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Transport of ultracold atoms in superpositions of S- and D-band states in a moving optical lattice
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Ultracold atoms in a moving optical lattice with high controllability are a feasible platform to research
the transport phenomenon. Here, we study the transport process of ultracold atoms at the D band in a one-
dimensional optical lattice and manipulate the transport of superposition states with different superposition
weights of S-band and D-band atoms. In the experiment, we first load ultracold atoms into an optical lattice
using the shortcut method and then accelerate the optical lattice by scanning the phase of lattice beams. The
atomic transport at the D band and S band is demonstrated, respectively. The group velocity of atoms at the
D band is opposite to that at the S band. By preparing superposition states with different superposition weights
of the D-band and S-band atoms, we realize the manipulation of atomic group velocity from positive to negative,
and observe the quantum interference between atoms at different bands. The influence of the lattice depth and
acceleration on the transport process is also studied. Moreover, the multiorbital simulations are coincident with
the experimental results. Our paper sheds light on the transport process of ultracold atoms at higher bands in
optical lattices and provides a useful method to manipulate the transport of atomic superposition states.
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I. INTRODUCTION

The transport phenomenon has been attracting tremendous
efforts in recent years [1,2], which occurs in a system that
particles are driven by an external force and move in a periodic
potential [3,4]. The transport process is studied in the fields of
electronic materials [5,6], trapping ions [7,8], and ultracold
atoms [9–11].

The ultracold atoms in optical lattices due to high con-
trollability are widely applied to simulating the physics
of condensed matter [12–14]. For instance, novel physi-
cal phases [15–18] and dynamical mechanisms of atomic
superfluid [19–22] in optical lattices are observed with var-
ious manipulation technologies [23,24], and atomic circuits
and atomic qubits are achieved in optical lattices [25,26].
Among them, higher orbital physics in optical lattices has
attracted much attention, such as the recoagulation of the
P-band bosons in a hexagonal lattice [27,28], the achieve-
ment of Ramsey interferometry between the S band and the
D band [29], the observation of atomic scattering at the D
band [30], and the unconventional superfluid order at the
F band [31].

Furthermore, optical lattices are also an effective platform
to study transport phenomena [32–35], such as the research
on long-range transport [36–38], and the effects of bosonic
and Fermionic statistics on atomic transport [39]. The moving
optical lattice is a powerful tool to study the transport process.
The inertia force produced by the moving optical lattice has
the advantages of a large adjustable range [3,11,40] and a con-
trollable direction [22]. And the transport process in moving
optical lattices is widely applied in quantum simulation and
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quantum precision measurement. For example, it is applied
in detecting topological properties [41] and improving the in-
tegration time of atomic gravimeters [40,42]. However, there
are few researches on the transport of atoms at higher bands
and superposition states of different bands in optical lattices.

In this paper, the transport process of ultracold atoms at
the D band is observed in a moving one-dimensional optical
lattice, and we perform a transport manipulation of superpo-
sition states with S-band and D-band atoms, which realizes
the change in atomic group velocities from positive to neg-
ative. By using our proposed shortcut method [23], we load
atoms from a harmonic trap into the optical lattice with dif-
ferent states within tens of microseconds. Then we perform
the transport process of D band atoms in the moving one-
dimensional optical lattice and observe the group velocity of
D-band atoms is opposite to that of S-band atoms. By their
transport characteristic, we modulate the transport process of
superposition states with different superposition weights of
D-band and S-band atoms, and the group velocity from
positive to negative is observed. We compare the transport
of superposition states to classical mixtures, and observe
the quantum interference between atoms at different bands.
Furthermore, we study the influence of the lattice depth
and acceleration on transport process. Using the multiorbital
method [26], the atomic group velocities with different pa-
rameters are calculated, and the calculations agree with the
experimental results. This paper paves the way for the ma-
nipulation of transport process with ultracold atoms at higher
bands in optical lattices and is helpful to research the transport
of atomic superposition states.

This paper is organized as follows. In Sec. II, we describe
the transport process of S-band and D-band atoms in the mov-
ing lattice, and the method of numerical calculation is given.
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FIG. 1. Transport process of atoms in a moving optical lattice. (a1) and (a2) show the ultracold atoms in a moving optical lattice in the
laboratory frame and moving frame, respectively. In (a1), the solid blue line represents the optical lattice, which is moving with acceleration
aL . The dashed blue line shows the motion of the optical lattice. dL is the lattice constant, and V0 is the lattice depth. The arrow x denotes
the position coordinate. In (a2), F = −maL is the inertia force, and v′

g is the group velocity of atoms in the moving frame. (b). The transport
process of D-band atoms in the moving frame. The orange, yellow, blue, and purple lines (from bottom to top) represent the dispersion relation
of S, P, D, and F bands in quasimomentum space, respectively. The lattice depth is 10Er . The dashed arrows denote Bloch oscillation (BO)
and Landau-Zener tunnel (LZT). The red ellipses denote the atoms performing Bloch oscillation at a single band. The blue ellipses denote the
atoms which perform Landau-Zener tunneling to other bands or scattering to another edge of the first Brillouin zone (BZ). The dashed vertical
lines show the edges of the first Brillouin zone. (c). The group velocity of atoms in the laboratory frame and moving frame. The dashed-dot
orange line and solid blue line represent v′

g of atoms at S band and D band in the moving frame, and the dashed line denotes the velocity
−vL = q/m of optical lattice. The distance between −vL and v′

g of the S band and D band shows the group velocity vg in the laboratory frame.

Our experimental setup and time sequences are represented
in Sec. III A. In Sec. III B, we introduce the shortcut method
used to prepare atoms into target states. The experimental
results of transport process in a single band and superposi-
tion states of atoms at the S band and D band are shown
in Secs. IV A and IV B, respectively. And the influence of
the lattice depth and acceleration on the transport process
is studied in Sec. IV C. Finally, we give the discussion and
conclusions in Sec. V.

II. TRANSPORT PROCESS IN A MOVING OPTICAL
LATTICE AND THEORETICAL SIMULATION

A. Transport process in a moving optical lattice

We study the transport process of ultracold atoms in a mov-
ing one-dimensional optical lattice. As shown in Fig. 1(a), in

the laboratory frame (Lab frame), the optical lattice is moved
with acceleration aL, and the Hamiltonian of this system is as
follows:

Ĥ = p̂2

2m
+ 1

2
V0 cos

[
2kL

(
x − 1

2
aLt2

)]
, (1)

where p̂ is the momentum operator, m is the mass of an atom,
V0 is the lattice depth, kL = 2π/λ is the wave vector of the
optical lattice, and λ is the wavelength of the lattice beams.
The Hamiltonian Eq. (1) can be considered as atoms applied
by an inertia force in the moving lattice frame. To analyze
the motion of atoms, we first consider the atomic motion in
moving frame and then transform the reference system to the
Lab frame by adding the velocity of the optical lattice.

Figure 1(b) shows the motion of atoms at the D band in
the moving frame. Initially, the atoms distribute at the center
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of the first BZ. Due to the inertia force F = −maL , atoms
perform the BO and the quasimomentum q linearly changes
with t [43,44],

q(t ) = Ft = −maLt . (2)

During Bloch oscillation, some atoms perform LZT to other
bands. To explain the transport process, first we only consider
Bloch oscillation, and the LZT and BO will be considered
comprehensively in Sec. II B. For Bloch oscillation, the group
velocity in moving frame v′

g[q(t )] is determined by the disper-
sion relation Eα (q),

v′
g(q) = h̄−1dEα (q)/dq, (3)

where α represents the band and can be chosen as the
S, P, D, F . . . bands.

Connecting Eqs. (2) and (3), the group velocity in moving
frame is given

v′
g(t ) = h̄−1 dEα (q)

dq

∣∣∣∣
q=−maLt

. (4)

The solid blue line and dashed-dot orange line in Fig. 1(c) rep-
resent v′

g(t ) for atoms at the D band and S band, respectively.
Next, we transform the reference system to the Lab frame

by adding the velocity of optical lattice vL(t ) to the velocity
of atoms. And the group velocity of atoms vg(t ) is given

vg(t ) = v′
g(t ) + vL(t ). (5)

Using Eq. (2), the velocity of optical lattice vL can be
written as

vL = aLt = −q/m. (6)

In Fig. 1(c), the dashed line denotes the velocity −vL = q/m.
v′

g(t ) of the S band and D band are on the opposite sides of
−vL. Hence, in the Lab frame, the atoms at the S band and D
band will obtain the group velocity in the opposite direction.
This result is different from the situation that atoms are driven
by an external force in a stationary lattice where the atoms at
the S band and D band will get the group velocity in the same
direction.

B. Multiorbital calculation method

Using the multiorbital simulation method [26], we consider
Landau-Zener tunneling and Bloch oscillation comprehen-
sively, and calculate the motion of atoms.

To begin with, we divide the time t into dt , and project the
Hamiltonian Eq. (1) into the momentum states |n〉 = e2inkLx,
where n = 0,±1,±2 . . ., and x is the space coordinate posi-
tion. Ignoring the interaction, the instantaneous Hamiltonian
is written as [26]

Hnn′ = h̄2k2
L

2m
(2n)2δn,n′ + 1

4
V (t )(δn,n′+1 + δn,n′−1), (7)

where n, n′ = 0,±1,±2, . . ., and V (t ) is the potential en-
ergy of the instantaneous Hamiltonian. Solving the eigenvalue
equation of the instantaneous Hamiltonian, the instantaneous
eigenvalue εα (t ) is gotten. By implementing all the instanta-
neous evolution operators e−iεα (t )dt/h̄ to the initial state |α, n =

FIG. 2. The experimental sequence and typical images. (a) The
experimental sequence. The horizontal axis denotes the experimental
time, and there are several stages of the experiment. The first stage is
the preparation of the BEC. In the second stage, the shortcut method
is used to prepare the atomic states in the optical lattice. ton(off)

i shows
the pulse sequence of the shortcut method. In the third stage, the
optical lattice is accelerated by changing the phase of lattice beam.
After the time of flight 32 ms, the absorption imaging is taken to
detect the atoms. t1–t3 are three typical moments: the BEC, the
atoms loaded into the optical lattice, and the atoms after accelerating.
(b) shows the typical images corresponding to the moments t1–t3.
The above curves show the fitting of images. The horizontal axis
represents the momentum p.

0〉, the state at time t is given

|ψ (t )〉 =
∏

t

e−iεα (t )dt/h̄|α, n = 0〉. (8)

The group velocity vg(t ) at time t is as follows:

vg(t ) = 〈ψ (t )| p̂

m
|ψ (t )〉, (9)

where momentum operator p̂ can be written as∑
n 2nh̄kL|n〉〈n|.

III. EXPERIMENTAL DESCRIPTION

A. Experimental setup and sequence

Our experiment starts with a Bose Einstein condensate
(BEC) of 87Rb with 2 × 105 atoms which are prepared in a
hybrid trap. The experimental setup has been described in our
previous works [27,45]. Then, we use the shortcut method
to load atoms into the one-dimensional optical lattice (see
Sec. III B) and move the lattice with the acceleration aL for
time as shown in Fig. 2(a). The one-dimensional optical lattice
is composed of a 1064-nm laser beam and its reflected beam,
and an electro-optic modulator (EOM, Thorlabs EO-PM-NR-
C2) is placed in the optical path of the reflected beam. The
EOM produces an additional phase ϕ(t ) to the reflected beam.
Hence, the lattice potential VL(x, t ) can be written as

VL(x, t ) = 1
2V0 cos[2kLx − 2ϕ(t )]. (10)

By controlling the voltage of the EOM, the phase ϕ(t ) can be
scanned. To accelerate the optical lattice with aL as shown in
Fig. 2(a), the phase ϕ(t ) is scanned as

ϕ(t ) = 1
2 aLkLt2. (11)
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After evolving for time t , we turn off the lattice beam and
take absorption imaging with the time of flight (TOF) tTOF =
32 ms to detect the transport process.

Figure 2(a) shows the experimental sequence where times
t1–t3 denote the stage of BEC, the stage of atoms loaded into
the optical lattice, and the stage after accelerating, respec-
tively. Figure 2(b) shows the typical images at these three
moments. At t1, the atoms condensate with zero momentum.
After the pulse sequence of shortcut method at t2, the atoms
are loaded into the optical lattice and symmetrically distribute
as several momentum peaks. The population proportion of
each momentum peak is determined by the proportion and
phase of atoms at each band, but the group velocity of atoms
at t2 is always zero. After accelerating at t3, the distribution
of atoms at each momentum peak changes, and the atoms
have a nonzero group velocity. To deal with the absorption
images, we calibrate the distance of momentum 2h̄kL in the
images by fitting the center of two adjacent atom clouds. By
the calibration, we can obtain the momentum of atoms in the
images.

In the experiment, limited by EOM control voltage, the
maximum reachable phase of the laser beam is fixed. Hence,
the range of measured time is limited for a chosen aL. We
choose aL around several times gravitational acceleration
where the transport process is obvious. One feasible method
to increase the measured time is to use additional EOMs.

B. The shortcut method to load atoms into the target states of
an optical lattice

We use the shortcut method due to its simplicity and ef-
ficiency [23] to prepare atoms into target states in an optical
lattice. The basic idea of shortcut method is to continually turn
on and off the optical lattice to modulate the atomic state as
shown in Fig. 2(a). In our experiment, the initial-state |ψi〉 is
the ground state of the BEC in a harmonic trap. After several
pulses, the final state of atoms |ψ f 〉 is written as [23,30]

|ψ f 〉 =
1∏

j=np

Û off
(
toff

j

)
Û on

(
ton

j

)|ψi〉, (12)

where np is the number of pulses, Û on(off) is the evolution
operator of the atomic state when the optical lattice is on (off),
and ton(off)

j is the evolution time of the jth pulse.

Through designing the sequence ton(off)
j , we can transfer the

BEC from the harmonic trap into our target state |ψa〉 with a
high fidelity in tens of microseconds. The fidelity η describes
the efficiency of state preparation and is defined as [23,30]

η = |〈ψ f |ψa
〉|2. (13)

In the experiment, the target state |ψa〉 is the state of
a single band or the superposition of S-band state |S〉 and
D-band state |D〉,

|ψa〉 = γ1|S〉 + γ2|D〉, (14)

where |γ1|2 + |γ2|2 = 1. For state |S〉 or |D〉, the quasimomen-
tum is zero, and its relative phase is zero.

TABLE I. The pulse sequences used to prepare atoms into the tar-
get state |ψa〉 of the one-dimensional optical lattice with V0 = 10Er .

ton
1 (μs) toff

1 ton
2 toff

2 γ1 γ2 ηT ηE

10 32 26 10 1 0 0.9999 0.994
2 30 0 0

√
0.8

√
0.2 0.9994 0.974

14 47 11 34
√

0.6
√

0.4 0.9996 0.964
21 2 31 39

√
0.3

√
0.7 0.9994 0.956

22 43 61 39 0 1 0.9998 0.991

Table I shows the pulses used in the experiment, where

V0 = 10Er and Er = h̄2k2
L

2m . The theoretical fidelity ηT for each
sequence is near 1, and ηE is the experimental fidelity.

IV. EXPERIMENTAL RESULTS

A. Transport process of atoms distributing at a single band

By the shortcut method and the moving lattice, we study
the transport process of atoms at the S band and D band.
Figures 3(a1) and 3(a2) show typical images of S-band and
D-band atoms, where V0 = 10Er , aL = 15 m/s2. The vertical
axis of Figs. 3(a1) and 3(a2) represent time t , and the hor-
izontal axis represents the atomic momentum p. The color
denotes the normalized density of atoms. In the images,
atoms distribute around momentum peaks p = ±2ξ h̄kL (ξ =
0,±1,±2, . . .), and the number of atoms at each momentum

FIG. 3. The transport process of atoms at the S band and D
band. (a1) and (a2) are the absorption images of transport process of
S-band and D-band atoms, respectively. The horizontal axis repre-
sents momentum p, and the vertical axis is time t . The color denotes
the normalized density of atoms. (b) The blue (lower) data and
orange (upper) data show the evolution of group velocity vg of the
D-band atoms and S-band atoms. The circles are the experimental
data, and the dashed lines are the simulations. The error bar denotes
the standard error of five measurements. The parameters in the figure:
V0 = 10Er , aL = 15 m/s2.
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peak changes over time. In the moving frame, the velocity
of each momentum peak increases as q/m, and in the Lab
frame the velocity becomes q/m + aLt = 0. Hence, the center
of each momentum peak remains unchanged, and the change
in group velocity is reflected in the transfer of atom population
at each momentum peak.

For the atoms initially at the S band, they mainly dis-
tribute in the central zero-order momentum peak, whereas a
small part of them symmetrically distribute in the positive and
negative first-order momentum peaks as shown in Fig. 3(a1).
Within the time range of this experiment, the atoms at the
S band gradually move towards positive momentum peaks.
The scattering halos between two momentum peaks may be
from the collisions of different momentum components [46].
By calculating the average momentum, the group velocity
of atoms at the S band is acquired as the orange (upper)
data in Fig. 3(b) shows. vg of S-band atoms rises with small
oscillations, which agrees with the theoretical dashed line.

For the atoms initially at the D band, they symmetrically
distribute in the three central momentum peaks as shown in
Fig. 3(a2). There are much more atoms distributing in the
positive and negative first-order momentum peaks than that
at the S band, which is due to the higher energy of atoms
at the D band. As time t increases, the atoms at the D band
gradually move towards negative momentum peaks. Using
the same method as that for S-band atoms, we calculate the
group velocity of D-band atoms, which changes from zero to
negative and then gradually oscillates over time as the blue
(lower) points in Fig. 3(b) show. The experimental results are
consistent with the analysis in Sec. II A that the group velocity
of D-band atoms obtained from the moving lattice is opposite
to the group velocity of S-band atoms.

B. Transport process of atomic superposition states

Since the group velocity of S-band atoms and D-band
atoms are opposite by preparing superposition states with
different superposition weights of atoms at the D band and
S band, the group velocity obtained from the accelerating
optical lattice can be modulated. The superposition weight of
D-band atoms Wd is defined as

Wd = 〈N̂d〉/〈N̂〉, (15)

where 〈N̂d〉 is the expectation value of the D-band atom num-
ber operator, and 〈N̂〉 is the expectation value of the total atom
number operator.

Using the shortcut method, we design the sequences to
prepare the atomic superposition states in the optical lattice
with different Wd ’s. Figure 4 shows the group velocities ob-
tained from the moving optical lattice with different Wd ’s. The
top figure of Fig. 4 shows the transport process of Wd = 0.2.
The group velocity gradually rises, but the increasing rate is
slower than that only distribute at the S band. As Wd increases,
the group velocity of atoms gradually decreases. The middle
figure of Fig. 4 shows the atomic group velocity with Wd =
0.4, which oscillates around zero. When Wd reaches 0.7 as
shown in the bottom figure of Fig. 4, the group velocity first
changes from zero to negative and then gradually oscillates
over time, such as the behavior of D-band atoms.

FIG. 4. The group velocity vg for the different superposition
weights of D band Wd over time. The top, middle, and bottom
figures correspond to the case of Wd = 0.2, 0.4, and 0.7, respectively.
The dashed lines denote the theoretical superposition group-velocity
curves, calculated by the multiorbital simulation method. The gray
dotted lines denote the theoretical classical group velocity curves,
calculated by weighted averaging of the S-band and D-band group
velocity. The error bar denotes the standard error of five measure-
ments. The parameters in the figure: V0 = 10Er , aL = 15 m/s2.

Due to the coherence, the transport of superposition states
is different from classical mixtures. The difference comes
from the quantum interference between atoms at different
bands [47], and the group velocity of atomic superposition
states in our experiment performs more oscillations than that
of classical mixtures. In Fig. 4, the dashed lines are the the-
oretical group velocity of the superposition states, which are
calculated by the multiorbital simulation method. The gray
dotted lines are the theoretical group velocity of classical
mixtures, which are calculated by the weighted averaging
of the S-band and D-band group velocity. To compare the
deviation of two theory curves from the experiments, we de-
fine the dimensionless root-mean-squared error between the
experimental results and the theoretical simulations [48],

σ = m

h̄kL

√√√√ 1

Nt

Nt∑
i=1

[
ve

g(ti ) − vt
g(ti )

]2
, (16)

where ve
g(ti ) and vt

g(ti ) are the experimental and theoreti-
cal group velocities at time ti, and Nt is the number of
measured moments. Table II shows the dimensionless root-
mean-squared error of superposition curve σs and classical
curve σc where the uncertainty is calculated by the standard
error of five measurements. All the σs’s are smaller than σc

which means the deviation of the superposition curve from the
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TABLE II. The deviation of the superposition curve and clas-
sical curve from the experimental results when V0 = 10Er and
aL = 15 m/s2.

Wd σs σc

0.2 0.247 ± 0.026 0.301 ± 0.017
0.4 0.266 ± 0.013 0.339 ± 0.016
0.7 0.336 ± 0.008 0.342 ± 0.011

experiment results is smaller than that of the classical curve.
Hence, the experimental results are more consistent with the
curve of atomic superposition states.

When Wd = 0.2, 0.4, the experimental uncertainty is
smaller than the difference between the superposition curve
and the classical curve. When Wd = 0.7, the difference be-
tween the superposition curve and the classical curve is not
obvious, and it may be caused by the imperfect experimen-
tal fidelity of state preparation at Wd = 0.7 as shown in
Table I.

C. The transport process with the different lattice
depths and acceleration

Furthermore, we study the influence of the lattice depth V0

and acceleration aL on the transport process. To display the
results, we define the atomic transport distance Sa in half of
one Bloch oscillation period with group-velocity vg(t ),

Sa =
∫ TB/2

t=0
vg(t )dt, (17)

where TB is the Bloch oscillation period. For aL = 15 m/s2,
TB/2 = 287 μs.

Figure 5(a) shows the group velocities of D-band atoms
with different V0’s. The lattice depth V0 is selected to keep
the atoms in superfluid. The transport process of D-band
atoms is influenced by the change of D-band curvature and
Landau-Zener tunneling. On one hand, Landau-Zener tun-
neling makes a part of atoms jump to higher bands and
escape the optical lattice, which restrains Bloch oscilla-
tion. When V0 is small, Bloch oscillation decays quickly,
and the group velocity stops increasing before TB/2 as the
curve for V0 = 5Er shown in Fig. 5(a). As V0 increases,
Landau-Zener tunneling decreases, and the decay of Bloch
oscillation reduces. Because the curvatures on the oppo-
site side of the D band are reversed as shown in Fig. 1(a)
when the decay of Bloch oscillation is small, the group
velocity will reverse in the second half of the Bloch os-
cillations period, such as the curve for V0 = 15Er . On the
other hand, when the lattice depth increases, the change in
D-band curvature makes its v′

g decrease as shown in Fig. 5(b).
Considering the two influences with V0 increasing, Landau-

Zener tunneling decreases, and atoms at the D band get more
group velocity in half of the Bloch oscillations period when
the lattice depth is small. When the decay of Bloch oscillation
in TB/2 is small, the change inf D-band curvature becomes
important, and the group velocity obtained from the moving
optical lattice decreases with V0 increasing. Hence, the abso-
lute value of D-band atomic Sa performs a trend to rise first

FIG. 5. Transport process of D-band atoms with the different
lattice depths V0. (a) The green squares, red circles, and yellow
diamonds represent the group velocity of D-band atoms in the Lab
frame with V0=5,10,15Er , respectively. The dashed lines are the
simulations. The dashed-dot line denotes half of one Bloch oscil-
lation period TB/2. The acceleration is 15 m/s2. (b) The theoretical
group-velocity v′

g of the D band in the moving frame with different
lattice depths. The dotted green, solid red, and dashed-dot yellow
lines denote the v′

g with V0=5,10,15Er , respectively. The dashed line
denotes the velocity −vL = q/m of the optical lattice. In (c), the blue
(lower) points and the orange (upper) points represent transport dis-
tance Sa for atoms at the D band and S band with V0=5,8,10,12,15Er ,
respectively. The dashed lines are the simulations. dL = λ/2 is the
lattice constant. The error bar denotes the standard error of five
measurements.

and then fall with V0 increasing as shown in Fig. 5(c). The
theoretical calculation is consistent with the nonmonotonic
behavior.

For atoms at the S band, v′
g is much lower than −vL = q/m,

so vg is dominated by vL as shown in Fig. 1(c). Because vL

is independent of the lattice depth V0, Sa of S-band atoms is
insensitive to V0 as shown in Fig. 5(c).

Figure 6(a) shows the transport distance Sa with different
V0’s, aL, and Wd , where the dashed lines denote the simulation
results.Sa changes from positive to negative with Wd increas-
ing. The changing rate of 10Er is larger than that of 5Er and
15Er , which is consistent with the trend of Sa in Fig. 5(a).

Comparing to V0, the change inaL only influences
Landau-Zener tunneling, not the D-band curvature. Hence,
with aL increasing, the atomic group velocity decreases, and
Sa reduces as shown in Fig. 6(a). From another point of view,
when the acceleration is large, there is not enough time for
atoms to respond to the moving optical lattice. Figure 6(b)
shows the group velocity for a = 120 m/s2, and in half of one
Bloch oscillation period the atomic motion is small. Hence, Sa

reduces when aL increases.
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FIG. 6. Atomic transport distance Sa with the different lattice
depths V0 and acceleration aL . (a) The green squares, red circles, and
yellow diamonds show transport distance Sa with V0 = 5, 10, 15Er ,
aL = 15 m/s2, respectively. The purple triangles show transport dis-
tance Sa with V0 = 10Er , aL = 30 m/s2. (b) shows the group velocity
over time of D-band atoms in the accelerated optical lattice when
aL = 120 m/s2 when V0 = 10Er . The dashed-dot line denotes half of
one Bloch oscillation period TB/2. The dashed lines are the simula-
tions. The error bar denotes the standard error of five measurements.

V. DISCUSSION AND CONCLUSIONS

The discrepancy in group velocities between experimen-
tal results and theoretical simulations comes from several
aspects. First, in the experiment, the error of lattice depth cal-
ibration is within 5% and of acceleration calibration is about
2%. Second, due to the fluctuation of optical intensity and the

imperfection of the pulse waveform, the experimental fidelity
of the shortcut method is lower than the theoretical fidelity.
Third, in the multiorbital simulation, we ignore the atomic
interaction and the momentum width of a condensate, which
also influences the precision of simulations [3]. Moreover, the
atoms on the excited bands will perform two-body collisions
and scatter to other bands [30]. The collisions reduce the
lifetime of superposition states and influence the transport
process.

Furthermore, the shortcut method can be used to load
atoms into other bands or optical lattices with different spatial
configurations, such as the P and D bands in one-dimensional
and two-dimensional triangular lattices [23,45], which helps
to extend this protocol. As for the excited bands, the transport
process of the P band in the moving lattice is also different
from that driven by an external force in a stationary lattice. v′

g
of the P band in the moving frame is lower than −vL, such
as that of the S band. So, in the Lab frame, the atoms at the
S band and P band in a moving optical lattice will acquire the
group velocities in the same direction.

To summarize, using the shortcut method, we observe the
opposite group velocity of D-band and S-band atoms in a
one-dimensional moving optical lattice. By the characteristic
of atomic transport in the moving lattice, we perform the
transport manipulation of superposition states with different
superposition weights of the D band and S band where the
quantum interference between atoms at different bands is
observed. Moreover, the influence of the lattice depth and ac-
celeration on the transport process is studied. The multiorbital
simulation method is used to calculate the transport process,
and the calculations agree with our experimental results. This
study is helpful to understand transport phenomena at higher
bands and detect topological properties [41].
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