.46, 0.64),
B: (0.64, 6.37), C: (2.55, 4.46), for various interaction
strengths [see Fig. 2(d)]. In Fig. 3, we analyze single-particle
and two-body properties for those states. In the consecutive
rows we present the densities p, and the correlations Cyz, Cpp,
and C ff-

Since the bosons are heavier, they stay near the walls of
the box. Moreover, when x =y in the plots of the correla-
tions, the corresponding values are zero because of either the
repulsion between bosons or the Pauli exclusion principle of
the fermions. As we remarked earlier, when the intraspecies
interaction dominates like the bottom of Fig. 2(d), the system
is a miscible mixture, as one can see in Fig. 3, case A. Apart
from the fact that two identical fermions would avoid each
other due to the vanishing correlation at the same position,

the probability of measuring two particles is almost uniform.
This property fully fulfills the definition of a miscible mixture.
Furthermore, no clear separation is seen in the weakly inter-
species interaction regime. The slight distortion near the hard
walls is due to the boundary condition. When the size of the
box goes to infinity, the homogeneity is expected to approach
one for the miscible phase.

Next, we observe that the density profiles in the stronger
interspecies interaction regimes, as shown in the first row
of Fig. 3, separate into three parts with the lighter species
in the middle. For a finite system in a box, the separation
is not sharp unless very strong interactions are involved.
However, we have to be careful when interpreting the single-
particle density profiles because there are superpositions of
states respecting the parity symmetry, which in 1D is equiv-
alent to the mirror symmetry with respect to the center of
the box. As will be shown in the mean-field approach and
expected in experiments, the parity symmetry may be bro-
ken by, for example, imperfections in the preparation and/or
trap potential, fluctuations from the environment, or rounding
in numerical evaluation. If the parity symmetry is broken,
two-chunk structures in the density profiles may emerge
with the bosons and fermions occupying opposite regions
of the box to lower the interaction energy. To further dif-
ferentiate the phase-separation structures in the few-body
results, we analyze the two-particle correlations between the
atoms.

For cases B and C of Fig. 3, the tendency to form two-
chuck structures if the parity symmetry is broken can actually
be observed in the two-body correlations. First of all, the
interspecies correlation Cp,; shows that the existence of a
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FIG. 3. Top row: Density profiles, o, (x). Second to the last rows: Two-body correlations C,/(x,y), Cp(x,y), and Css(x,y) for the
corresponding mixtures, respectively. Here N, = N = N; = 4. From the left column to the right, we present the results from the points labeled
on Fig. 2. Here the two-body correlations inform case A as miscible, cases B and C as two-chunk separation, and cases D and E as three-chunk

separation.

boson on one side of the box (left or right) corresponds to
the existence of a fermion on the opposite side. Meanwhile,
all the bosons are seen to congregate on one side according
to Cpp. Similarly, all the fermions can be found either on the
left or right half of the box according to Cys. The behavior
of fermions is a bit counterintuitive since it implies the Pauli
principle is not enforced. A careful analysis shows that two
fermions are correlated in the left or right part of the box while
the Pauli exclusion principle prohibits identical fermions from
occupying the same position, which is reflected by the vanish-
ing correlation along the diagonal of the plot.

Similar effects are also observable in the two-particle
correlations shown in case C of Fig. 3 for stronger repul-
sion between the bosons. The two-body correlation landscape
showing aggregations of same species and separation of dif-
ferent species explains that the underlying structure is actually
two-chunk, but the superposition in the ground state conceals
it in the single-particle density profile. We anticipate that
two-chunk phase separation will be revealed in the many-body
limit after the parity symmetry is broken.

C. Three-chunk structure

Cases D and E of Fig. 3 show features that are associ-
ated with three-chunk structures of "Li-%Rb mixtures with
my/m; = 0.08 and ¥’Rb-°Li mixtures with m,/m; = 14.5,
respectively, see also Figs. 2(a) and 2(h). Again, the few-body
single-particle density profiles may or may not reflect the
many-body structures after the parity symmetry is broken. It
is thus crucial to analyze the correlations Cyr, Cyp, and Cys to
find out where the two species of atoms tend to congregate. In
case D, the two-body correlation of fermions Cys is peaked
at the four corners, which means that for a given fermion
near a wall, there is a high probability of finding another one
near the same or opposite wall. In contrast, the boson-boson
correlation Gy, clearly shows that the bosons occupy the center
of the box. Thus, the correlations indicate the system prefers
a sandwich structure.

In case E, the two-body correlation of fermions Cyy are
similar to case A, but the correlations are within a smaller
region. This means that the fermions are spread uniformly in
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the center of the box. Moreover, the boson correlation Cy,
is now peaked at the four corners, which means that for a
given boson near the wall, there is high probability of finding
another one near the same or opposite wall. The picture of
the boson-fermion correlation Cpy further corroborates the
above interpretation. When the fermions (or bosons) are con-
centrated in the middle of the box, the bosons (or fermions)
will be near the walls. With the analysis, we conclude that
the system will show three-chunk phase separation (or sand-
wich structure) in the many-body limit when imperfections
or fluctuations from the atoms or traps are considered. We
remark that for a strong mass imbalance, the heavy particles in
a three-chunk structure will occupy the regions near the walls
to reduce the kinetic energy due to the distortion of the wave
functions.

The two-chunk separation inferred from the two-body cor-
relations can be found in almost all the phase diagrams shown
in Fig. 2, apart from the one with the smallest mass ratio
mp/my = 0.08. In that special case, the results are limited by
the demanding computation to explore the strong-interaction
regime, so the appropriate range for two-chunk separation on
the phase diagram may not have been covered in our calcu-
lation. On the other hand, only small regions of three-chunk
separation in the correlations of boson-fermion mixtures with
comparable masses were found. While this may be due to
the limitation of the parameter space that we can explore, we
anticipate the three-chunk separation regime to be small in
general, which is consistent with the many-body results that
will be shown in the next section.

IV. MANY-BODY RESULTS

Here we present the results from many-body mean-field
theory of binary boson-fermion mixtures. The first case is with
nearly equal masses, exemplified by a mixture of "Li and °Li,
and then cases with larger mass imbalance will be presented,
including "Li - 3°Rb and °Li - ¥’ Rb mixtures. Our method is
general and applies to other atomic boson-fermion mixtures
in 1D box potentials as well. Unless otherwise specified, we
will present the results of N, = 50 = N;. We have verified
that increasing the particle numbers does not introduce further
features. A 1000-point grid is used to discretize the space,
and we have checked the results are insensitive to a further
refinement of the grid.

A. Comparable masses: °Li-’Li mixture

After solving the coupled equations of the binary boson-
fermion mixtures in a 1D box and comparing the ground-state
energies of possible solutions to pick the lowest-energy con-
figuration, we identify the stable ground-state structures of a
mixture of °Li and "Li.

1. Phase diagram and density profiles

The g4,-85»y phase diagram of the ground-state structures
of a mixture of °Li and "Li is shown in Fig. 4(a). We
also show the homogeneity b, defined in Eq. (8). There are
three possible structures: The miscible phase in the weak
interspecies interaction region, two-chunk separation in the
strongly interacting region, and three-chunk (or sandwich)

1.0
082
0.6 'E
(O]
04 9
€
022
y 0.0
5 10 15 20
Jbb
(b)
100
—— boson
fermion
=
X 50 q|fewee
o]
) (
01 :
0.0 0.5 1.0
X/L
(c)
200
=
X 1001
S
Q
- boson
k fermion J
0- T
0.0 0.5 1.0
X/L
(d)
200
— boson
fermion
=
% 100
o]
Q
0 . )
0.0 0.5 1.0
X/L

FIG. 4. Phase diagram (a) and density profiles (b)—(d) of "Li-°Li
boson-fermion mixtures with mass ratio m,/m; = 7/6. Here N, =
Ny =50 and g, = 2 with g,y =2 (b), gy =8 (c), and g,y = 14
(d) with their locations labeled in (a).

separation in the intermediate regime. When h — 1, the mix-
ture is in the miscible phase and when h — 0, the bosons
and fermions are phase-separated (into either a three-chunk
or two-chunk structure). Representatives of the three regimes
of Fig. 4(a) are shown in Figs. 4(b), 4(c) and 4(d). In the
miscible phase, there is a substantial overlap between the
two species except the regions near the hard walls, where
the wave functions are distorted by the boundary condition.
In the three-chunk separation, the fermions congregate at the
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center, enclosed by the bosons on both sides. Finally, in the
two-chunk separation, the bosons and fermions occupied op-
posite sides and break parity symmetry due to imperfections
of the initial condition or fluctuations in the calculations. We
remark that the total energies of different structures have been
compared, and the most stable state is chosen for each set of
parameters.

When compared to a previous analysis in an infinitely
large system without boundary [27], one can see that the
three-chunk structure from the mean-field calculation is only
possible in the presence of the hard walls. This is because
the fermions already have the main contribution to the ki-
netic energy from the piling-up of the Fermi sea, so they
are less sensitive to the distortion at the hard walls. On the
other hand, the bosons with finite g5r can have a smoother
profile when interfacing with the fermions than with the hard
walls. Therefore, the mean-field result of the three-chunk
structure in a box potential shows the influence of geometry
on quantum systems. One may observe that the repulsive
boson-boson interaction competes with the influence of the
repulsive boson-fermion interaction. This is because the con-
densate of bosons has negligible kinetic energy, so the bosonic
self-interaction plays the role of the Fermi pressure and pushes
the other species.

On the other hand, a two-chunk structure breaks the parity
symmetry in a box potential. If a calculation and its conditions
respect the parity symmetry, two-chunk structures will not
emerge in the density profile. In our few-body calculations, we
analyze the correlations to reveal the underlying two-chunk
structure. In our mean-field calculations, however, we use
fluctuations in the initial conditions to break the parity sym-
metry and confirm the two-chunk structure with separating
densities becomes the most stable configuration in the strong-
interaction regime. For realistic situations in experiments,
fluctuations in the preparation, trapping, and manipulations
of atoms in the strong-interaction regime may also break the
parity symmetry and result in the stable two-chunk structure.

A closer examination of Figs. 4(b), 4(c) and 4(d) suggests
that increasing the repulsive boson-fermion interaction tends
to reduce the width of the overlap between the two species.
This is expected because the overlap region incurs high inter-
action energy. In the following, we will analyze the interface
properties of the mixtures.

2. Healing lengths at the walls

For pure bosons in a box with hard walls, ¢, — 0 at the
walls and v, approaches the constant bulk value away from
the boundary. The distance over which the wave function rises
from zero at the wall to its bulk value is often referred to as
the healing (or coherence) length [41,54]. Near the wall, ¥, is
governed by a competition between the kinetic and interaction
energies. If we denote the length scale of the variation of the

bosons at the wall by &, the kinetic energy per particle due to
. . . . . . 2
the distortion of the wave function is given by E},““ =3 ”I?bgz.
b

The healing length of bosons is defined as the length scale at
which the kinetic energy per particle matches the interaction

energy per particle, gp»0p. This leads to an estimation

e
2myE7

gpvpp- By defining &, = &,/L as a dimensionless quantity, the

scaling of the healing length is

~ mf 1 1
&p ~ o = . (15)
mpk L /8o sl </ Spw
Here we define a dimensionless parameter Sy, =

g;,;,phk?.Lzm;, /my to simplify the scaling analysis. The
presence of the fermionic parameters is only to fix the units.

Meanwhile, the length scale of the variation of fermions at
the wall, denoted by &;, may be determined by matching the
kinetic energy per particle with the Fermi energy. The reason
is because the Pauli exclusion principle may be viewed as an
effective (statistical) interaction between fermions, leading to
an energy scale determined by the Fermi energy E;. The bal-
ance E}‘.in = hz/(meé‘j%) ~ Ey then leads to & ~ % Here k¢
is the bulk Fermi wave vector, determined by the bulk fermion
density ps via ky = mps/2. In terms of the dimensionless
healing length Sf = &;/L, we have

- 1 1

&~ —

: 16
kL~ \/S; (10

ﬁ

Here we define another dimensionless parameter Sy, =
(krL)?* to simplify the scaling analysis.

Now we consider two-chunk separation in the strong-
interaction regime, where the bosons occupy one side of the
box while the fermions occupy the other side. In such config-
urations, there is practically only one species near each hard
wall. In our analyses of the healing lengths, we take the width
as the distance between 95% and 5% of the value of ,/py
at the plateau in the bulk. Taking different criteria or using
functional fits to the density profiles leads to basically the
same scaling behavior, which verifies the robustness of the
energy-competition argument. Figure 5 shows the scaling of
the healing lengths of the bosons and fermions near the hard
walls, respectively. The scaling behavior confirms the argu-
ments based on the competition of the kinetic and interaction
energies for each species. We note that the energy-competition
arguments do not fix the prefactors of the healing lengths,
causing a parallel shift between the data and analytic formulas
on a log-log plot.

3. Healing lengths at the interface

In the phase-separation structures, both species are present
at the interface between the two species. The interaction en-
ergy (E™) per particle of the bosons and fermions at the
boson-fermion interface may be respectively estimated as

Ey" = gwpy + gop0r Ef = Ep+gorpp. (17)

For the fermions, Pauli exclusion principle may be considered
as an effective (statistical) interaction, which introduces the
Fermi energy Ey to E}. If &, denotes the healing lengths
for species o = b, f, then the kinetic energy per particle
due to the distortion of the wave function is again given by

ENN = - ,,'?252 . As discussed earlier, the healing lengths may be

estimated using the conditions EX" ~ EI". Explicitly, for the
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FIG. 5. Healing lengths of (a) bosons and (b) fermions at the
opposite boundaries of the box potential for a Li-°Li mixture from
the simulations and Eqs. (15) and (16). Here N;, = Ny = 50in (a) and
(b) with g,y = 40 in (a) and gy, = 1, §»y = 10 in (b).

2 .
bosons, 2”;:?5 ~ gy + gvrpy, which leads to

g_ mf 1 1 (18)
b~ — — = .
mpk9L \/ZopooL + ZorprL  N/Shi
272
For the fermions, % ~ % + &by Pp, Which leads to
. 1 1

JOLY + 2oy (L) (KL) /S

Similar to the analyses of the healing lengths at the hard walls,
here we define two dimensionless parameters Sy; = [8pp0pL +
BoyprLYmpk9L/my and Sy = [(krL)* + Zppppk}L?] to sim-
plify the scaling analyses of the healing lengths at the
boson-fermion interface. We note that when comparing the
analyses of the healing lengths at the hard walls versus those
at the boson-fermion interface, the expressions of S,; for
a = b, f are consistent with those of S,,, because only one
species is present near each hard wall in two-chunk phase
separation but both species are present at the boson-fermion
interface.

We remark that in the expressions of the healing lengths,
P denotes the bulk density of the corresponding species
away from the interface or hard wall, and k(;. =nmNy/2L is
the noninteracting Fermi wave vector while k; = 7 p; is the
bulk Fermi wave vector of the fermions in the mixture. The
interface widths for both species from the simulation results
can be obtained from the density profiles by following the
same analyses as we did for the healing lengths at the hard
walls. Moreover, we have verified that taking different criteria
or using functional fits to the density profiles basically leads
to the same scaling behavior.

(a)

t a
—4.0 ot * " . L
,:4; — Eq.(18)
§—5.4- + Numerical
—6.81 \
11.5 12.5 13.5
In(Spi)
(b)
"
—4.0 * ., .
—_ ‘ *
E ., —— Eq.(19)
IS *  Numerical
-6.6 \
11.4 12.4 13.4

In(Sf,-)

FIG. 6. Healing lengths of (a) bosons and (b) fermions at the
interface of a 'Li-°Li mixture in a two-chunk structure from the
simulations and Eqgs. (18) and (19). Here N, = Ny = 50 in (a) and
(b).

Figure 6 shows that the healing lengths of the bosons
and fermions at the interface scale according to Egs. (18)
and (19), respectively, in the two-chunk regime shown in
Fig. 4. Since testing the scaling behavior requires a broad
range of parameters, the two-chunk regime is more appro-
priate because the three-chunk regime is narrow along the
8py direction. The agreement of the scaling behavior between
the simulations and analytical formulas of the healing lengths
verifies that the energy-competition argument works well with
binary boson-fermion mixtures in a 1D box. We remark that
more complicated analyses with constructions of piecewise
energy functionals [55-57] may lead to refinements of the
structures and interface widths, which will in turn determine
the prefactors of the healing lengths that cannot be explained
by the scaling analysis. Nevertheless, the simple scaling from
energy-competitions provides us the main physical meaning
for explaining future experiments on atomic boson-fermion
mixtures.

B. ¥Rb - ®Li: heavy bosons and light fermions
1. Phase diagrams and structures

For boson-fermion mixtures with prominent mass imbal-
ance, we first analyze mixtures of 87Rb and °Li. This system
also exhibits the miscible phase, three-chunk separation, and
two-chunk separation of the two species as the interspecies
interaction increases. Figure 7(a) shows the phase diagram
of ’Rb and °Li mixtures. Figures 7(b), 7(c) and 7(d) show
the representative density profiles of the miscible phase in
the weak interspecies interaction regime, three-chunk (sand-
wich) separation in the intermediate interaction regime, and
the two-chunk separation in the strong interaction regime,
respectively. Heavier mass lowers the kinetic energy due to
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FIG. 7. Phase diagram (a) and density profiles (b)—(d) of ¥ Rb-
SLi mixtures. Here N, = Ny = 50 and &, = 2 with §,; =2 (b),
8»r = 10 (c), and g, = 18 (d) with their locations labeled in (a).

distortion of the density profile in a phase-separation structure
because the mass appears in the denominator of the kinetic
energy. To minimize the kinetic energy due to the distortion
of the wave function in the three-chunk structure, the density
of the lighter species tends to stay away from the hard walls
while the heavier species tends to occupy the regions there
until the two-chunk structure becomes energetically more fa-
vorable than the three-chunk structure.

2. Interface properties of ¥ Rb - °Li mixture

The healing lengths of the bosons and fermions with larger
mass imbalance at the hard walls in a 1D box are found to

—4.54 * * .
b ®
—_ *
,@ 601 Eq.(18).
< *  Numerical
—-7.51 \
13.5 14.5 15.5
In(Sp;)
(b)
-3.8
* -— Eq.(19)
*o . *  Numerical
— 4
aL:F —-5.41 *
£
—-7.01 \
12.0 13.2 14.5
In(S7)

FIG. 8. Scaling behavior of the healing lengths of (a) bosons and
(b) fermions at the interface of a ’Rb - °Li mixture in the two-chunk
separation from the simulations and Egs. (18) and (19). Here N, =
Ny =50 in (a) and (b).

follow the same scaling as their counterparts in the ’Li-°Li
mixture. Hence, we do not repeat the analysis of &, at the
hard walls. For the interface between the two species, we
found that since the three-chunk structure exists in a narrow
parameter range, it is more challenging to analyze the scaling
behavior. Therefore, the interface properties of the mixtures
are discussed only for the two-chunk structure that extends
well into the strongly interacting regime.

For ¥’Rb - ®Li mixtures, we found that the healing lengths
of the bosons and fermions at their interface scale according
to Egs. (18) and (19), respectively. The scalings of the healing
lengths with interactions are shown in Fig. 8, which confirm
that the widths of the bosons and fermions at the interface
are determined by competitions between the kinetic energy
due to the distortion of the density and the interaction energy,
which includes the inter- and intraspecies interactions and
the effective (statistical) interaction of fermions. Furthermore,
the scaling analyses correctly capture the power-law depen-
dence of the healing lengths of the bosons and fermions at the
phase-separation interface and verify the energy-competition
argument.

C. "Li-%Rb: light bosons and heavy fermions
1. Phase diagram and structures

Here we consider a "Li-36Rb mixture as an example of
light bosons and heavy fermions. The phase diagram is shown
in Fig. 9(a) with a relatively large three-chunk regime when
the boson-boson interaction is weak. Interestingly, we could
not reach the regime in the few-body calculations to observe
two-chunk separation in 'Li-%Rb mixture due to the de-
manding computation, which implies that the parameter space
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FIG. 9. Phase diagram (a) and density profiles (b)—(d) of "Li-
8Rb boson-fermion mixtures. Here N, = Ny =50 and g, = 10
with g, =5 (b), &y = 20 (c), and g,y = 50 (d) with their locations
labeled in (a).

for the three-chunk structure is relatively large. This is indeed
the case from the many-body result.

For the three-chunk structure, the boson is now in the
center of the box because the kinetic energy is relatively
small for the heavy fermions, which tend to stay near the
hard walls and push the bosons away from the hard walls.
Meanwhile, the bosons rely on the boson-boson interaction
to build up pressure to push against the fermions. Hence, the
three-chunk structure remains more energetically favorable
than the two-chunk structure when g, is weak and the bosons
cannot repel the fermions at both hard walls. When g,¢ >> g,
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FIG. 10. Healing length of (a) bosons and (b) fermions at the
interface of a ’Li - Rb mixture in the two-chunk separation from
the simulations and Eqs. (18) and (19). Here N, = Ny = 50 in (a) and

(b).

however, the bosons are tightly compressed by the fermions
and eventually are pushed to one side of the box to form a
two-chunk structure with lower total energy.

2. Interface properties of 'Li - 3 Rb mixture

Since the density profiles of the "Li - ®*Rb mixture in
the two-chunk regime are similar to those of the 8’Rb - °Li
mixture, the analyses of the widths that reflect the healing
lengths at the phase-separation interface are also similar. We
again focus on the two-chunk regime due to its broad coverage
of the strong-interaction region on the phase diagram. The
scaling of the healing lengths with the interactions are shown
in Fig. 10. The same scaling analysis confirms the functional
dependence of the healing lengths of the bosons and fermions
described by Egs. (18) and (19) at the phase-separation in-
terface, showing the generality of the energy-competition
argument. We mention that the scaling analyses only reveal
the functional forms of the healing lengths, and the pre-factors
need to be determined from simulations or direct evaluations
of the energy functionals for the inhomogeneous systems.
Moreover, we have verified the scaling of the healing lengths
with more particle numbers or grid points, and the functional
forms remain the same because of the energy-competition
mechanism.

V. IMPLICATIONS

We verify the qualitative agreement between the few-body
exact calculation and mean-field treatment by comparing the
phase diagrams of ®Li - "Li mixtures in Fig. 11. To facilitate a
fair comparison, we use N, = 4 = N for the mean-field treat-
ment as well. As one can see in both diagrams, the miscible
phase starts to separate as g,s increases, with a three-chunk
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FIG. 11. Phase-diagrams of ’Li - °Li boson-fermion mixtures
from (a) few-body calculation and (b) mean-field treatment for N, =

regime in between the miscible phase and the two-chunk
regime. The two approaches indeed agree qualitatively despite
some subtle differences in the details.

To analyze the interface structures of atomic mixtures,
high-resolution imaging of cold-atom systems at the level
of single-atom sensitivity is desired. Microscopy techniques
inspired by the scanning electron microscopy have been suc-
cessfully used for detection of single atoms inside a quantum
gas in an optical lattice with a resolution better than 150 nm
[58] but with low accuracy of single-atom detection. The
invention of quantum gas microscopes, for example, allows
submicron resolution of the order of 0.5 um and near-unity
detection efficiency by fluorescence imaging in a pinning lat-
tice for ultracold atoms in optical potentials [59]. A review
of recent developments of quantum gas microscopes is given
in Ref. [46]. Super-resolution imaging based on nonlinear
response of atoms in an optical lattice to an optical pumping
is demonstrated with the capability of imaging the structure of
an atomic cloud with a resolution of 30 nm and a localization
precision of the pinning lattice below 500 pm [60]. Recently,

trapped few-body systems with experimentally relevant setups
have been analyzed by using the quantum point spread func-
tion [61], suggesting a resolution of (1/33)a; smaller than the
lattice spacing (a;) of the pinning lattice.

Those progresses will guide experimental efforts towards
high-resolution imaging in nonlattice systems as well. For a
typical 1D box potential of length L = 160 um [34], the res-
olution required to analyze the interface width of ~L/100 ~
1.6 um for studying the healing lengths is reasonably within
the experimental resolution limit. With the rapid develop-
ments of cold-atom microscopes capable of higher resolution
beyond lattice systems, the widths of different atomic species
at the interface will reveal interesting thermodynamic prop-
erties of interacting multispecies quantum systems via their
structures.

Furthermore, we remark that atomic mixtures like the "Li
- 3 Rb mixtures are promising to track down the elusive
signatures of the so-called Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, which has been predicted in two-component
fermionic mixtures with attraction and population imbal-
ance [62,63]. The conventional Cooper mechanism cannot
be fulfilled in the presence of high population imbalance,
and the Cooper pairs may possess nonvanishing net momen-
tum to maximize the pairing between the two components
of the fermions in the FFLO state. There have been ex-
perimental evidence suggesting the FFLO state in quasi-1D
two-component °Li gases with population imbalance [64].
Few-body calculations suggest the FFLO state may be en-
hanced by suitable confinement [65]. To directly observe
the FFLO state, one has to measure the two-body corre-
lations [52,66], which may be inferred in state-of-the-art
experiments.

However, standard experiments usually involve single-
particle measurements, for example, measurements of the
density. It has been shown [67] that the FFLO correlations
might be strongly enhanced by interactions with bosons. Since
three-chunk structures naturally occur due to interactions
in boson-fermion mixtures confined in 1D box potentials,
such settings provide a feasible route for enhancing and
probing the FFLO correlations. Nevertheless, the system for
observing the FFLO state will involve three components: one
species of bosons repelling both components of fermions,
and two-component fermions with population imbalance and
attractive interactions. Since the 'Li - 56Rb mixture has a
broad range of the three-chunk regime as shown in our anal-
ysis, strong correlations and the Pauli exclusion principle of
the fermions may make the system immune from a collapse
into a two-chunk structure when two internal states of the
fermions with attractive interactions are introduced, which
may provide a feasible setup for future studies of the FFLO
state.

VI. CONCLUSION

We have presented both few-body calculations and many-
body mean-field approximations of binary atomic boson-
fermion mixtures in 1D box potentials, showing different
structures as the parameters vary. The stable structures
are determined by competitions between the interaction
and kinetic energies, which are further complicated by the
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presence of the hard walls, mass imbalance, and boson-
fermion interface if the two species separate. While the
few-body results reveal the correlations among the bosons and
fermions, the many-body results allow a systematic extraction
of the healing lengths of the bosons and fermions. Moreover,
the scaling behavior of the healing lengths at the boson-
fermion interface in the phase-separation regime confirms
the energy-competition mechanism behind the structures of
binary atomic boson-fermion mixtures. With advancement in
trapping and manipulating atoms in box potentials, our results

may be verified in coming experiments and inspire future
research.
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