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Density profile of noninteracting fermions in a rotating two-dimensional trap at finite temperature
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We study the average density of N spinless noninteracting fermions in a two-dimensional harmonic trap
rotating with a constant frequency � and in the presence of an additional repulsive central potential γ /r2. The
average density at zero temperature was recently studied in Phys. Rev. A 103, 033321 (2021), and an interesting
multilayered “wedding-cake” structure with a “hole” at the center was found for the density in the large-N
limit. In this paper, we study the average density at finite temperature. We demonstrate how this “wedding-cake”
structure is modified at finite temperature. We show that, while the bulk density profile gets smeared significantly
at a temperature T ∼ O(1), the edge profile already acquires significant smearing at a much lower temperature
T ∼ O(1/

√
N ). These large-N results warrant going much beyond the standard local density approximation. We

also generalize our results to a wide variety of trapping potentials, and we demonstrate the universality of the
associated scaling functions both in the bulk and at the edges of the “wedding cake.”

DOI: 10.1103/PhysRevA.107.023302

I. INTRODUCTION

Fermions, interacting and noninteracting, in an external
confining potential have been a subject of great theoretical
and experimental interest [1–8], particularly in the context
of cold atoms. In many experimental setups, the interaction
between fermions can be tuned and even set to zero, using
Feshbach resonances [1]. The noninteracting limit is actu-
ally far from trivial due to the Pauli exclusion principle.
This Pauli exclusion principle often leads to nontrivial spa-
tial distribution of fermions in the presence of an external
trap (for reviews, see Refs. [9,10]). The simplest observable
is the macroscopic bulk spatial density, which can often be
computed using the well-known local density approximation
(LDA) [11,12], and it is in principle experimentally observ-
able given the progress in absorption imaging [12–14] and
quantum gas microscopes [4–6]. However, the trap leads to
sharp edges in the Fermi gas in the limit of a large number of
fermions, and the behavior of the Fermi gas near these edges
is typically not captured by the LDA [9,10]. In one dimension
and in some cases in two dimensions, a large number of
recent studies exploited a connection between noninteract-
ing trapped fermions at zero temperature and random matrix
theory [9,10]. This connection has enabled deriving several
analytical properties of the noninteracting Fermi gas near its
edges, going beyond the LDA. These results extend, beyond
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the spatial density, to several other observables, both in one
and higher dimensions [9,10,15–40].

Experiments are always performed at finite temperature.
On the theoretical side, however, the connection to ran-
dom matrix theory (RMT) holds only at zero temperature.
Nevertheless, progress has been made at finite temperature
by exploiting the determinantal structure of noninteracting
fermions in a trap [9,10,21,25,26,28,30,31,36,39,41]. In par-
ticular, it was found that the thermal fluctuations are very
relevant, in particular near the edges where the number of
fermions is typically very small.

In this paper, we consider a problem of noninteracting
fermions in a rotating two-dimensional trap, where the LDA
is unable to capture even the bulk density, in addition to the
edges [38,40]. Fermions and bosons in rotating traps have
been studied both theoretically [34,38,42–50] and experimen-
tally [51,52]. Here, we consider N noninteracting fermions,
with the single-particle Hamiltonian in the rotating frame
given by [53,54]

Ĥ = p2

2m
+ V (r) − �Lz, (1)

where � is the frequency of the rotating trap, Lz = xpy −
ypx = −i(x∂y − y∂x ) is the z-component of the angular mo-
mentum, and V (r) is a confining central potential of the form

V (r) = 1

2
mω2r2 + γ

2r2
, γ � 0. (2)

We set the dimensionless ratio ν = �/ω in the range 0 <

ν < 1, such that the fermions stay confined (when ν > 1,
the fermions “fly off” and the system is unstable). In this
model, the spatial density of N noninteracting fermions at

2469-9926/2023/107(2)/023302(16) 023302-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.023302&domain=pdf&date_stamp=2023-02-03
https://doi.org/10.1103/PhysRevA.103.033321
https://doi.org/10.1103/PhysRevA.107.023302


MANAS KULKARNI et al. PHYSICAL REVIEW A 107, 023302 (2023)

FIG. 1. Top: The external potential V (r) = 1
2 ω2r2 + γ

2r2 from
Eq. (2) is plotted in the 2D plane. We choose c = 10 and N = 400,
which means γ = c N = 4 × 103. We see the highly repulsive central
potential that creates a hole (a depleted region devoid of particles) at
the center in the density profile shown in the bottom figure. Bottom:
A 3D representation of the exact density in Eq. (13). A hole around
the origin is surrounded by a multilayered “wedding-cake” struc-
ture. We choose c = 0.5, M = 30, and N = 8000, which leads to
three layers in this case. The normalization condition Eq. (27) gives
μ = 9.48.

zero temperature in the limit of large N was recently stud-
ied in Refs. [38,40], and a very interesting “wedding-cake”
structure was unveiled—this is recalled in Sec. II (see Fig. 1).
The purpose of this paper is to extend these results to finite
temperature.

We briefly summarize our main results. As in the zero-
temperature case, we find that for an appropriate large-N limit
to exist, one suitable way to scale the two parameters, γ and
ν = �/ω for large N , is

c = γ

N
and M = (1 − ν2) N, (3)

such that c and M are both of order O(1) as N → ∞ (Table I).
We compute the average density of fermions for any finite N ,
and we show how the “wedding-cake” structure seen at zero
temperature gets modified. We derive the finite-temperature

TABLE I. Summary of some results and typical order of param-
eters.

Some important results, parameters, and their orders

ν = �/ω ν ∼ 1

γ = cN c ∼ O(1)

M = (1 − ν2)N M ∼ O(1)

r = z
√

N z ∼ O(1)

μβ ∼ O(1) From Eqs. (A16) and (A15)

λ±(k) ∼ O(1) From Eq. (A19)

u ∼ O(1) Edge variable [see Eqs. (B3) and (B5)]

Large-N density Eqs. (A14) and (A15)

Edge density Eqs. (B18) and (B19)

Normalization condition Eq. (A16)

extensions of the bulk and the edge density. We find that
the layered structure in the bulk gets affected by increasing
temperature only when the temperature is of O(1). In contrast,
the edge density profile shows visible changes at a much lower
temperature of O(1/

√
N ). Hence, the edges of the wedding

cake are more sensitive to temperature fluctuations than the
bulk. We then generalize these results by choosing the confin-
ing potential of the form

V (r) = 1

2
mω2r2 + v

(
r√
N

)
, (4)

where v(z) is a smooth function. We demonstrate that the
bulk and edge scaling functions at any finite temperature are
universal, i.e., independent of v(z), up to nonuniversal scale
factors that depend on the details of v(z).

The rest of the paper is organized as follows. In Sec. II
we recall some zero-temperature properties. In Sec. III we
discuss the density profiles at finite temperature both in the
bulk (Sec. III A) and the edge (Sec. III B). The case of general
potential is studied in Sec. IV. We summarize our results along
with an outlook in Sec. V. Certain details are relegated to the
Appendixes.

II. RECALLING THE ZERO-TEMPERATURE
PROPERTIES

In this section, we briefly recall the zero-temperature prop-
erties of this model, studied recently in Ref. [38]. We start with
the Hamiltonian given in Eqs. (1) and (2). The eigenfunctions
and eigenvalues of this Hamiltonian can be computed exactly
in polar coordinates. Setting m = h̄ = 1, the solutions of the
Schrödinger equation Ĥψk,l (r, θ ) = Ek,lψk,l (r, θ ) are given
by [38]

ψk,l (r, θ ) = ak,l L
λ
k (r2)rλe−r2/2eilθ with λ =

√
γ + l2, (5)

where Lλ
k (x) are the generalized Laguerre polynomials, and

the normalization gives

ak,l =
√

�(k + 1)

π�(k + 1 + λ)
. (6)
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FIG. 2. Energy levels Ek,l in Eq. (7) vs l for k = 0, 1, 2, 3, 4,
and with the choice of parameters γ = 10 and ν = 0.9. The black
(dashed) horizontal line marks the Fermi level, μ = 7.5 (at zero
temperature, i.e., when β → ∞). Only the states with energy below
μ contribute to the ground-state density profile. Hence, in this case,
k∗ = 2, where k∗ denotes the highest occupied Landau level.

The associated eigenvalues, in units of ω, are given by

Ek,l = 2k + 1 +
√

γ + l2 − νl, (7)

where we recall that ν = �/ω. The single-particle states are
labeled by a pair of integers (k, l ) with k = 0, 1, 2, . . . and
l = 0,±1,±2, . . . . The label k is the analog of the kth Lan-
dau level. At zero temperature, due to the Pauli exclusion
principle, the fermions occupy the N lowest single-particle
energy levels of the spectrum in Fig. 2. We denote by μ the
Fermi level, corresponding to the highest occupied single-
particle state. For a given μ, we see in Fig. 2 that the kth band
with k � k∗, where k∗ refers to the highest occupied Landau
level, intersects the value μ at two points l±(k). Thus one can
write, for all k � k∗,

μ = Ek,l−(k) = Ek,l+(k). (8)

At zero temperature, the ground-state many-body wave
function 
0(r1, r2, . . . , rN ) is given by the N × N Slater
determinant built from the N occupied single-particle wave
functions


0(r1, r2, . . . , rN ) = 1√
N!

det
1�i, j�N

ψi(r j ), (9)

where the index “i” refers here to the ith occupied single-
particle state. The joint probability density of the positions,
characterizing the quantum fluctuations at T = 0, is given by

P0(r1, r2, . . . , rN ) = |
0(r1, r2, . . . , rN )|2. (10)

The average density, normalized to N , is then given by

ρ(r, N ) =
N∑

i=1

∫
δ(r − ri )P0(r1, r2, . . . , rN )

N∏
j=1

dr j, (11)

where the integral in Eq. (11) runs over all space. Using the
determinantal structure from Eq. (9), it is easy to show that
the average density can be expressed in terms of the occupied

single-particle eigenfunctions as

ρ(r, N ) =
k∗∑

k=0

l+(k)∑
l=l−(k)

|ψk,l (r, θ )|2, (12)

where the sums over (k, l ) run over the N occupied single-
particle levels. One can show that this density is isotropic and
depends only on the distance r from the center of the trap, i.e.,
ρ(r, N ) = ρ(r, N ). Substituting the explicit expression for the
eigenfunctions in Eq. (5) into Eq. (12), one gets the exact
density profile for any N ,

ρ(r, N ) = e−r2

π

k∗∑
k=0

l+(k)∑
l=l−(k)

�(k + 1)[Lλ
k (r2)]2 r2λ

�(λ + k + 1)
. (13)

When plotted as a function of r for fixed N , this expression in
Eq. (13) exhibits a “wedding-cake” structure (see Fig. 1). The
density has a hole near the center, with radius of order O(

√
N ),

and the fermions are arranged outside the hole in a layered
structure with each occupied Landau level contributing to a
new layer with decreasing support characterized by

√
l±(k).

Thus the same l±(k) that characterizes the occupied k levels
in the energy space in Eq. (8) also appear in the expression
for the density in the real space [38]. For large N , using the
scaling in Eq. (3), these edges behave as

l±(k) ≈ λ±(k) N, (14)

where

λ±(k) = (μ − 2k − 1) ±
√

(μ − 2k − 1)2 − c M

M
, (15)

and the Fermi level μ ∼ O(1). Therefore, the density in the
kth layer, expressed in terms of z = r/

√
N , becomes indepen-

dent of N in the large-N limit and is given by

ρbulk
k (r = z

√
N ) = 1

π
I√

λ−(k)<z<
√

λ+(k), (16)

where the indicator function I takes the value 1 if the inequal-
ity in the subscript of Eq. (16) is satisfied and 0 otherwise. The
total density is obtained by summing over all k bands up to k∗,

ρbulk (r = z
√

N ) = 1

π

k∗∑
k=0

I√
λ−(k)<z<

√
λ+(k), (17)

where we recall that k∗ is the highest occupied Landau level.
In this paper, we ask how this density profile at zero tem-

perature gets modified when a finite temperature is switched
on. For example, does the finite temperature destroy this
“wedding-cake” structure? Surprisingly, we will see that this
“wedding-cake” structure is rather stable with increasing
temperature: it essentially gets smeared, as long as the tem-
perature is not too high. However, the density profile near
the edges shows visible changes at a much lower temperature
compared to the bulk. We also find that there is a remarkable
universality of the associated scaling functions at finite tem-
perature both in the bulk and at the edges of the “wedding
cake.”
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III. DENSITY PROFILE AT FINITE TEMPERATURE

In this section, we analyze the effects of a finite tempera-
ture. For this, let us recall that the joint probability distribution
function (PDF) of the positions of the N particles in the
canonical ensemble is given by (e.g., see Ref. [9])

PT (r1, r2, . . . , rN ) = 1

ZN (β )

∑
E

e−βE |
E (r1, r2, . . . , rN )|2,

(18)

where β denotes the inverse temperature and E denotes the
energy of a many-body eigenstate 
E (r1, r2, . . . , rN ), i.e., a
Slater determinant—similar to Eq. (9)—but built from any
combination of N single-particle wave functions as given in
Eq. (5). One can thus write

E =
∞∑

k=0

∞∑
l=−∞

nk,l Ek,l , (19)

where Ek,l ’s are the single-particle energy levels given in
Eq. (7), and nk,l = 0, 1 denotes the occupation number of the
single-particle state labeled by (k, l ). In Eq. (18), the sum over
E runs over all such possible N-particle states such that

∞∑
k=0

∞∑
l=−∞

nk,l = N, (20)

and ZN (β ) is the canonical partition function that normalizes
the joint PDF PT (r1, r2, . . . , rN ), and it is given by

ZN (β ) =
∑

E

e−βE . (21)

In the limit T → 0, i.e., β → ∞, the sum in Eq. (18) is
dominated by the ground-state configuration, and it repro-
duces the T = 0 result given in Eq. (10). The average density
at finite temperature is then given by Eq. (11), substituting
P0(r1, r2, . . . , rN ) by PT (r1, r2, . . . , rN ) given in Eq. (18).
This is the so-called canonical ensemble, which, however,
is hard to analyze for a fixed N due to the hard constraint∑

k,l nk,l = N ; see, e.g., Ref. [55]. It is therefore advantageous
to work in the grand-canonical ensemble where N is allowed
to fluctuate with an additional weight factor eμβN , where μβ

is the chemical potential. One then determines the chemical
potential μβ from the condition that the total number of par-
ticles, on an average, is given by N . In the limit of large N ,
the canonical and grand-canonical ensembles are expected to
become equivalent (at least for averaged quantities [30]). For
a detailed discussion, see Ref. [9].

Working in the grand-canonical ensemble, the average den-
sity can be shown to be given by [9]

ρ(r, μβ ) =
∞∑

k=0

∞∑
l=−∞

〈nk,l〉|ψk,l (r, θ )|2, (22)

where

〈nk,l〉 = 1

eβ(Ek,l −μβ ) + 1
(23)

is the Fermi factor. As discussed earlier, one can extract the
results for the canonical ensemble from the grand-canonical

FIG. 3. Finite-temperature density profile along a radial cut as a
function of the scaled radial distance z = r/

√
N obtained by direct

enumeration of Eqs. (28) and (29). The values of the parameters
used are c = 0.5, ν = 0.998, β = 15.0, N = 8000. This is a three-
layered smeared “wedding cake.” From the normalization condition
[Eq. (27)], the corresponding chemical potential turns out to be
μβ ∼ 9.48.

one by setting the average number of particles to be equal to
N , i.e.,

N =
∞∑

k=0

∞∑
l=−∞

〈nk,l〉 =
∞∑

k=0

∞∑
l=−∞

1

eβ(Ek,l −μβ ) + 1
. (24)

Note that, using the isotropy of the average density, the nor-
malization condition [Eq. (24)] translates into

2π

∫ ∞

0
ρ(r, μβ ) r dr = N. (25)

Using the relation in Eq. (24) connecting μβ and N , the
density in the canonical ensemble is then given by

ρ(r, N ) ≈ ρ(r, μβ ). (26)

Consequently, the relation in Eq. (25) implies

2π

∫ ∞

0
ρ(r, N ) r dr = N. (27)

Injecting the explicit form of the eigenfunctions in Eq. (5)
together with Eq. (23) in Eq. (22), one finds

ρ(r, N ) =
∞∑

k=0

ρk (r, N ), (28)

where ρk (r, N ) denotes the contribution to the density from
the kth Landau level and is given by

ρk (r, N ) = �(k+ 1) e−r2

π

∞∑
l=−∞

[
Lλ

k (r2)
]2

r2λ

�(λ+ k+ 1)[1+ eβ(Ek,l −μβ )]
,

(29)

where we recall that λ =
√

γ + l2. Note that this result in
Eqs. (28) and (29) is exact in the grand-canonical ensemble
for any μβ , while it is exact in the canonical ensemble only in
the large-N limit—provided the relation in Eq. (24). In Fig. 3,
we show the density profile obtained from a direct numerical
evaluation of the sums in Eqs. (28) and (29).
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In the following, we will analyze this formula [Eq. (29)]
first in the “bulk regime,” where r ∼ O(

√
N ) and the density

is of order O(1). The bulk of this density is supported over a
finite region, which we will call the bulk region. At the borders
of this bulk regime, the density becomes very small, and we
call this region the “edge regime.” In the next two subsections,
we discuss the bulk and then the edge regimes separately.

A. Bulk regime

In Appendix A, we analyze these Eqs. (28) and (29) setting
r = z

√
N and taking the large-N limit while keeping z fixed.

We show that the bulk density profile takes the scaling form

ρbulk (r, N ) ≈ f bulk

(
r√
N

)
, (30)

where

f bulk (z) =
∞∑

k=0

f bulk
k (z) = 1

π

∞∑
k=0

1

1 + eβ(2k+1+ Mz2
2 + c

2z2 −μβ )
.

(31)

Note that the normalization condition in Eq. (27) translates
into

2π

∫ ∞

0
f bulk (z) zdz = 1. (32)

The value of the chemical potential μβ in Eq. (31) is fixed
from the normalization condition in (32). Equation (30) along
with Eq. (31) are part of the main results of this work. From
the normalization condition Eqs. (32) and (31), it is clear
that μβ ∼ O(1) when β ∼ O(1). The “Fermi factor” form
in Eq. (31) depends both on the spatial coordinate z and the
Landau level k and results in the smearing of the “wedding
cake” that was obtained in Ref. [38] at zero temperature. In
Fig. 4, we show a plot of the scaling function f bulk (z) for
three different temperatures. One sees that, as temperature in-
creases, the sharp edges of the zero-temperature profile smear
out.

It is worth noting from Eqs. (30) and (31) that, for the bulk
density, nontrivial effects due to a finite temperature occur
when β ∼ O(1). This can be understood by the following
heuristic argument. In the bulk (recalling that r = z

√
N), in

a disk of area A ∼ O(N ), there are NA ∼ O(N ) fermions. This
implies that the typical interparticle spacing between fermions
in the bulk is ā ∼ O(1). To understand the relative effects
of the quantum versus thermal fluctuations, it is useful to
compare this interparticle spacing to the de Broglie wave-
length associated with a single fermion. If the de Broglie
wavelength is bigger than the interparticle spacing, quantum
effects are dominant, while in the opposite case thermal fluctu-
ations dominate. Since the de Broglie wavelength scales with
temperature as λD ∝ 1/

√
T , we find comparing ā ∼ λD that

the temperature T ∼ O(1) in order for the thermal fluctuations
to dominate. Thus, beyond this temperature scale, the system
starts to behave classically.

Let us make a couple of remarks concerning the chemical
potential μβ , which is obtained from the normalization con-
dition in Eq. (32). For β → ∞ (i.e., T → 0) the chemical
potential reaches a constant μ∞, which coincides with the
Fermi level μ given in Eq. (8), which translates [using Eq. (7)]

FIG. 4. Top: Large-N bulk density profile using Eqs. (30)
and (31) for three different values of temperature T = 0 (red,
dashed), T = 1/15 (black, dotted), and T = 1/4 (green, solid). The
values of the parameters used are c = 1.0 and M = 30. This is a
three-layered smeared “wedding cake.” Bottom: A 3D representation
of the above large-N bulk density profile for T = 1/15. The smearing
of the “wedding cake” can be clearly seen. In the bottom figure, the
density profile along a cut in a radial direction is given by the top
panel of the figure.

FIG. 5. Plot of μβ vs β obtained by solving numerically
Eqs. (31) and (32) for c = 1 and M = 10.
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into

2k + 1 + M

2
λ∓(k) + c

2λ∓(k)
− μ∞ = 0. (33)

When we increase the temperature, i.e., reduce β, the
chemical potential μβ remains extremely robust and stays
quite close to μ∞ (see Fig. 5). This is why, even for a rea-
sonable finite temperature, the notion of layers seen in the
zero-temperature case still persists. In Appendix C, we derive
the asymptotic behavior of μβ ,

μβ ≈
⎧⎨
⎩

μ∞ − 1

Int
[

μ∞
2

] 1
β

e−A β when β → ∞,

2 log(β )
β

when β → 0,
(34)

where A is a constant, i.e., independent of β, given in
Eq. (C11).

It is easy to see that, in the T → 0 limit, the expression for
the density in Eqs. (30) and (31) gives back the ground-state
result obtained in Ref. [38]. Indeed, in this limit the “Fermi-
factor” forms reduce to indicator functions. On the other
hand, in the high-temperature limit, one recovers the classical
Gibbs-Boltzmann distribution for independent particles in the
external potential V (r = z

√
N ) (see Appendix A for details).

We conclude this subsection by discussing the small and
large arguments behavior of the scaling function f bulk (z) in
Eq. (31). In the limit z → 0, it is easy to see that f bulk (z) has
an essential singularity, leading to

f bulk (z) ≈ Bβ e− βc
2z2 for z → 0, (35)

where

Bβ = eβμβ

2π sinh(β )
. (36)

On the other hand, for large z, one finds

f bulk (z) ≈ Bβ e− βMz2

2 for z → ∞, (37)

with the same amplitude Bβ given in Eq. (36).

B. Edge regime

We will now investigate the behavior of the density at
the “edges” of the smeared “wedding cake.” At T = 0, the
positions of the inner and outer edges associated with the kth
level are located at

√
l∓(k) ≈ √

λ∓(k)N , where

λ±(k) = (μ∞ − 2k − 1) ±
√

(μ∞ − 2k − 1)2 − cM

M
. (38)

We start with the exact expression for ρk (r, N ) in Eq. (29) and
set

r ≈
√

λ∓(k)N + u√
2

at the inner/outer edge, (39)

where u ∼ O(1) denotes the distance from the inner/outer
edge at T = 0. We find that for large N (see Appendix B for
details), the density can be approximated as

ρ
inner/outer edge
k (r, θ, N ) → f inner/outer edge

k (u, N ), (40)

with

f inner/outer edge
k (u, N ) = 2−k

π3/2�(k + 1)

∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eβ(2k+1+ M
2 λ∓(k)+ c

2λ∓ (k) −μβ )e
( β√

2N
(u+x)

√
λ∓(k)[M− c

λ∓ (k)2
])
, (41)

where, again, the ∓ subscript refers to the inner/outer edges
and where Hk (x) is the Hermite polynomial of index k.

From Eq. (41), we note that in order for the edge density
to approach an N-independent scaling form for large N , one
needs to scale β ∼ √

N . In this case, the argument of the
second exponential in the denominator becomes independent
of N . Additionally, when β ∼ √

N , the argument of the first
exponent in the denominator in Eq. (41) vanishes due to
Eqs. (33) and (34). The N-independent edge scaling function
is then given by

f inner/outer edge
k (u) = 2−k

π3/2�(k + 1)

∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eb∓ (u+x)
,

(42)

where

b∓ = β̃
√

λ∓(k)

(
M − c

λ∓(k)2

)
, (43)

with β̃ = β/
√

2N . Thus b∓ can be interpreted as an “effective
inverse temperature.” We show in Appendix B that b− < 0
and b+ > 0 corresponding, respectively, to the inner and outer
edges of the kth layer.

Note that the effective inverse temperature b∓ is different
for the two edges of the same plateau indexed by k. At zero

temperature, the Fermi factor reduces to a step function. One
can verify that, in this limit, the formula in Eq. (42) repro-
duces the result in Ref. [38]. This is detailed in Appendix B.
Interestingly, one can check that, at zero temperature, there is
a mirror symmetry between the inner and the outer edges of a
given plateau. Indeed, the scaling function in Eq. (42), in the
limit β → ∞, satisfies the mirror symmetry [see Eq. (B26) in
Appendix B]

f inner-edge
k (u) = f outer-edge

k (−u). (44)

By contrast, one sees from Eq. (43) that, at finite temperature
of order 1/

√
N , there is a smearing effect of the two edges of

a given plateau, which is asymmetric as compared to the zero-
temperature limit. We have plotted the inner-edge density
profile in Eq. (42)—taking the negative sign—for different
values of k and fixed temperature (in Fig. 6) and also for
different values of temperature with fixed k = 2 (in Fig. 7).
From Fig. 7, we see that, as temperature decreases, the edge
density profile gets steeper and steeper.

We conclude this section by providing a heuristic expla-
nation for the nontrivial finding that β ∼ O(

√
N ) for edge

effects to be visible. For this purpose, it is useful to rewrite

023302-6



DENSITY PROFILE OF NONINTERACTING FERMIONS IN … PHYSICAL REVIEW A 107, 023302 (2023)

-

FIG. 6. Finite-temperature large-N edge density profile (for the
inner edge) using Eq. (42) for k = 0, 1, 2 (red, black and blue from
bottom to top). The values of the parameters used are c = 1.0, M =
30, β = 50, N = 4000, β̃ = β/

√
N = 0.56. From the normaliza-

tion condition [Eq. (32)], the corresponding chemical potential is
μβ ≈ 10.73. Note that the plots are vertically translated by 1/π for a
better visualization.

the Hamiltonian in Eq. (1) in the following form [40]:

Ĥ = 1

2
(p − A)2 + γ

2r2
+ 1

2
ω2r2(1 − ν2), (45)

where A is the vector potential (�y,−�x). For our discus-
sion here, we can set γ = 0 since it turns out not to have
any consequence. Note that when there is no rotation (i.e.,
� → 0, ν → 0), the density forms a “cap” [9]. Without ro-
tation, the inverse temperature scale at the edge turns out to
be β ∼ N1/6 (from Ref. [22]), which certainly suggests that
the scale β ∼ N1/2 owes its origin to the rotation.

The edge sensitivity turns out to be solely due to rotation.
To see this, we analyze the last term in Eq. (45). Using Eq. (3),
this last term simplifies to

1

2
ω2r2(1 − ν2) ≈ M

2N
ω2r2. (46)

Furthermore, near the edge, using Eq. (39), we have

r2 = λ+(k)N +
√

2λ+(k)Nu, (47)

FIG. 7. Finite-temperature large-N edge density profile (for the
inner edge) for k = 2. The values of the parameters used are c =
1.0, M = 30, N = 4000. Blue, red, and black lines (bottom to top)
represent β = 25, 50, 500, respectively. As temperature decreases,
the edge density profile becomes steeper and steeper. Note that the
plots are vertically translated by 1/π for a better visualization.

where u ∼ O(1). Hence, Eq. (46), in the edge regime, reduces
to

1

2
ω2r2(1 − ν2) ≈ Mω2

2
λ+(k) + Mω2

√
2

√
λ+(k)

u√
N

. (48)

Substituting Eq. (48) in the Hamiltonian in Eq. (45), one can
see that to sustain a spatial fluctuation u ∼ O(1) at the edge,
the cost of energy �H ∼ 1/

√
N . Comparing it to the ther-

mal energy of order β = 1/T , one gets the temperature scale
T ∼ 1/

√
N . If T > 1/

√
N , then the thermal fluctuations will

be too high and will wash away the effect of finer quantum
fluctuations in Eq. (41). Hence, for the zero-temperature edges
to still be visible, one can raise the temperature only up to
O(1/

√
N ), and not more than that.

We end this section by mentioning that a high-temperature
regime, where β ∼ 1/

√
N (hence quite different from the

regime studied here where β ∼ √
N), was considered in

Ref. [56]. It would be interesting to study the crossover be-
tween these two regimes.
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IV. GENERALIZATION TO A WIDE CLASS
OF POTENTIALS

In this section, we will show that our procedure can be
adapted to a wide class of potentials and not merely restricted
to external potentials of the form in Eq. (2). This is also
experimentally relevant since different trapping potentials can
be engineered. We consider a wide class of potentials of the
form

V (r) = 1

2
mω2r2 + v

(
r√
N

)
, (49)

where v(z) can be an arbitrary smooth function. In the previ-
ous sections, we have focused on the specific example v(z) =
c/2z2, but the results in this section are valid for a much wider
class of potentials v(z).

It turns out that both the bulk and the edge density profiles
can be computed for general potentials of the form in Eq. (49)
(for details, see Appendix D). The bulk scaling function for
the density [the analog of Eq. (31)] turns out to be

f bulk (z) =
∞∑

k=0

f bulk
k (z) = 1

π

∞∑
k=0

1

1 + eβ[2k+1+ Mz2
2 +v(z)−μβ ]

.

(50)

Note that, in the zero-temperature limit, Eq. (50) becomes

f bulk (z) = 1

π

∞∑
k=0

θ

(
μ −

(
2k + 1 + M

2
z2 + v(z)

))
, (51)

where θ (x) is the Heaviside theta function. We note that the
general result in Eq. (50) valid for arbitrary v(z) indeed re-
duces to Eq. (31) for the case v(z) = c/(2z2).

Similarly, the edge density can also be generalized. To do
so, we need to expand about the corresponding edges ze of
T = 0, which are given by the solutions to the equation

M

2
z2

e + v(ze) + 2k + 1 = μ∞. (52)

After some algebra (see Appendix D for details), it turns out
that Eq. (42) gets generalized to

f inner/outer edge
k (u) = 2−k

π3/2�(k + 1)

×
∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eβ̃(u+x)(Mze+v′(ze ))
, (53)

where β̃ = β/
√

2N . The zero-temperature limit for the edge
density profile in the case of the general potential is detailed
in Appendix D. Note that for the specific case v(z) = c/(2z2),
one gets by solving Eq. (52) ze(k) = √

λ±(k) with λ±(k)
given in Eq. (15). With this result, Eq. (53) reduces to Eq. (42).

V. SUMMARY AND OUTLOOK

In this paper, we studied N noninteracting fermions in a
two-dimensional rotating trap in a general class of confining
potentials at finite temperature. We focused on the average
density of fermions and computed the universal large-N den-
sity both in the bulk and edge regimes. We believe that these
results will stimulate experimental measurements that can
confirm our findings.

It is interesting to investigate how new layers/droplets at
finite temperature get formed (nucleation) when one varies
parameters in the problem [38,57]. It would be interesting to
explore the finite-temperature properties of other observables
going beyond the average density. These include, for instance,
the two-point correlation functions and the full counting
statistics of a given domain. The full counting statistics have
been recently computed exactly at zero temperature for (i)
rotating noninteracting fermions [34,40] and related Ginibre
matrix ensembles [58,59], and (ii) for a class of interacting 1D
fermions exploiting connections to random matrices [60]. It
will also be interesting to explore how the universal structures
found here for noninteracting fermions get affected in the
presence of interactions and higher spatial dimensions. It will
be extremely interesting to study the nonequilibrium dynam-
ics of this system when subject to quenches. For example, in
the temperature quench one can suddenly cool the system (to
zero temperature) and ask how the finite-temperature density
evolves in time. Also, one can quench the trapping frequency
ω (say ω → 2ω) of the harmonic trap in Eq. (2) and study the
nonequilibrium dynamics.
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APPENDIX A: BULK DENSITY AS A FUNCTION
OF SPACE (LARGE N)

In this Appendix, we provide the details of the derivation
for Eq. (30) along with Eq. (31). In the large-N limit, we set
l = Ny and replace the discrete sum over l by an integral over
y in Eq. (29). This scaling is necessary to assure that ρ(r, N ) ∼
O(1) for large N . We will check this point for self-consistency
later. Furthermore, we scale r = z

√
N . With this change of

variable, we want to first express the summand in Eq. (29) as
a function of y for fixed z in the limit of large N . Let us start
with the quantity λ =

√
γ + l2. Recollecting that γ = cN and

setting l = Ny, we get for large N

λ ≈ Ny + c

2y
. (A1)
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Approximating the � function in Eq. (29) by the Stirling

formula �(w + 1) ∼ √
2π e(w+ 1

2 ) log(w)−w for any large argu-
ment w and setting r = z

√
N , we find to leading order in N

ρbulk
k (r, N ) ≈

√
N�(k + 1)

π
√

2π

×
∫ +∞

−∞

dy√
y

eN[y ln(z2/y)+y−z2](Ny)−k
[
LNy

k (z2N )
]2

1 + eβ(2k+1+ My
2 + c

2y −μβ )
. (A2)

We will now explain how we obtain the denominator in the
integrand of Eq. (A2). Note that, in the limit ν → 1, we get
[using Eq. (3)]

1 − ν ∼ M

2N
when ν → 1. (A3)

Therefore, Eq. (7) can be simplified as

Ek,l = 2k + 1 +
√

γ + l2 − νl

= 2k + 1 +
√

cN + N2y2 − νNy

≈ 2k + 1 + My

2
+ c

2y
. (A4)

Equation (A4) yields the denominator in the integrand of
Eq. (A2). Note that the chemical potential μβ is still depen-
dent on temperature. In the large-N limit, the integral over y in
Eq. (A2) is dominated by a saddle point at y = z2. Therefore,
it is natural to make the change of variable (from y to x)

y = z2 +
√

2

N
x z. (A5)

Hence, we get [multiplying Eq. (A5) by N on both sides and
simplifying]

Nz2 ≈ Ny − x
√

2Ny. (A6)

The choice of coefficients in Eq. (A5) or Eq. (A6) was made
so that we can use the following remarkable limiting formula
for the generalized Laguerre polynomials:

lim
λ→∞

λ−k/2Lλ
k (λ −

√
2λx) = 2−k/2

�(k + 1)
Hk (x), (A7)

where Hk (x) is the Hermite polynomial of index k. Substitut-
ing λ ≈ Ny [see Eq. (A1)] and using Eq. (A6), we find, using
Eq. (A7), that

lim
N→∞

(N y)−k
[
LNy

k (Ny − x
√

2Ny)
]2 = 2−k

[�(k + 1)]2
H2

k (x).

(A8)

Thus, the integral in Eq. (A2) reads

ρbulk
k (r, N ) ≈ 2−k

π3/2�(k + 1)

×
∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eβ(2k+1+ Mz2
2 + c

2z2 −μβ )
. (A9)

Note that the denominator in the integrand of Eq. (A9) comes
from the following relation [using Eq. (A5)]:

My

2
+ c

2y
≈ Mz2

2
+ c

2z2
. (A10)

We recollect the normalization condition satisfied by Her-
mite polynomials to be∫ ∞

−∞
dx e−x2

[Hk (x)]2 = 2k�(k + 1)
√

π. (A11)

Using Eq. (A11), we can write the final form of Eq. (A9)
as follows:

ρbulk
k (r, N ) = f bulk

k

(
r√
N

)
, (A12)

where

f bulk
k (z) = 1

π

1

1 + eβ(2k+1+ Mz2
2 + c

2z2 −μβ )
. (A13)

Therefore, if we sum over all k bands, we get

ρbulk (r, N ) = f bulk

(
r√
N

)
, (A14)

where

f bulk (z) =
∞∑

k=0

f bulk
k (z) = 1

π

∞∑
k=0

1

1 + eβ(2k+1+ Mz2
2 + c

2z2 −μβ )
.

(A15)

Note that μβ in Eq. (A15) is fixed by the normalization
condition

2π

∫ ∞

0
dz z f bulk (z) = 1. (A16)

We will end this section by discussing both the small and
the high-temperature limits of this expression [Eq. (A15)].

1. Zero-temperature limit

In this limit (β → ∞), for a nonzero density contribution,
the term in the parentheses of Eq. (A13) should be negative
(defining limβ→∞ μβ ≡ μ∞),

2k + 1 + Mz2

2
+ c

2z2
− μ∞ < 0 for each k. (A17)

This immediately yields√
λ−(k) < z <

√
λ+(k), (A18)

where

λ±(k) = (μ∞ − 2k − 1) ±
√

(μ∞ − 2k − 1)2 − cM

M
.

(A19)

This reproduces the zero-temperature results of Ref. [38]
where the density in each band was given by indicator func-
tions. In other words, in the β → ∞ limit, Eq. (A12) becomes

ρbulk
k (r, N ) = 1

π
I√

λ−(k)<z<
√

λ+(k), (A20)

where the indicator function I takes the value 1 if the inequal-
ity in the subscript of Eq. (A20) is satisfied and 0 otherwise.

2. High-temperature limit

We now discuss the high-temperature limit. We start with
Eqs. (A14) and (A15). Note that in the high-temperature limit
(β → 0), the summation in Eq. (A15) can be replaced by an
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integral. Let us introduce βk = q. Then Eq. (A14) becomes

ρbulk (r, N ) = 1

πβ

∫ ∞

0
dq

1

1 + eβ( Mz2
2 + c

2z2 −μβ )+2q

= 1

2πβ
log

[
1 + �βe−β( Mz2

2 + c
2z2 )]

, (A21)

where �β = eβμβ . In Appendix C 2, we argue in detail that
�β is small (in the large temperature limit) facilitating the
expansion of the logarithm in Eq. (A21), i.e., log[1 + ε] ≈ ε

for some small ε.
In the high-temperature limit, the density then becomes

ρ(r, N ) = �β

2πβ
e−β( Mz2

2 + c
2z2 ) for β → 0. (A22)

Note that μβ in �β is obtained using the normalization
condition Eq. (27). We therefore successfully recover the
expectation of classical Gibbs-Boltzmann distribution for ex-
ternal potential in the high-temperature limit [Eq. (A22)].

APPENDIX B: EDGE DENSITY AS A FUNCTION
OF SPACE (LARGE N)

In this Appendix, we will investigate the density behavior
at the “edges” of the smeared wedding cake. To do so, we will
start with Eq. (A2). We will make the following change of the
integrating variable (y) in Eq. (A2) from y to x:

y = z2 +
√

2

N
x z. (B1)

Equation (A2) then becomes [using Eq. (B1)]

ρ
edge
k (r, N ) ≈ 2−k

π3/2�(k + 1)

×
∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + e
β

[
2k+1+ M

2 (z2+
√

2
N xz)+ c

2(z2+
√

2
N xz)

−μβ

] .

(B2)

1. Left/inner edge

We will first discuss the left/inner edge. Since we are
interested in the edge, we go to new variable u ∼ O(1) in the
following manner:

z2 = λ−(k) +
√

2λ−(k)

N
u, (B3)

where λ−(k) is given in Eq. (A19). We can of course follow
the same procedure for the right edge also (Appendix B 2).
Let us elaborate Eq. (B3) in terms of the original variable r.
Equation (B3) implies

r2 = λ−(k)N +
√

2λ−(k)Nu, (B4)

which essentially means

r ≈
√

λ−(k)N + u√
2
, (B5)

where u ∼ O(1). This means that probing the edge implies
going to a distance of

√
λ−(k)N and then zooming in at

u ∼ O(1). From Eq. (B3) one can show that [this is needed
to simplify Eq. (B2) further]

z2 +
√

2

N
xz = λ−(k) +

√
2λ−(k)

N
(u + x) (B6)

and

1

z2 +
√

2
N xz

= 1

λ−(k)

(
1 −

√
2

λ−(k)N
(u + x)

)
. (B7)

Plugging in Eqs. (B6) and (B7) in Eq. (B2), we get

ρ
inner-edge
k (r, N ) → f inner-edge

k (u, N ), (B8)

where

f inner-edge
k (u, N ) ≈ 2−k

π3/2�(k + 1)

∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eβ

(
2k+1+ M

2 λ−(k)+ c
2λ− (k) −μβ

)
e

(
β√
2N

(u+x)
√

λ−(k)
[

M− c
λ− (k)2

]) . (B9)

Zero-temperature limit for the left/inner edge: In Eq. (B9),
note that the denominator has two exponential pieces. Let
us compute the zero-temperature limit to see if we recover
previous results in Ref. [38]. In the limit β → ∞, the first
exponent becomes 1 because

lim
β→∞

[
2k + 1 + M

2
λ−(k) + c

2λ−(k)
− μβ

]
= 0. (B10)

In fact, Eq. (B10) is exactly how one of the roots of λ(k), i.e.,
λ−(k) is determined [see also Eqs. (A17) and (A18)]. Also,
in the T → 0 limit, the quantity in Eq. (B9) survives only
when x > −u. This is because the identity below is always
satisfied,

M − c

λ−(k)2
< 0. (B11)

Let us now prove the inequality in Eq. (B11), which can
also be written as λ−(k)2 < c

M . This further implies [using
Eq. (B10) and setting μ̃ = μ∞ − 2k − 1]

2μ̃2 − Mc − 2μ̃
√

μ̃2 − Mc < Mc

⇒ 2(μ̃2 − Mc) − 2μ̃
√

μ̃2 − Mc < 0

⇒ 2
√

μ̃2 − Mc[
√

μ̃2 − Mc − μ̃] < 0. (B12)

The last line in Eq. (B12) is always true, and hence we have
proved the inequality in Eq. (B11). Due to this inequality, the
zero-temperature limit of Eq. (B9) finally becomes

ρ
inner-edge
k (r, N ) → f inner-edge

k (u) for T → 0, (B13)
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where

f inner-edge
k (u) = 2−k

π3/2�(k + 1)

∫ ∞

−u
dx e−x2

[Hk (x)]2. (B14)

Recall from Eq. (B3) that

u =
√

N

2λ−(k)

(
r2

N
− λ−(k)

)
. (B15)

Equation (B14) is exactly the zero-temperature result obtained
in Ref. [38].

2. Right/outer edge

In this subsection, we discuss the right/outer edge. The
procedure is similar to that followed in Appendix B 1. The

difference is that we go to new variable u in the following
manner:

z2 = λ+(k) +
√

2λ+(k)

N
u, (B16)

which essentially in the original variable r = z
√

N means

r ≈
√

λ+(k)N + u√
2
. (B17)

The final answer can be summarized as

ρ
outer-edge
k (r, N ) → f outer-edge

k (u, N ), (B18)

where

f outer-edge
k (u, N ) = 2−k

π3/2�(k + 1)

∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eβ

(
2k+1+ M

2 λ+(k)+ c
2λ+ (k) −μβ

)
e

(
β√
2N

(u+x)
√

λ+(k)[M− c
λ+ (k)2

]
) . (B19)

Zero-temperature limit for the right/outer edge: Here, we
will recover the zero-temperature limit of the outer edge. In
Eq. (B19), note that the denominator again has two exponen-
tial pieces. Let us compute the zero-temperature limit to see if
we recover previous results in Ref. [38]. In the limit β → ∞,
the first exponent becomes 1 because

lim
β→∞

[
2k + 1 + M

2
λ+(k) + c

2λ+(k)
− μβ

]
= 0. (B20)

In fact, Eq. (B20) is exactly how the other root of λ(k), i.e.,
λ+(k) is determined [see also Eqs. (A17) and (A18)]. Also,
in the T → 0 limit, the quantity in Eq. (B19) survives only
when x < −u. This is because the following identity is always
satisfied:

M − c

λ+(k)2
> 0. (B21)

Let us now prove the inequality in Eq. (B11), which can
also be written as λ+(k)2 > c

M . This further implies [using
Eq. (B20) and setting μ̃ = μ∞ − 2k − 1]

2μ̃2 − Mc + 2μ̃
√

μ̃2 − Mc > Mc

⇒ 2(μ̃2 − Mc) + 2μ̃
√

μ̃2 − Mc > 0

⇒ 2
√

μ̃2 − Mc[
√

μ̃2 − Mc + μ̃] > 0. (B22)

The last line in Eq. (B22) is always true, and hence we have
proved the inequality in Eq. (B21). Due to this inequality, the
zero-temperature limit of Eq. (B19) finally becomes

ρ
outer-edge
k (r, θ, N ) → f outer-edge

k (u) for T → 0, (B23)

where

f outer-edge
k (u) = 2−k

π3/2�(k + 1)

∫ −u

−∞
dx e−x2

[Hk (x)]2.

(B24)

Recall from Eq. (B3) that

u =
√

N

2λ+(k)

(
r2

N
− λ+(k)

)
. (B25)

Equation (B24) is exactly the zero-temperature results ob-
tained in Ref. [38] (although it was not explicitly written there
for the right/outer edge). We note a special symmetry of the
scaling function characterizing the edge density profiles on the
left and the right of a plateau at zero temperature. Indeed, by
comparing Eqs. (B14) and (B24), we see that

f inner-edge
k (u) = f outer-edge

k (−u). (B26)

APPENDIX C: TEMPERATURE DEPENDENCE OF
THE CHEMICAL POTENTIAL μβ

1. The low-temperature limit β → ∞
In this Appendix, we discuss the behavior of the chemical

potential μβ given by the normalization condition [Eq. (A16)]
in the limit β → ∞.

It is important to make some comments regarding the
first exponent in the denominator of Eq. (B19). Note that,
for nontrivial spatial edge behavior, the second exponent in
the denominator of Eq. (B19) should survive. This means
β ∼ O(

√
N ). If this is the case, let us see what happens to

the first exponent in the denominator. For this discussion, the
repulsive γ term is of no consequence and hence we set it to
0 (i.e., c → 0). Note that working with the right/outer edge is
convenient. We want to argue that if β ∼ O(

√
N ), then

μβ = μ∞ + O(e−β ). (C1)

If Eq. (C1) holds, then the first exponent in the denominator
of Eq. (B19) becomes 1 because the term in the parentheses is
zero since

2k + 1 + M

2
λ+(k) + c

2λ+(k)
− μ∞ = 0. (C2)
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We now need to argue that Eq. (C1) holds. The statement
essentially means that if β is tuned from ∞ (i.e., if temper-
ature is raised from 0), the change in chemical potential is
rather insignificant, i.e., it has exponential corrections ∼e−1/T .

Note that the normalization condition Eq. (A16) can be
recast as (assuming c → 0 without loss of generality)

1 = 2π
1

π

∞∑
k=0

∫ ∞

0
dz z

1

1 + eβ(2k+1+ Mz2
2 −μβ )

. (C3)

Using a change of variables p = z2, we get

1 =
∞∑

k=0

∫ ∞

0
d p

1

1 + eβ(2k+1+ M p
2 −μβ )

= 2

Mβ

∞∑
k=0

log
[
1 + e−β(2k+1−μβ )

]
. (C4)

We will write Eq. (C4) in a more convenient form as

Mβ

2
=

Int[
μβ −1

2 ]∑
k=0

log
[
1 + e−β(2k+1−μβ )

]

+
∞∑

k=Int[
μβ −1

2 +1]

log
[
1 + e−β(2k+1−μβ )

]
, (C5)

where “Int” denotes the floor function. This would further
imply

Mβ

2
=

Int[
μβ −1

2 ]∑
k=0

log
[(

eβ(μβ−2k−1))(1 + e−β(μβ−2k−1))]

+
∞∑

k=Int[
μβ −1

2 +1]

log
[
1 + e−β(2k+1−μβ )

]
. (C6)

After some simplification (and assuming large β, which helps
us to use log[1 + ε] ≈ ε for some small ε), we get

M

2
=

Int[
μβ −1

2 ]∑
k=0

(μβ − 2k − 1) + 1

β

Int[
μβ −1

2 ]∑
k=0

e−β(μβ−2k−1)

+ 1

β

∞∑
k=Int[

μβ −1

2 +1]

e−β(2k+1−μβ ). (C7)

It should be noted that henceforth we will assume that μβ−1
2 is

not an integer.
Let us now make the expansion (about zero temperature),

μβ = μ∞ + δμ. (C8)

Note that at zero temperature (β → ∞), we have [38]

M

2
=

Int[ μ∞−1
2 ]∑

k=0

(μ∞ − 2k − 1). (C9)

Using Eqs. (C8) and (C9) in Eq. (C7), we get

Int

[
μ∞ − 1

2

]
δμ + 1

β
e−Aβ ≈ 0, (C10)

where A > 0 is given by

A = min

{
μ∞ − 2 Int

[
μ∞ − 1

2

]
− 1, (C11)

2 Int

[
μ∞ − 1

2

]
+ 3 − μ∞

}
. (C12)

Therefore, the large β behavior of μβ reads

μβ ≈ μ∞ − 1

Int
[

μ∞−1
2

] 1

β
e−A β. (C13)

2. High-temperature limit β → 0

We now discuss the high-temperature limit of μβ given by
the normalization condition in Eqs. (31) and (32). We first note
that in the high-temperature limit (β → 0), the discrete sum
in Eq. (31) can be replaced by an integral. Setting βk = q,
Eq. (31) becomes

f bulk (z) ≈ 1

πβ

∫ ∞

0
dq

1

1 + eβ( Mz2
2 + c

2z2 −μβ )+2q

= 1

2πβ
log

[
1 + e−β( Mz2

2 + c
2z2 −μβ )]

. (C14)

Injecting this Eq. (C14) in the normalization condition in
Eq. (32) yields

1 = 1

β

∫ ∞

0
dz z log

[
1 + e−β( Mz2

2 + c
2z2 −μβ )]

. (C15)

Performing a change of variable u = √
βz and keeping the

leading terms of small β, one gets

β2 =
∫ ∞

0
du u log

(
1 + �βe− M

2 u2)
(1 + o(1))

= − 1

M
Li2(−�β )(1 + o(1)), (C16)

where Li2(v) = ∑∞
k=1 vk/k2 is the polylogarithm function and

�β = eβμβ . Since −Li2(−v) is a monotonically increasing
function of z, for the right-hand side of Eq. (C16) to be
small [of order O(β2)], one needs to have �β also small.
Using the small v expansion −Li2(−v) = v + O(v2), we get
�β = Mβ2, which implies

μβ = 2
log(β )

β
(1 + o(1)). (C17)

APPENDIX D: THE CASE OF A GENERAL POTENTIAL

In this Appendix we give a detailed discussion for a more
general potential V (r). As in the case of a specific potential
in Eq. (2) discussed before, for a generic spherically symmet-
ric potential V (r), we can again decompose the Schrödinger
equation into the angular and radial sectors. We label the an-
gular eigenfunctions before by l = 0,±1,±2, . . . . For each
l the radial part of the wave function satisfies the effective
one-dimensional Schrödinger equation

Ĥlχk,l (r) = Ek,lχk,l (r), (D1)
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where Ĥl is the angular Hamiltonian in the sector with angular
momentum Lz = l . In units m = h̄ = 1, Ĥl reads

Ĥl = −1

2

(
∂2

r + 1

r
∂r

)
+ Vl (r), (D2)

where

Vl (r) = V (r) + l2

2r2
− �. (D3)

This one-dimensional Schrödinger equation [Eq. (D1)], for
fixed l , has energy levels that we label, as before, by k =
0, 1, 2, . . . [assuming that Vl (r) is confining, i.e., Vl (r) → ∞
as r → ∞]. Thus the k’s once again denote the Landau levels.
At zero temperature, we occupy these levels up to the Fermi
level μ. In the specific example studied before, we were clas-
sifying the occupied levels for each filled Landau band index
k and for each k, the angular index l was varying from l−(k) to
l+(k). Here, instead, we will describe these occupied levels in
the opposite direction, i.e., we fix the angular index l , and for
each l the occupied k level runs from 0 to ml , where ml is the
highest occupied level in the lth angular sector. Using this la-
beling scheme, at zero temperature the total two-dimensional
density is given by its angular decomposition

2πrρ(r, N ) =
+∞∑

l=−∞
ρl (r),

∫ ∞

0
drρl (r) = ml , (D4)

where

ρl (r) =
ml∑

k=0

|χk,l (r)|2 (D5)

is the density of the one-dimensional problem [Eq. (D1)] with
ml fermions.

We now consider a class of potentials of the form

V (r) = r2

2
+ v

(
r√
N

)
, (D6)

where v(z) is a given smooth function. The specific case we
considered before corresponds to v(z) = c/2z2.

As before, the natural scale of r is
√

N . Hence, we set

r = z
√

N, (D7)

and, as before, we also set

l = Ny. (D8)

Hence, Eq. (D3) in these rescaled coordinates reads

Vl (r) = N

(
z2

2
+ y2

2z2
− �y

)
+ v(z). (D9)

The leading term proportional to N in Eq. (D9), when plotted
as a function of z for fixed y, has a minimum at z = √

y. Thus
the leading term of the potential around this minimum looks
like a harmonic oscillator. Hence, we expand Vl (r) in Eq. (D9)
around the minimum at z = √

y by setting

z = √
y − x√

2N
, (D10)

where x ∼ O(1), and it denotes the scaled distance from the
minimum of the potential. This gives

y = z2 +
√

2

N
xz + x2

2N
� z2 +

√
2

N
xz. (D11)

We also note that in terms of x, we can rewrite the radial
distance r in Eq. (D7) as [using Eqs. (D8) and (D10)]

r =
√

� − x√
2
. (D12)

In terms of variable x, the Hamiltonian in Eq. (D2) reads

Hl = −∂2
x + V�(r), (D13)

Vl

(
r =

√
l − x√

2

)
= N (1 − �)y + v(

√
y) + x2

+ 1√
2yN

(x3 − x
√

yv′(
√

y))

+ 1

N

(
5x4

8y
+ x2v′′(

√
y)

4

)
+ · · · .

(D14)

Using the fact that 1 − � = 1 − ν = M/2N [see Eq. (A3)],
the first three terms in Eq. (D14) are O(1) while the terms on
the second and third line are, respectively, of O(1/

√
N ) and

O(1/N ). Hence, the Hamiltonian in Eq. (D13) is the Hamilto-
nian of a 1D harmonic oscillator (HO) in the variable x (with
m = 1/2 and mω2 = 2, hence α = √

mω = 1) perturbed by
an O(1/

√
N ) cubic and O(1/N ) quartic term.

At leading order, one finds that the eigenenergies of Hl are
given by

εk,l ≈ εk (y) = N (1 − �)y + v(
√

y) + 2k + 1, (D15)

where k = 0, 1, 2, . . . is an integer, and we recall that y =
l/N . Using first-order perturbation theory, and since for the
HO the matrix elements of the form 〈n|x2p+1|n〉 = 0 by
symmetry (with p being an integer), one can show that the
leading-order corrections to the result in Eq. (D15) are of
order O(1/N ).

Using standard results about the 1D HO, and the above
angular decomposition, we can then write the density at any
temperature, and to leading order in N as

2πrρ(r, N ) =
+∞∑

l=−∞
ρl (r), (D16)

ρ�(r)dr �
∞∑

k=0

|ψk (x)|2
1 + eβ[εk (y)−μβ ]

dx, (D17)

ψk (x) = 1√
2kk!

√
π

e− x2

2 Hk (x). (D18)

Using |dx/dr| = √
2 from Eq. (D12) and replacing the sum

over l by an integral over y using l = Ny, we get

2πrρ(r, N ) �
√

2N
∫ +∞

−∞
dy

∞∑
k=0

|ψk (x)|2
1 + eβ[εk (y)−μβ ]

, (D19)
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where we recall that in these formulas x = √
2N (

√
y − z)

and r = z
√

N . Note that substituting Eq. (D15) in Eq. (D19)

together with the relation dy =
√

2
N z dx [using Eq. (D11)], we

get

ρ(r, N ) = f (z, N ), (D20)

where

f (z, N ) = 1

π

∞∑
k=0

∫ +∞

−∞
dx

|ψk (x)|2
1 + eβ[ M

2 y+v(
√

y)+2k+1−μβ ]
, (D21)

where y as a function of x, for fixed z, is given by y � z2 +√
2
N x z as in Eq, (D11). Note that in Eq. (D21), we have kept

terms up to O(1/
√

N ), but neglected terms of O(1/N ). Also,
note that the energy levels in Eq. (D15) are also valid up to
O(1/

√
N ), since the O(1/

√
N ) term in Eq. (D13) does not

change the energy level as argued before. Below, we start from
Eq. (D21) and focus separately on the bulk and edge regimes.

1. Bulk (general potential)

In the bulk, we set y = z2 and neglect the O(1/
√

N ) cor-
rections. Substituting y = z2 in Eq. (D21), we see that the
“Fermi factor” form becomes independent of x and comes
out of the x integral. Hence using the normalization condi-
tion

∫ +∞
−∞ dx|ψk (x)|2 = 1, we find that the function f (z, N ) in

Eq. (D21) becomes only a function of the scaled variable z.
Hence, we obtain

ρbulk (r, N ) ≈ f bulk

(
r√
N

)
, (D22)

where

f bulk (z) = 1

π

∞∑
k=0

1

1 + eβ(gk (z)−μβ )
, (D23)

with gk (z) given by

gk (z) = M

2
z2 + v(z) + 2k + 1. (D24)

Zero-temperature limit: At T = 0 one can replace the
“Fermi factor” form in Eq. (D23) by a theta function, which
gives Eq. (51) in the main text, namely

f bulk (z) = 1

π

∞∑
k=0

θ (μ − gk (z)), (D25)

where gk (z) is defined in Eq. (D24).

2. Edge (general potential)

We now study the large-N density profile near the edges.
At T = 0 these edges ze = ze(k) for a fixed layer k are given
by the solutions of [see Eq. (D25)]

M

2
z2

e + v(ze) + 2k + 1 = μ, (D26)

where μ = μ∞. Note that there can be either no solution, a
single solution, or multiple solutions to this Eq. (D26). We

now study f (z, N ) in Eq. (D21) near such edges ze, where we
parametrize the scaled position z as

z = ze + u√
2N

, (D27)

where u ∼ O(1). Using Eq. (D27), the variable y in Eq. (D21)
becomes for large N

y = z2 +
√

2

N
xz = z2

e +
√

2

N
(x + u)ze + O

(
1

N

)
. (D28)

Hence the argument inside the exponential of the “Fermi
factor” form in Eq. (D21) becomes, using (D26),

M

2
y + v(

√
y) + 2k + 1 − μβ

= μ − μβ + 1

2
(Mze + v′(ze))

√
2

N
(x + u) + O

(
1

N

)
.

(D29)

We emphasize, as discussed before below Eq. (D15), that
there is no O(1/

√
N ) correction coming from εk,l in

Eq. (D15). This ensures that the neglected terms in Eq. (D29)
are indeed of order O(1/N ). Using Eq. (D29) in Eq. (D21) we
get for a fixed layer k

ρk (r, N ) = fk

(
z = ze + u√

2N
, N

)

≈ 1

π

∫ +∞

−∞
dx

|ψk (x)|2
1 + eβ(μ−μβ )e

β√
2N

(Mze+v′(ze ))(x+u)
,

(D30)

where we recall that ze is any one of the roots of Eq. (D26).
For this expression to approach an N-independent form as
N → ∞, it is natural to scale β ∼ O(

√
N ). In this scaling

limit, setting β = β̃
√

2N implies μβ → μ∞ ≡ μ as N →
∞. We then expect (assuming we are not exactly at the
nucleation/formation point of a new layer) that β(μ − μβ ) →
0 as N → ∞ for a general v(z), as shown before in Ap-
pendix C 1 for the special case v(z) = 0. Therefore, the
density at the edge in Eq. (D30) for a fixed layer k takes the
scaling form

f edge
k (u) = 2−k

π3/2�(k + 1)

∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eβ̃(u+x)(Mze+v′(ze ))
,

(D31)

where we have used Eq. (D18), and ze is given by Eq. (D26).
Note that for the specific case of v(z) = c/2z2 we find ze =√

λ−(k) and ze = √
λ+(k) for the inner and outer edges, re-

spectively, where λ∓(k) are given in Eq. (38). Hence,

Mze + v′(ze) =
√

λ∓(k)

(
M − c

λ∓(k)2

)
, (D32)

which together with Eq. (D31) yields back the expression
given in the text in Eq. (42). Note that, as in the specific
example above, one can define an “effective scaled inverse
temperature” b as

b= β√
2N

g′
k (ze) = β√

2N
(Mze + v′(ze)) = β√

2N

dμ

dze
, (D33)
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FIG. 8. A schematic plot of gk (z) vs z given by Eq. (D24) for
a general function v(z). The support of the kth layer’s density is
the set of points with gk (z) < μ (shaded green region). The filled
circles denote the locations z = ze of the edges of this support, where
gk (ze) = μ (purple dashed line). It is easy to see that for every
interval (which is defined as a segment between a green and a red
circle), the support of the outer boundary (red) has b > 0 [Eq. (D33)],
and the support of the inner boundary (green) has b < 0.

where in the last equality in Eq. (D33) we have used

dμ

dze
= Mze + v′(ze), (D34)

which is obtained by differentiating Eq. (D26) with respect to
ze. In terms of b the scaling function f edge

k (u) in Eq. (D31)
takes a universal form

f edge
k (u) = 2−k

π3/2�(k + 1)

∫ +∞

−∞
dx

e−x2
[Hk (x)]2

1 + eb(u+x)
, (D35)

which is independent of the potential v(z). For the special case
v(z) = c/2z2, we recover Eqs. (42) and (43).

Let us recall from Eq. (D25) that inside a given layer
gk (z) < μ and outside the layer gk (z) > μ. Hence, gk (z =
ze) = μ fixes the edges of a given layer as in Eq. (D26).

This support formed by the edges of a given layer k can
be either empty, a single interval, or multiple intervals [we
assume that gk (z) is smooth and differentiable and growing at
infinity], depending on the specific form of v(z), and hence
that of gk (z). A schematic plot of gk (z) versus z is shown
in Fig. 8. Clearly when μ is increased, each interval of the
support increases in size. The edges of these intervals are the
solutions of gk (ze) = μ, and the derivatives g′

k (ze) thus have
alternating signs. Hence, from Eq. (D33), for each interval
of the support the outer boundary has b > 0 and the inner
boundary has b < 0.

Zero-temperature limit: To study the T = 0 limit, we see
from Eq. (D35) that the two cases b > 0 (outer edges) and b <

0 (inner edges) must be treated separately. Indeed, for b > 0
in the T → 0 limit we have

f outer-edge
k (u) = 2−k

π3/2�(k + 1)

∫ −u

−∞
dx e−x2

[Hk (x)]2. (D36)

This result is valid for any potential v(z), and it coincides with
the result obtained for the specific case of v(z) = c/2z2 in
Eq. (B24). Similarly, for b < 0, in the T → 0 limit we have

f inner-edge
k (u) = 2−k

π3/2�(k + 1)

∫ +∞

−u
dx e−x2

[Hk (x)]2, (D37)

which is also valid for any potential and coincides with
the result obtained for the specific case of v(z) = c/2z2 in
Eq. (B14).
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