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Many-body Aharonov-Bohm caging in a lattice of rings
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We study a system of a few ultracold bosons loaded into states with orbital angular momentum l = 1 of a one-
dimensional staggered lattice of rings. Local eigenstates with winding numbers +l and −l form a Creutz ladder
with a real dimension and a synthetic one. States with opposite winding numbers in adjacent rings are coupled
through complex tunnelings, which can be tuned by modifying the central angle φ of the lattice. We analyze
both the single-particle case and the few boson bound-state subspaces for the regime of strong interactions using
perturbation theory, showing how the geometry of the system can be engineered to produce an effective π flux
through the plaquettes. We find nontrivial topological band structures and many-body Aharonov-Bohm caging
in the N-particle subspaces even in the presence of a dispersive single-particle spectrum. Additionally, we study
the family of models where the angle φ is introduced at an arbitrary lattice periodicity �. For � > 2, the π

flux becomes nonuniform, which enlarges the spatial extent of the Aharonov-Bohm caging as the number of flat
bands in the spectrum increases. All the analytical results are benchmarked through exact diagonalization.

DOI: 10.1103/PhysRevA.107.023305

I. INTRODUCTION

Neutral particles can emulate the dynamics of electrons in
the presence of magnetic fields through the engineering of ar-
tificial gauge fields [1,2]. In the well-known Aharonov-Bohm
effect [3,4], a charged particle performing a closed loop on
a region with a nonzero electromagnetic potential acquires
not only a dynamical phase but also an additional phase
known as the Aharonov-Bohm phase. For particular periodic
lattice geometries, single-particle wave functions undergo a
sharp localization due to destructive interference known as
Aharonov-Bohm caging [5,6]. This effect arises in systems
such as the T3 model [5,7,8] or the diamond chain [6] and
it has been observed in several experimental platforms such
as networks of conducting wires [9,10], ultracold atoms [11],
and photonic lattices [12–14].

Of particular interest is the role that interactions play in
a system with single-particle Aharonov-Bohm caging, which
has been explored in different regimes [6,15–18]. The addition
of interactions lifts the degeneracy of the single-particle flat
bands, providing a mechanism for particles to avoid caging
[6,15,17]. However, in the regime of strong interactions,
Aharonov-Bohm caging of two particles can be recovered for
appropriately tuned magnetic fluxes through the formation of
bound states [17].

Here we study a one-dimensional lattice of ring potentials
populated by orbital angular momentum (OAM) modes with
l = 1 and winding numbers ν = ±l . Such states give rise to
complex couplings that can be engineered by modifying the
geometry of the lattice [18–23]. Thus, it is a system where
synthetic fluxes arise naturally. Ring trapping potentials can
be created experimentally using a variety of techniques (see
[24] and references therein) and OAM can be transferred by
rotating a weak link [25,26], by coherent transfer of angular

momentum from photons to the atoms [27,28], or by doing
a temperature quench [29]. Alternatively, such a model can
be realized by exciting atoms to the p band in a conventional
optical lattice [30–33]. The local eigenstates with winding
number ν = ±l provide the system with a synthetic dimen-
sion such that it can be mapped to a Creutz ladder model with
a flux threading each plaquette. For this family of models,
interaction-induced effects have been studied for repulsive
[34–37] and attractive [38,39] on-site interactions and for
nearest-neighbor interactions [40–42]. In particular, two-body
Aharonov-Bohm caging was explored in [37], where a pho-
tonic lattice implementation was proposed. Here we explore
the N-boson case and further generalize the study to the
case of nonuniform fluxes, which are known to enrich the
Aharonov-Bohm caging phenomenology in single-particle di-
amond lattices [43].

The article is organized as follows. We introduce the sys-
tem in Sec. II and analyze the single-particle case in Sec. III.
For the case in which a π flux threads each plaquette, we
analyze the topology of the system and study the Aharonov-
Bohm caging effect in terms of the compact localized states
that compose the flat-band spectrum. In Sec. IV we generalize
this study to the case of N particles by introducing on-site
repulsive interactions and studying the regime of strong in-
teractions using perturbation theory. In Sec. V we generalize
the study to the case of nonuniform fluxes and in Sec. VI we
summarize our conclusions.

II. PHYSICAL SYSTEM

We consider a few bosons loaded into a one-dimensional
lattice where the adjacent sites are equally separated by a
distance d . Each unit cell k is composed of two sites Ak and Bk ,
and we make the lattice staggered by introducing an angle φ
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FIG. 1. Diagram of the one-dimensional staggered chain where
the adjacent sites A and B are separated by a distance d . The unit cell
is marked by a rectangle and the gray line indicates the origin of the
phase ϕ0. The black arrows denote real tunneling amplitudes, while
the blue ones indicate complex tunneling amplitudes between states
of different winding number.

as depicted in Fig. 1. Given the local polar coordinates of each
site, (ρ jk , ϕ jk ) with j = A, B, the local trapping potential is a
ring potential of the form V (ρ jk ) = 1

2 Mω2(ρ jk − ρ0)2, where
ω is the frequency of the radial potential, M is the mass of
the particles, and ρ0 is the radius. For ρ0 = 0, the ring trap
reduces to a harmonic potential. We consider identical local
potentials at each site.

The eigenstates of each isolated ring have a well-defined
OAM l . Each value of l corresponds to two degenerate
eigenstates with winding numbers ν = ±l (with the excep-
tion of l = 0, which corresponds to a single nondegenerate
eigenstate). Therefore, they are eigenstates of the operator
L̂z = −ih̄ ∂

∂ϕ
with eigenvalue h̄ν. We will denote the local

eigenstates by | jνk 〉, where k is the unit cell index, j = A, B
is the site, and ν is the winding number. These sets of local
eigenstates with different OAM l are well separated in energy,
which makes them effectively decoupled in a lattice structure
[19,20]. Then the total field operator for the states with OAM
l in the lattice reads


̂l =
Nc∑

k=1

∑
ν=±l

φν
Ak

(ρAk , ϕAk )âν
k + φν

Bk
(ρBk , ϕBk )b̂ν

k, (1)

where Nc is the number of unit cells and âν
k and b̂ν

k are the
annihilation operators of the local eigenstates |Aν

k 〉 and |Bν
k 〉,

respectively. The wave functions of each state | jνk 〉 are given
by

φν
jk (ρ jk , ϕ jk ) = 〈r| jνk 〉 = ψ (ρ jk )eiν(ϕ jk −ϕ0 ), (2)

where ψ (ρ jk ) is the radial part of the wave function and
eiν(ϕ jk −ϕ0 ) is the complex phase due to the nonzero OAM, with
ϕ0 indicating the origin of the phase.

Consider now a single unit cell, i.e., two rings side by
side ( j = A, B). The single-particle Hamiltonian restricted to
a fixed value of OAM reads

Ĥ0
l =

∫
d2r 
̂

†
l

(
− h̄2∇2

2M
+ V (r)

)

̂l , (3)

where the total potential V (r) is the sum of the truncated
potentials of each site. The tunneling amplitudes between the
states | jνk 〉 with OAM l are given by the overlap integrals of
the corresponding wave functions φν

j (ρ j, ϕ j ) [19],

Jν,ν ′
j, j′ = ei(ν−ν ′ )ϕ0

∫
[φν

j (ϕ0 = 0)]∗Ĥ0
l φ

ν ′
j′ (ϕ0 = 0)d2r, (4)

where j, j′ = A, B identify the sites and ν, ν ′ = ±l the wind-
ing numbers. Also, we have factorized and rewritten the wave

FIG. 2. Schematic representation of the sites and couplings of
the lattice formed by a real dimension and the synthetic dimension
spanned by the two circulations ± in each site Ak and Bk . The unit cell
is indicated as a dotted rectangle and the complex couplings are eiθJ
from circulation + to − and its complex conjugate in the opposite
direction.

functions as φν
j = e−iνϕ0φν

j (ϕ0 = 0). These couplings were
thoroughly analyzed in [19] by studying the mirror symme-
tries of the system. The authors found that there are only three
distinct couplings: J1 ≡ Jν,−ν

j, j couples the opposite winding
number OAM modes within a single ring, J2 ≡ Jν,ν

A,B couples
the same winding number modes in adjacent rings, and J3 ≡
Jν,−ν

A,B couples opposite winding number modes in adjacent
rings. The complex factor in each coupling (4) is determined
by the origin of the phase ϕ0 through the factor ei(ν−ν ′ )ϕ0 . For
two inline rings, ϕ0 can always be chosen so that the complex
factor vanishes. We choose the origin of the phase along the
Ak and Bk sites of the same unit cell (see Fig. 1) such that
the corresponding couplings are real. The intercell couplings
between the sites Bk and Ak+1 form an angle φ with respect to
the origin of the phase such that the corresponding couplings
J3 and J1 acquire a complex phase e±i2lφ . Therefore, one can
tune the complex phase of these couplings by modifying the
geometry of the staggered chain, i.e., the angle φ (see Fig. 1).

The couplings in a two-ring system for l = 1 were studied
in [20]: The authors found that the magnitudes of the cou-
plings decay with the separation distance d between the two
rings while the difference between |J3| and |J2| also decreases
with d [20]. Additionally, |J1| is one order of magnitude
smaller than |J2| and |J3| for all distances. In this work we
focus on the regime of large distances, defining |J2| = |J3| ≡
J , and we neglect the J1 coupling. Also, we study the states
with OAM l = 1 and winding numbers ν = ±1 and consider
an integer number of unit cells. Henceforth, we will replace
the winding number with the label of the circulation α = ±.
Given the above assumptions and using harmonic-oscillator
units, the single-particle Hamiltonian of this system reads

Ĥ0
l=1 = J

∑
α=±

[
Nc∑

k=1

(
âα†

k b̂α
k + âα†

k b̂−α
k

)

+
Nc−1∑
k=1

(
b̂α†

k âα
k+1 + e−2αiφ b̂α†

k â−α
k+1

) + H.c.

]
. (5)

By representing the two circulations + and − as separate sites,
one can depict this system as the Creutz ladder with vanishing
vertical couplings shown in Fig. 2. The two circulations α =
± act as a synthetic dimension that constitutes the two legs of
the ladder. Henceforward, we use | jαk , n〉 to denote the number
of particles n in the local state | jαk 〉. In the following section,
where we discuss the single-particle case, n will always be
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FIG. 3. Schematic representation of the lattice with a π flux
in each plaquette, for which the cross-circulation couplings reduce
to −J (blue dashed lines). The different diagrams highlight the
plaquette configurations that enclose a π flux: rhombi and triangles
with two configurations each.

n = 1. For this case, the states in each site are |Aα
k , 1〉 and

|Bα
k , 1〉, the couplings are J = J , and θ = 2φ.

III. SINGLE PARTICLE

In this section we analyze in detail the single-particle case,
which will be the basis to understand the generalization to
N particles that we explore in Sec. IV. As we have seen, the
complex factor e±2iφ that appears in the J3 couplings can be
tuned by modifying the real-space angle φ of the staggered
chain (see Fig. 1). We are interested in the case φ = π/2,
for which the J3 intercell couplings become J3 = −J2 = −J ,
thus generating a synthetic π flux in each plaquette. Note that
the couplings in the staggered chain can form either rhombus
or triangle plaquettes with two configurations each, such that
every one of them contains a π flux (see Fig. 3). As a result,
a particle cannot tunnel two sites to the right or to the left due
to destructive interference. This destructive interference that
leads to localization due to the presence of a flux is known as
Aharonov-Bohm caging [5,6]. For φ = π/2, the Hamiltonian
in Eq. (5) reduces to

Ĥ0
l=1 = J

∑
α=±

[
Nc∑

k=1

(
âα†

k b̂α
k + âα†

k b̂−α
k

)

+
Nc−1∑
k=1

(
b̂α†

k âα
k+1 − b̂α†

k â−α
k+1

) + H.c.

]
. (6)

A topological characterization of this system can be obtained
by analyzing the block-diagonalized Hamiltonian. We intro-
duce the basis change (with n = 1)∣∣As(a)

k , n
〉 = 1√

2
(|A+

k , n〉 +
(−) |A−

k , n〉),

∣∣Bs(a)
k , n

〉 = 1√
2

(|B+
k , n〉 +

(−) |B−
k , n〉), (7)

which decouples the system into the two Hamiltonians

Ĥs = 2J
Nc∑

k=1

âs†
k b̂s

k + H.c.,

Ĥa = 2J
Nc−1∑
k=1

âa†
k+1b̂a

k + H.c., (8)

FIG. 4. Decoupled symmetric and antisymmetric SSH chains
with alternating couplings 2J and 0 for (a) an integer number of
unit cells and (b) a noninteger number of unit cells. The unit cell of
each chain is indicated by the dotted rectangles and the edge states
are indicated in red.

where âs(a)
k and b̂s(a)

k are the annihilation operators of the states
in Eq. (7). The Hamiltonians Ĥa and Ĥs correspond to two
Su-Schrieffer-Heeger (SSH) chains in the dimerized limit, i.e.,
linear chains with alternating couplings where either the inter
or the intracell coupling is zero (see Fig. 4 with n = 1 and
J = J). The two models have the same couplings 2J and 0 in
opposite configurations.

We consider an integer number of unit cells and that the
first site of the chain is a site A (and thus the last a site B) such
that the edge couplings are real [see Fig. 4(a)]. In that case, the
symmetric SSH chain Ĥs is in the trivial phase, characterized
by a quantized Zak phase γ = 0, and the antisymmetric chain
Ĥa is in the topological phase, with a quantized Zak phase
γ = π . If we instead consider a lattice starting with a B site,
the symmetric chain would be the one in the topological
phase. Thus, for an integer number of unit cells, the two
edge states come from the same SSH chain. For a noninteger
number of unit cells, the Creutz ladder also presents two edge
states [see Fig. 4(b)]. However, in this case each edge state
comes from a different chain, as SSH models with an odd
number of sites exhibit a single edge state [44].

In Fig. 5(a) we represent the energy spectrum of a chain
with Nc = 12 unit cells and φ = π/2 obtained through exact
diagonalization. We obtain two flat bands and two zero-energy
edge states that correspond to the superposition of the energy
spectra of Ĥs and Ĥa, in Eq. (8). The edge states are eigen-
states of the antisymmetric chain and are completely localized
at the edge sites (with n = 1),∣∣Aa

1, n
〉
edge

= 1√
2

(|A+
1 , n〉 − |A−

1 , n〉),

∣∣Ba
Nc

, n
〉
edge = 1√

2
(|B+

Nc
, n〉 − |B−

Nc
, n〉). (9)

A. Single-particle Aharonov-Bohm caging

In this section we explore single-particle Aharonov-Bohm
caging. The flat bands that appear in the spectrum when a π

flux threads each plaquette [see Fig. 5(a)] are characterized
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FIG. 5. (a) Single-particle energy spectrum for Nc = 12 unit cells
and φ = π/2. (b) Representation of the CLSs defined in Eq. (11) that
are eigenstates of the Creutz ladder (see Fig. 2) when a π flux threads
each plaquette. The radius of each circle represents the amplitude and
the color represents the phase, with red being a π phase and green
being a phase zero.

by the presence of compact localized states (CLSs). These
eigenstates have high real-space localization: Their amplitude
is nonzero in a few close-by sites while being exactly zero
everywhere else. The smallest possible basis for the CLSs in
this model spans the states of one unit cell and an extra site
(where n = 1),

{|A+
k , n〉, |A−

k , n〉, |B+
k , n〉, |B−

k , n〉, |A+
k+1, n〉, |A−

k+1, n〉}.
(10)

The CLSs are found to be [see Fig. 5(b)]∣∣ϒ1
k , n

〉 = 1
2 (|B+

k , n〉 + |B−
k , n〉 − |A+

k , n〉 − |A−
k , n〉),∣∣ϒ2

k , n
〉 = 1

2 (|B+
k , n〉 − |B−

k , n〉 − |A+
k+1〉 + |A−

k+1, n〉),∣∣ϒ3
k , n

〉 = 1
2 (|B+

k , n〉 + |B−
k , n〉 + |A+

k , n〉 + |A−
k , n〉),∣∣ϒ4

k , n
〉 = 1

2 (|B+
k , n〉 − |B−

k , n〉 + |A+
k+1, n〉 − |A−

k+1, n〉)

(11)

and their corresponding energies are E1 = E2 = −2J and
E3 = E4 = 2J (where J = J in the single-particle case).
Any initial state that can be written as a superposition of these
states will remain localized in the caging cell defined in (10).
We note that the π -flux case of this system exactly maps to the
usual π -flux Creutz ladder with complex horizontal couplings
[37] through a gauge transformation. In such models, the unit
cell is composed of only two sites and presents two CLSs. One
CLS corresponds to our two CLSs with energies E1 = E2 =
−2J and the other to the two CLSs with E3 = E4 = 2J .
For an arbitrary flux, the adjacent triangle plaquettes contain
fluxes 2φ and −2φ such that the model does not map to a
Creutz ladder with only two sites per unit cell.

We consider an initial state where only a single site
Ak in the bulk of the chain is populated. Figure 6(a)
shows the time evolution of the population of each lo-
cal eigenstate P| jαk ,1〉 (with j = A, B) for the initial state

(|A+
k , 1〉 + |A−

k , 1〉)/
√

2, which corresponds to the super-
position (|ϒ3

k , 1〉 − |ϒ1
k , 1〉)/

√
2. The population coherently

oscillates between the sites Ak and Bk without populat-
ing any other sites due to destructive interference at Bk−1

and Ak+1. Thus, the total caged population Pcag = P|A+
k ,1〉 +

FIG. 6. Time evolution of the population of the states | jαk , 1〉
with j = A, B and total caged population, obtained through exact
diagonalization for J = 1, Nc = 12 unit cells, and φ = π/2. The red
solid line is the total caged population Pcag; the black dashed line
is the population in the states |Aα

4 , 1〉, with α = ±; and the dotted
blue line is the population in the states (a) |Bα

4 , 1〉 and (b) |Bα
3 , 1〉

and |Bα
4 , 1〉. The initial states are (a) (|A+

4 , 1〉 + |A−
4 , 1〉)/

√
2 and

(b) |A+
4 , 1〉.

P|A−
k ,1〉 + P|B+

k ,1〉 + P|B−
k ,1〉 stays at Pcag = 1 throughout the time

evolution. Additionally, the two circulations within each
site maintain the same population at all times: P|A+

k ,1〉 =
P|A−

k ,1〉 and P|B+
k ,1〉 = P|B−

k ,1〉. For the initial state (|A+
k , 1〉 −

|A−
k , 1〉)/

√
2 = (|ϒ4

k , 1〉 − |ϒ2
k , 1〉)/

√
2, one obtains identical

dynamics but the exchange in population takes place between
the sites Ak and Bk−1, as the sign of the superposition shifts
the destructive interference to the sites Bk and Ak−1. Fig-
ure 6(b) shows the time evolution for the initial state |A+

k , 1〉 =
(−|ϒ1

k , 1〉 + |ϒ3
k , 1〉 − |ϒ2

k−1, 1〉 + |ϒ4
k−1, 1〉)/2. As this ini-

tial state cannot be written as a superposition of CLSs of a
single caging cell, the population reaches both sites Bk and
Bk−1. The total caged population, which in this case also
stays constant, is Pcag = P|A+

k ,1〉 + P|A−
k ,1〉 + P|B+

k ,1〉 + P|B−
k ,1〉 +

P|B+
k−1,1〉 + P|B−

k−1,1〉. Also, we simulate a chain with Nc = 12
unit cells and choose the unit cell k = 4 for the initial state.
The caging dynamics in Fig. 6 can also be understood in terms
of the decoupled dimers of the SSH chains. For the symmetric
and antisymmetric initial states, in Eq. (7), the population
remains trapped in the corresponding dimer of the symmetric
Ĥs or the antisymmetric Ĥa chain (see Fig. 4). In contrast,
the initial state |A+

k , 1〉 populates both the symmetric and
antisymmetric SSH chains such that the population reaches
both dimers and as a consequence reaches a broader spatial
extent.

IV. N PARTICLES

In this section we explore the many-body dynamics of the
system for N bosons with repulsive interactions. For an ultra-
cold and dilute gas of atoms, two-body collisions dominate
and the interaction Hamiltonian for a lattice of rings restricted
to a single OAM manifold can be written as

Ĥint
l = g

2

∫
d2r 
̂

†
l 
̂

†
l 
̂l
̂l , (12)

where g is proportional to the s-wave scattering length and
fulfills g > 0. Introducing the expression of the bosonic field
operator (1) and considering only on-site interactions, the
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interaction Hamiltonian for l = 1 becomes

Ĥint
l=1 = U

2

∑
j=A,B

Nc∑
k=1

[n̂+
jk

(n̂+
jk

− 1) + n̂−
jk

(n̂−
jk
−1)+4n̂+

jk
n̂−

jk
],

(13)
where n̂α

jk
= ĵα†

k ĵαk is the number operator and the interac-
tion strength is defined as U ≡ g

∫
d2r|ψ (ρ jk )|4 [20]. Besides

the common Bose-Hubbard interaction terms for each of the
circulations, α = ±, a cross-circulation term appears. Thus,
this realization of a Creutz ladder yields a nearest-neighbor
interaction term along the rungs of the ladder, which was also
considered in [41].

Henceforward, we will analyze the regime of strong in-
teractions, in which the interaction term dominates over the
tunneling term, U 	 J . We are interested in the bound states
where the N bosons occupy a single site of the lattice,
{| jαk , n〉 ⊗ | j−α

k , m〉}, where there are n particles in one circula-
tion and m particles in the other circulation (with n + m = N).
In the regime of strong interactions, the kinetic Hamiltonian
Ĥ0

l=1 [Eq. (5)] is introduced as a perturbation that couples the
bound states {| jαk , n〉 ⊗ | j−α

k , m〉} in adjacent sites. This effect
creates subspaces that are well separated in energy and thus
effectively uncoupled. We will analyze in detail the two- and
three-particle cases as an example in the following sections.
The matrix elements of the effective Hamiltonian of each
subspace up to third order are given by [45,46]

〈d|Ĥeff |d ′〉 = E0
d δdd ′ + 1

2

∑
w

〈
d
∣∣Ĥ0

l=1

∣∣w〉〈
w

∣∣Ĥ0
l=1

∣∣d ′〉

×
[

1

E0
d − E0

w

+ 1

E0
d ′ − E0

w

]

+ 1

2

∑
ww′

〈
d
∣∣Ĥ0

l=1

∣∣w〉〈
w

∣∣Ĥ0
l=1

∣∣w′〉〈w′∣∣Ĥ0
l=1

∣∣d ′〉

×
[

1(
E0

d − E0
w

)(
E0

d − E0
w′

)
+ 1(

E0
d ′ − E0

w

)(
E0

d ′ − E0
w′

)
]
, (14)

where |d〉 and |d ′〉 are the bound states, |w〉 and |w′〉 are
the mediating states in each hopping process, and E0 are the
unperturbed energies. Note that the first-order corrections are
always zero. For |d〉 �= |d ′〉, one obtains an effective tunneling
term, while for |d〉 = |d ′〉, one obtains an effective on-site
potential. While Eq. (14) provides a good description up to
N = 3, for N > 3, one would need to compute the higher-
order terms of the perturbative expansion.

A. Two and three particles

For the two- and three-particle cases, there are only two
subspaces available that arise from the following bound-state
classes.

(i) A. Here N particles occupy the same site and the same
circulation | jαk , N〉. These are the bound states that minimize
the interaction energy, which is EA = N (N − 1)U/2.

(ii) B. These bound states maximize the interaction en-
ergy and take the following two forms: (a) for N even,

TABLE I. Summary of parameters that characterize the single-
particle case and the two- and three-particle effective subspaces that
exhibit Aharonov-Bohm caging. The following are the parameters
of the Creutz ladder defined in Fig. 2: couplings J , angle θ , and
real-space angle φ that induces a π flux. Also listed are the effective
on-site potential up to second-order corrections at the edge sites VE

and the bulk sites VB and the edge correction potential V .

Parameter Single particle A2 A3 B3

J J 2J2/U 3J3/2U 2 121J3/72U 2

θ 2φ 4φ 6φ 2φ

φ π/2 π/4 π/2, π/6 π/2
VE 4J2/U 3J2/U 11J2/6U
VB 8J2/U 6J2/U 11J2/3U
V 2J2/U J2/U

N/2 particles in each circulation, {| j+k , N/2〉 ⊗ | j−k , N/2〉},
with energy EB,even = (3N2/2 − N )U/2, and (b) for N odd,
(N − 1)/2 particles in one circulation and (N − 1)/2 +
1 in the other {| j+k , (N − 1)/2〉 ⊗ | j−k , (N − 1)/2 + 1〉} or
{| j+k , (N − 1)/2 + 1〉 ⊗ | j−k , (N − 1)/2〉}, with a slightly
lower energy EB,odd = (3N2/2 − N − 1/2)U/2.

1. A subspace

We introduce the coupling J as a perturbation, i.e., U 	
J , such that the states of the A subspace in adjacent sites
become coupled. The states for the two-particle case, e.g.,
|Aα

k , 2〉 and |Bα′
k , 2〉, become coupled through second-order

hopping processes, while the states in the three-particle case,
e.g., |Aα

k , 3〉 and |Bα′
k , 3〉, become coupled through third-order

hopping processes. Additionally, each state is coupled to itself
also through second-order hoppings such that an effective on-
site potential arises. Note that for both cases, the third-order
contribution to the effective on-site potential is zero. Also, the
on-site potential has different magnitudes for the bulk VB and
the edge VE since the number of available mediating states for
the bulk states is twice the number of the ones available for
the states localized at the edge sites [47–49]. Using Eq. (14)
up to second order for the two-particle case and up to third
order for the three-particle case, the resulting effective chains
become a Creutz ladder, depicted in Fig. 2 with n = 2 or 3.
The parameters that characterize the two- and three-particle
effective models as well as those of the single-particle case
are given in Table I.

The intercell cross couplings between the A subspace
states with opposite circulations contain a complex factor
e±iθ [where θ takes different values for each subspace (see
Table I)]. Then, for two (three) particles and the real-space
angle φ = π/4 (φ = π/2 or π/6) (see Fig. 1), the complex
factor becomes a π phase and the effective chain acquires a π

flux in each plaquette of the Creutz ladder (see Fig. 3). Due
to the similarities between the single-particle model and the
effective A subspace, we can apply the basis change employed
for the single-particle case, taking n = 2 or 3 in Eq. (7). As
expected, one obtains two dimerized SSH-like decoupled sys-
tems with renormalized couplings (Fig. 4 with n = 2 or 3 and
J = 2J2/U or 3J3/2U 2), with additional on-site potentials
inherited from the Creutz ladder, VB and VE .
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(ai) (aii)

(bi) (bii)

FIG. 7. Energy spectrum of the A subspace for (a) two (φ =
π/4) and (b) three (φ = π/2) particles, U/J = 50, and Nc = 12 unit
cells with or without an on-site potential correction V at the edge
sites: (ai) and (bi) V = 0, (aii) V = 2J2/U , and (bii) V = J2/U . We
depict bulk states with black circles, Tamm-Shockley states with blue
rhombi, topologically protected edge states with red triangles, and
states slightly below the bulk bands with green crosses.

Figure 7 shows the energy spectrum of the A subspace for
two particles [Fig. 7(ai)] and three particles [Fig. 7(bi)] for
U/J = 50 and Nc = 12 unit cells. We choose the angle φ that
induces a π flux in each effective Hamiltonian φ = π/4 and
π/2, respectively. In contrast with a regular SSH model, the
effective chains are not chirally symmetric due to the presence
of the bulk-edge on-site potential mismatch. Therefore, the
four eigenstates that fall outside the bulk bands (blue rhombi)
are nontopological Tamm-Shockley edge states, i.e., states
induced by interactions that are localized at the edge sites
due to the bulk-edge on-site potential mismatch [47,48,50,51].
One can recover chiral symmetry in the effective model by
introducing an on-site potential V at the edge sites of the
real-space chain that exactly compensates for the potential
mismatch [47]. Figures 7(aii) and 7(bii) show the two- and
three-particle spectra of the A subspace when we introduce
the on-site potential correction at the edge sites V = 2J2/U
and J2/U , respectively. In this case, we recover the spectrum
of an SSH model with two symmetry-protected edge states
(red triangles).

There are some differences between the two- and three-
particles cases. For three particles, the processes that induce
the bulk-edge on-site potential mismatch are one order of
magnitude higher than the ones that generate the bulk bands.
Thus, the bulk-edge mismatch effectively uncouples the edge
sites from the rest of the lattice, which retains chiral symme-
try. Given that the symmetric and antisymmetric SSH chains
are in opposite topological phases, removing the edge sites
from the lattice exchanges the topological phase between the
two chains. Therefore, the spectrum in Fig. 7(bi) presents
not only the four Tamm-Shockley edge states (blue rhombi),
well separated energetically from the bulk bands, but also two
topologically protected edge states (red triangles). When we
introduce the potential correction V = J2/U in Fig. 7(bii), we
exchange the topological phases of the symmetric and anti-

FIG. 8. (a) and (b) Time evolution of the population of the
states | jαk , 2〉 with j = A, B and total caged population, obtained
through exact diagonalization for U/J = 50, Nc = 12 unit cells, and
φ = π/4. The red solid line is the total caged population Pcag; the
black dashed line is the population in the states |Aα

4 , 2〉, with α = ±;
and the blue dotted line is the population in the states (a) |Bα

4 , 2〉
and (b) |Bα

3 , 2〉 and |Bα
4 , 2〉. The initial states are (a) (|A+

4 , 2〉 +
|A−

4 , 2〉)/
√

2 and (b) |A+
4 , 2〉. (c) Caged population Pcag after a time

3JTN for the A subspace with N = 2 and 3 as a function of the ratio
U/J . Here JTN is the period of the oscillations for U/J = 100, for the
two- and three-particle cases and taking φ from Table I. The number
of unit cells is Nc = 10 for N = 2 and Nc = 6 for N = 3.

symmetric chains. The Tamm-Shockley states are absorbed by
the bulk and two topologically protected edge states remain.
We can also observe two states in each band (green crosses)
with slightly lower energies than the others due to fourth-order
corrections to the on-site potential. These corrections are not
observable in the two-particle case [see Fig. 7(aii)], as the
fourth-order corrections are two orders of magnitude smaller
than the couplings that generate the bulk bands.

Following the analogy with the single-particle case, the
eigenstates of the flat-band spectra obtained for two and three
particles are the CLSs in Eq. (11) taking n = 2 or 3, with
energies ±2J . Figure 8 shows the time evolution of the
population of the two-particle bound states of the A subspace
for different initial states. In particular, we consider the initial
states analogous to the ones used in the single-particle case:
in Fig. 8(a), (|A+

k , 2〉 + |A−
k , 2〉)/

√
2, and in Fig. 8(b), |A+

k , 2〉.
One can see that the dynamical evolution is identical to the
one observed for a single particle (see Fig. 6). In this case, the
dynamics correspond to two-particle Aharonov-Bohm caging
and they take place over a much longer timescale. This is
because the couplings of the effective Creutz ladder are a
second-order effect and thus much smaller in magnitude than
the ones in the single-particle case (see Table I). We de-
fine the total caged population as the sum of the population
in a series of states: (a) Pcag = P|A+

k ,2〉 + P|A−
k ,2〉 + P|B+

k ,2〉 +
P|B−

k ,2〉 and (b) Pcag = P|A+
k ,2〉 + P|A−

k ,2〉 + P|B+
k ,2〉 + P|B−

k ,2〉 +
P|B+

k−1,2〉 + P|B−
k−1,2〉. The total caged population reveals slight

population losses that are due to higher-order corrections to
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the effective model that make the flat bands in Fig. 7 slightly
dispersive.

For three particles and the analogous initial states
(|A+

k , 3〉 + |A−
k , 3〉)/

√
2 and |A+

k , 3〉, we obtain identical
(albeit slower) dynamics that correspond to three-particle
Aharonov-Bohm caging. The periods of the oscillations for
the different numbers of particles and U/J = 50 are JTN=1 =
1.55, JTN=2 = 39.5, and JTN=3 = 2600.

To further compare the two- and three-particle Aharonov-
Bohm caging, we consider an initial state in the A subspace
(|B+

k , n〉 + |B−
k , n〉)/

√
2 (with n = 2 or n = 3), located at the

middle of the lattice, and we let it evolve through time.
The caged population for this initial state is Pcag = P|A+

k ,n〉 +
P|A−

k ,n〉 + P|B+
k ,n〉 + P|B−

k ,n〉. Figure 8(c) shows the caged pop-
ulation after a time 3JTN , where JTN is the period of the
oscillations for U/J = 100, as a function of the ratio U/J
for the two- and three-particle cases. The caged population
rapidly increases for U > J , reaching a value close to 1 as the
system enters the regime of strong interactions. The growth
of the caged population is faster for the three-particle sub-
space compared to the two-particle case and it saturates at a
smaller value of U/J . This can be understood by inspecting
the higher-order terms of the perturbative expansion. As the
ratio U/J decreases, higher-order terms of the perturbative
expansion have to be taken into account. For two particles
(and also for any subspace with an even number of particles),
the odd-order perturbative corrections are always zero. Then
the next perturbative correction is fourth order and it leads
to effective on-site potentials, nearest-neighbor hoppings, and
also next-nearest-neighbor hoppings that destroy the CLSs.
In contrast, the fourth-order correction to the three-particle
case only induces an effective on-site potential and the fifth
order induces nearest-neighbor hopping terms that maintain
the Creutz ladder structure that exhibits flat bands. It is not
until the sixth-order correction that the next-nearest-neighbor
hoppings appear, making the CLSs disappear. Thus, the three-
particle subspaces are more resilient to deviations from the
regime of strong interactions than the two-particle A sub-
space.

2. B subspace

The bound states of the B subspace for the two-particles
case have one particle in each circulation, | j+k , 1〉 ⊗ | j−k , 1〉.
When we consider the couplings between states in adjacent
sites, e.g., between |A+

k , 1〉 ⊗ |A−
k , 1〉 and |B+

k , 1〉 ⊗ |B−
k , 1〉,

there is no complex factor, as any hopping process between
opposite circulations will necessarily be followed by a hop-
ping process with the opposite phase factor. This results in
an effective linear chain with uniform couplings 2J2/U and
on-site potentials VB = 4J2/U at the bulk and VE = 2J2/U
at the edges. Therefore, the two-particle B subspace has a
dispersive spectrum for any φ [see Fig. 9(a)] and therefore
cannot exhibit Aharonov-Bohm caging.

The three-particle B subspace arises from bound states
of the form | jαk , 2〉 ⊗ | j−α

k , 1〉. In analogy with the A sub-
space cases, the B effective subspace is a Creutz ladder with
a bulk-edge on-site potential mismatch that can be mapped
to two decoupled SSH-like chains with the same on-site
potential mismatch (see Table I). Figure 9(b) shows the energy

FIG. 9. Energy spectrum of the B subspace for (a) two (φ =
π/4) and (b) three (φ = π/2) particles, U/J = 50, and Nc = 12 unit
cells. We depict bulk states with black circles, Tamm-Shockley states
with blue rhombi, and topologically protected edge states with red
triangles.

spectrum for the three-particle B subspace for U/J = 50,
Nc = 12 unit cells, and φ = π/2. However, in this case there
is an extra ingredient: The two bound states in the same
site, | jαk , 2〉 ⊗ | j−α

k , 1〉 and | jαk , 1〉 ⊗ | j−α
k , 2〉, are also coupled

through second-order processes that generate a complex ver-
tical coupling in the effective Creutz model. For the angle
φ that induces a π flux φ = π/2, the complex couplings of
each mediating process cancel with the symmetric mediating
process (i.e., inverting the direction of the hopping processes
from right to left). This compensation does not occur on the
edge sites, which results in an energy mismatch between the
Tamm-Shockley states (blue rhombi) of the two edges. In
analogy with the three-particle A subspace [see Fig. 7(bi)],
there are two topologically protected edge states (red trian-
gles) besides the Tamm-Shockley states.

B. N-particle generalization

From the above cases, one can deduce a recipe to obtain
Aharonov-Bohm caging in any N-particle subspace by look-
ing at the N-particle tunneling processes involving complex
tunnelings, i.e., the cross-circulation couplings J3. We define
an arbitrary bound state {| jαk , n〉 ⊗ | j−α

k , m〉} with n particles
in one circulation and m particles in the other circulation such
that n + m = N . Note that similar bosonic bound states have
been studied in transmon arrays [52]. In the regime of strong
interactions, Aharonov-Bohm caging can exist in the subspace
generated by these bound states if all the N-particle hopping
processes involving a complex phase acquire the same total
phase factor such that by appropriately choosing the angle φ,
one can induce a π flux. The bound states in the sites Bk will
be coupled in the adjacent sites Ak+1 (see Fig. 10) through the
integer number of real hoppings from each circulation Rα and
R−α and the integer number of complex hoppings from each
circulation Cα and C−α such that

n = Rα + Cα, m = R−α + C−α. (15)

Then the total complex factor will be given by
e±2iφ(Cα−C−α ). These states are coupled to both the
bound states {|Aα

k+1, n〉 ⊗ |A−α
k+1, m〉} [Fig. 10(a)] and

{|Aα
k+1, m〉 ⊗ |A−α

k+1, n〉} [Fig. 10(b)] in the adjacent site,

023305-7



EULÀLIA NICOLAU et al. PHYSICAL REVIEW A 107, 023305 (2023)

FIG. 10. Hopping processes of an arbitrary N-particle bound
state {|Bα

k , n〉 ⊗ |B−α
k , m〉} that couples to the bound states in the ad-

jacent site (a) {|Aα
k+1, n〉 ⊗ |A−α

k+1, m〉} and (b) {|Aα
k+1, m〉 ⊗ |A−α

k+1, n〉}
and corresponding phase factors. Here Rα and Cα are the numbers of
real and complex hopping processes, respectively, coming from each
circulation and the labels n and m denote the number of particles in
each site.

thus fulfilling the following conditions for each case:

{∣∣Aα
k+1, n

〉 ⊗ ∣∣A−α
k+1, m

〉}
:

{
n = C−α + Rα

m = Cα + R−α

}
,

{∣∣Aα
k+1, m

〉 ⊗ ∣∣A−α
k+1, n

〉}
:

{
n = R−α + Cα

m = Rα + C−α

}
. (16)

Combining Eqs. (15) and (16), we obtain the following
relations between the number of complex couplings Cα and
the corresponding phase factors (see Fig. 10):{∣∣Aα

k+1, n
〉 ⊗ ∣∣A−α

k+1, m
〉}

: Cα = C−α �⇒ 1,{∣∣Aα
k+1, m

〉 ⊗ ∣∣A−α
k+1, n

〉}
: Cα − C−α = n − m �⇒ e±2iφ(n−m).

(17)

Therefore, one can obtain an effective Creutz ladder model up
to N th-order perturbation theory for any subspace with n �= m.
In this case, the states in the same site {| jαk , n〉 ⊗ | j−α

k , m〉}
and {| jαk , m〉 ⊗ | j−α

k , n〉} are also coupled, which produces an
effective vertical coupling in the Creutz ladder. The order of
these couplings is 2|n − m| and they are in general complex.
The effect of these couplings can be neglected if 2|n − m| 	
n + m = N , as N is the order of the other couplings that com-
pose the Creutz ladder. Alternatively, the vertical couplings
vanish in the bulk for φ = π/2, as each N-particle hopping
process cancels with its left-right symmetric counterpart. In
the presence of a non-negligible complex vertical coupling,
the CLSs are no longer eigenstates and consequently the
subspace does not exhibit Aharonov-Bohm caging. Then, con-
sidering the vertical coupling and using Eq. (17), one can
obtain a π flux through the plaquettes by choosing

φ =
{

π
2(n−m) if 2|n − m| 	 n + m = N
π
2 if n − m is odd.

(18)

For n = m, there is only one type of bound state {| jαk+1, n〉 ⊗
| j−α

k+1, n〉} such that the effective model is a linear chain
with real couplings and the system cannot exhibit Aharonov-
Bohm caging. For the N-particle subspaces that exhibit flat
bands with φ �= π/2, the single-particle spectrum is disper-
sive, which makes these Aharonov-Bohm caging phenomena
a many-body effect.

Let us see some examples. For the A subspaces, N particles
will accumulate a complex phase e±2iNφ when coupling the
states |Bα

k , N〉 and |A−α
k+1, N〉. Flat bands arise for the angles

FIG. 11. (a) Diagram of the one-dimensional staggered chain
for an arbitrary periodicity �. The unit cell k contains � sites
{ j (1)

k , j (2)
k , . . . , j (�−1)

k , j (�)
k } and is enclosed by a dotted rectangle. The

gray line indicates the origin of the phase ϕ0 such that an angle
φ is introduced in the intercell couplings. The black arrows denote
real tunneling amplitudes, while the blue ones indicate complex
tunneling amplitudes between states of different winding number.
(b) Schematic representation of the sites and couplings of the lattice
for � = 3 and an angle φ such that a nonuniform π flux arises.

φ = (1 + 2q)π/2N , with q ∈ Z as long as φ remains small
enough so that the sites Ak and Ak+1 do not become coupled,
i.e., |φ| � 2π/3 [20]. Additionally, the vertical couplings are
2N-order connections and thus always negligible. For the B
subspaces with an even number of particles N/2 in each cir-
culation, Aharonov-Bohm caging cannot occur. The complex
phases accumulated by the particles cancel out such that all
the couplings of the effective chain are real and the resulting
energy bands are dispersive. However, for N odd, the tunnel-
ing process of one of the particles is not compensated, leading
to a complex factor e±2iφ . Then a phase φ = π/2 leads to
a flat-band spectrum while at the same time canceling the
vertical couplings. For a real-space angle φ = π/2, the single-
particle spectrum exhibits flat bands and both the N odd A
and B subspaces also present a flat-band spectrum. However,
for an angle φ = π/2N the A subspace presents flat bands
in the absence of a single-particle flat-band spectrum, making
this instance of Aharonov-Bohm caging a purely many-body
effect.

As one increases the number of particles in the system,
the number of bound-state configurations increases and, in
particular, other semibound states appear where not all par-
ticles are located in a single site, i.e., {| jαk , n〉 ⊗ | j−α

k , m〉},
with n + m < N and N − (n + m) particles not bound to the
site j. The picture described above will hold as long as the
subspaces induced by bound states do not become degenerate
with the subspaces induced by these semibound states. For
the B subspaces, as their bound states have the maximum
possible energy, they will not become degenerate with any
other subspace. The other subspaces can become degenerate
with a subspace with some particles in a bound state in the
same site and some in other sites of the lattice. However,
these instances are rare: Up to ten particles, only 8 out of

023305-8



MANY-BODY AHARONOV-BOHM CAGING IN A LATTICE … PHYSICAL REVIEW A 107, 023305 (2023)
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(ci) (cii) (ciii)

FIG. 12. Energy spectrum for different number of particles
(a) N = 1, (b) N = 2, and (c) N = 3 and periodicities (i) � = 2, (ii)
� = 3, and (iii) � = 4 for 24 sites. For the two- and three-particle
cases, only the A subspace is shown, and we set U/J = 50 and
introduce the on-site potential correction V at the edge sites. The
angle φ is taken from Eq. (18) such that a π flux is obtained in each
subspace: (i) φ = π/2, (ii) φ = π/4, and (iii) φ = π/2.

34 bound states are degenerate, for example, {| jαi , 5〉} and
{| jαi , 2〉 ⊗ | j−α

i , 2〉}. We have checked numerically the recipe
to obtain π fluxes in arbitrary subspaces given in Eq. (18) up
to six particles.

V. GENERALIZATION TO NONUNIFORM FLUXES

In this section we generalize the study to the family of
models where the angle φ of the staggered chain is introduced
with an arbitrary lattice periodicity �, thus increasing the
number of sites per unit cell [see Fig. 11(a)]. The complex
couplings between adjacent sites only occur between the last
site of the unit cell and the first site of the next unit cell.
Thus, the flux induced by this angle φ will not be present in
each plaquette, with the exact flux pattern being a function
of the number of sites in the unit cell. Nonuniform fluxes
have been studied in diamond lattices [43,53], where it has
been shown to lead to an enriched Aharonov-Bohm caging
phenomenology.

The analysis of Sec. IV for the dynamics of N particles in
the regime of strong interactions applies also to this family of
models. In particular, the angles given in Eq. (18) for each
N-particle subspace also yield π fluxes that, in this case,
are nonuniform [see an example for � = 3 in Fig. 11(b)].
The nonuniform pattern is composed of � − 2 rhombi (or
triangles) without a flux followed by two rhombi (or triangles)
with a π flux. For the case of � = 2, discussed in Secs. III and
IV, the number of rhombus plaquettes without flux is zero. As
a result of the nonuniform flux pattern, a particle cannot tunnel
� sites to the right or the left due to destructive interference
and as a consequence the spectrum is composed of a series
of flat bands. Figure 12 shows the energy spectrum for the
single-particle case and the two- and three-particle A sub-
spaces for different periodicities � = 2, 3, and 4. The angles
φ, as given by Eq. (18), yield a π flux and we take U/J = 50
and simulate 24 sites for each case. Notably, by increasing

the periodicity �, the number of flat bands increases, as the
caging cell is enlarged and gives support to a larger number of
CLSs. The zero-energy edge states that are present for � = 2
are buried in the central band of the spectrum for � > 2.
As an example, we discuss the case of � = 3 in the next
section.

Example: � = 3

For a periodicity � = 3, the unit cell has three sites that
we will call A, B, and C. From Figs. 12(aii), 12(bii), and
12(cii), one can see that the N-particle subspaces (with the
appropriate π flux inducing angle φ) present six flat bands
with two degenerate zero-energy bands. The eigenstates in
these flat bands consist of a series of CLSs that one can find
through the diagonalization of a small lattice. Analogously
to the � = 2 case, the basis states that compose the smallest
caging cell are those within a unit cell and the next site

{|A+
k , n〉, |A−

k , n〉, |B+
k , n〉, |B−

k , n〉, |C+
k , n〉,

|C−
k , n〉, |A+

k+1, n〉, |A−
k+1, n〉}. (19)

We give below the analytical expressions of the CLSs
(dropping the label n for conciseness) and give a visual repre-
sentation in Fig. 13,

∣∣ϒ1
k

〉 = |Ak
+〉 + |Ak

−〉 + √
2|Bk

+〉 + √
2|Bk

−〉 + |Ck
+〉 + |Ck

−〉
2
√

2
,

∣∣ϒ2
k

〉 = |Ak
+〉 + |Ak

−〉 − √
2|Bk

+〉 − √
2|Bk

−〉 + |Ck
+〉 + |Ck

−〉
2
√

2
,

∣∣ϒ3
k

〉 = |Ck
+〉 − |Ck

−〉 − |Ak+1
+ 〉 + |Ak+1

− 〉
2

,

∣∣ϒ4
k

〉 = |Ck
+〉 − |Ck

−〉 + |Ak+1
+ 〉 − |Ak+1

− 〉
2

,

∣∣ϒ5
k

〉 = |Bk
−〉 − |Bk

+〉√
2

,

∣∣ϒ6
k

〉 = |Ck
+〉 + |Ck

−〉 − |Ak
+〉 − |Ak

−〉
2

.

(20)

FIG. 13. Representation of the CLSs for � = 3 defined in
Eq. (20) that are eigenstates of the Creutz ladder with a nonuniform
π flux [see Fig. 11(b)]. The radius of each circle represents the
amplitude and the color represents the phase, with red being a π

phase and green being a phase zero.
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FIG. 14. Time evolution of the population of the states | jαk , 2〉
with j = A, B,C and total caged population Pcag (red solid line),
obtained through exact diagonalization for U/J = 50, Nc = 12 unit
cells, and φ = π/4. The black dashed line is the population in the
states |Aα

4 , 2〉, with α = ±; the blue dotted blue is the population in
the states |Bα

4 , 2〉; and the green dash-dotted line is the population in
|Cα

4 , 2〉. The initial state is (|A+
4 , 2〉 + |A−

4 , 2〉)/
√

2.

The energies of the CLSs are given by

E1 = 2
√

2J , E2 = −2
√

2J , E3 = −2J ,

E4 = 2J , E5 = 0, E6 = 0. (21)

Let us compare these CLSs with those obtained for � = 2,
in Eq. (11). For � = 3, the unit cell is enlarged and we ob-
tain more CLSs (six for � = 3 vs four for � = 2) that also
span a larger number of sites. As a direct consequence, the
caging dynamics resulting from these flat bands have larger
support over the lattice. To give an example, we consider
the two-particle A subspace with φ = π/4, U/J = 50, and
Nc = 12 unit cells for � = 3. In Fig. 14 we show the time
evolution of the population of the states P| jαk ,2〉 for the ini-

tial state (|A+
4 , 2〉 + |A−

4 , 2〉)/
√

2. The red line indicates the
caged population Pcag = P|A+

k ,2〉 + P|A−
k ,2〉 + P|B+

k ,2〉 + P|B−
k ,2〉 +

P|C+
k ,2〉 + P|C−

k ,2〉. The population oscillates between the sites
Ak , Bk , and Ck of a single unit cell, as the destructive interfer-
ence occurs at the sites Ck−1 and Ak+1.

VI. CONCLUSION

We have studied a system of bosons in a staggered lat-
tice with ring traps in each site and considered the local
eigenstates with orbital angular momentum l = 1. The sys-
tem can be mapped to a Creutz ladder with a real and
a synthetic dimension, in which the flux enclosed in each
plaquette is determined by the angle φ that makes the lat-
tice staggered. In the single-particle case, one can tune the
angle φ to obtain a uniform π flux threading each plaque-
tte. This leads to a flat-band spectrum characterized by the
presence of CLSs and the system exhibits Aharonov-Bohm
caging.

For N particles in the regime of strong on-site interac-
tions, bound states arise where the N particles populate a
single site. Using perturbation theory, most of the N-particle
subspaces can be mapped to an effective Creutz ladder with
a flux that depends on the angle φ. We have identified the
conditions under which these subspaces present a π flux that

leads to flat bands and Aharonov-Bohm caging. Remark-
ably, some of these subspaces can exhibit Aharonov-Bohm
caging even in the presence of a single-particle disper-
sive spectrum, making these instances a purely many-body
effect.

Finally, we have generalized this study to the case of
nonuniform fluxes by introducing the angle φ at an arbitrary
lattice periodicity �. In this case, one can engineer flat-band
spectra for different N-particle subspaces and an arbitrary �.
As the unit cell increases in size, the number of flat bands
increases, resulting in a larger number of CLSs that also have
a greater spatial extent. As a result, the caged particles can
explore a broader region of the lattice before encountering
destructive interference, making the periodicity � a tunable
parameter that controls the spatial extent of the Aharonov-
Bohm caging.

A staggered optical lattice can be generated in a super-
lattice with commensurate wavelengths of light beams where
the extra tunnelings are switched off with square lattices [54].
When generating optical lattices, one can easily obtain a lat-
tice with 65 sites [55]. Then the atoms have to be loaded
into the p-band orbitals of the form px ± ipy [31,33], which
can be achieved using the following techniques: adiabatical
deformation of an adjacent trap with resonant tunneling trans-
fer [30], lattice shaking and shortcuts to adiabaticity [32], or
OAM transfer from light to the atoms [28]. Alternatively, ring
potentials can be generated through a variety of techniques
[24] in which the OAM states with l = 1 can be excited by
rotating a weak link [25,26], by coherent transfer of angular
momentum from photons to the atoms [27,28], or by doing
a temperature quench [29]. In particular, a ring lattice can be
engineered, for instance, using microlens arrays by combining
them with conical refraction techniques [56], for which a
10 × 8 lattice was demonstrated, or using digital micromirror
devices, which provide a high degree of geometrical tunability
[57].
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