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Efimovian three-body potential from broad to narrow Feshbach resonances
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We analyze the change in the hyperradial Efimovian three-body potential as the two-body interaction is tuned
from the broad to narrow Feshbach resonance regime. Here, it is known from both theory and experiment that
the three-body dissociation scattering length a− shifts away from the universal value of −9.7 rvdW, with rvdW =
1
2 (mC6/h̄2)1/4 the two-body van der Waals range. We model the three-body system using a separable two-body
interaction that takes into account the full zero-energy behavior of the multichannel wave function. We find that
the short-range repulsive barrier in the three-body potential characteristic for single-channel models remains
universal for narrow resonances, while the change in the three-body parameter originates from a strong decrease
in the potential depth. From an analysis of the underlying spin structure we further attribute this behavior to the
dominance of the two-body interaction in the resonant channel compared to other nonresonant interactions.
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I. INTRODUCTION

In his seminal papers [1,2], Efimov predicted the ap-
pearance of an infinite and geometrically spaced set of
three-particle bound states as the pairwise interaction be-
comes resonant. These Efimov states are bound by a universal
attractive potential, decaying asymptotically as −1/R2 for
three particles at root mean square separation R. In trapped
ultracold atomic gases the Efimov effect induces log-periodic
peaks in the atom loss rate, driven by enhanced three-body
recombination when an Efimov trimer crosses into the three-
particle continuum [3–6]. The position of the loss peak
associated with the ground Efimov state sets a characteristic
length scale a−, commonly referred to as the three-body pa-
rameter. In three-body systems with zero-range interactions,
introducing a three-body parameter is necessary to regularize
the scale-invariant unbounded Efimov spectrum [5].

Despite its short-range nature, experiment has revealed
that the three-body parameter in different atomic species at-
tains a value close to a− = −9.7 rvdW [7–11], where rvdW =
1
2 (mC6/h̄2)1/4 is the van der Waals length associated with
the long-range two-body interaction. Subsequent theoretical
studies found that this “van der Waals universality” originates
from a characteristic suppression of the two-body wave func-
tion when r < rvdW, where r is the two-particle separation
[12,13]. This suppression leads to the appearance of a strong
repulsive barrier in the three-body potential at mean square
separations R ≈ 2 rvdW, which shields the particles from prob-
ing the nonuniversal short-range detail of the atomic species.

The above-mentioned theoretical analyses are based on
single-channel interaction potentials, which are expected to
be accurate provided that the intrinsic length scale r∗ due
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to the resonance width is much smaller than the potential
range. This broad resonance regime may be defined by a large
resonance strength parameter sres = ā/r∗ � 1 [14], where
ā ≈ 0.955978 rvdW is the mean scattering length of the van
der Waals interaction [15]. The opposite case of a narrow
resonance, where sres � 1, is characterized by universal be-
havior in terms of the dominant length scale r∗ � rvdW. In this
limit, treatments of the three-body problem which neglect the
details of the van der Waals interaction found the three-body
parameter to be determined universally as a− = −10.9 r∗
[6,16–18]. Connecting the broad and narrow resonance limits
through the intermediate regime where sres ≈ 1 with a van der
Waals interaction model remains to be desired, in particular,
given that recent experiments in this regime in 39K revealed
clear deviations from both universal limits [11]. A key aspect
of this problem is the change in structure of the trimer and
its associated potential energy surface as a function of the
resonance strength, which will be the central topic of this
paper.

In this work we study the Efimovian three-body potential
using a realistic multichannel two-body van der Waals inter-
action, which can be easily tuned to probe a wide regime
of resonance strengths. To solve the three-body problem we
approximate this interaction by a separable potential which
reproduces the zero-energy wave function of the original inter-
action. We then derive an effective three-body potential from
the open-channel three-body wave function, which models
the actual three-body potential that binds the Efimov state.
Subsequently, we study the dependence of this potential on
the resonance strength sres and provide an analysis of our
findings in terms of the multichannel structure underlying the
three-body dynamics.

This paper will be structured as follows. In Sec. II we
outline our approach at the two-body level, first defining a
two-channel model interaction with a Feshbach resonance that
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can be tuned from the broad to narrow resonance strength
limit. Subsequently, we formulate a separable approximation
to this interaction. In Sec. III we move to the three-body level,
which we analyze first in momentum space to facilitate our
actual computations and then subsequently in position space
for our analysis of the three-body potential. In Sec. IV we
present and analyze our results, after which we conclude this
paper in Sec. V.

II. TWO-BODY INTERACTION MODELS

A. Model two-channel interaction

In this section we develop a flexible two-channel model
that can be tuned to produce a Feshbach resonance with a
given Breit-Wigner shape [19–21]. We label the two scattering
channels σ = {1, 2}, with internal energies εσ and define the
two-body Hamiltonian operator

H = H0 + V =
(

H0
1 + V1,1 V1,2

V2,1 H0
2 + V2,2

)
, (1)

where H0 contains the internal and kinetic energies of the
particles and V the pairwise interactions. Expressed in the
interparticle distance r, the diagonal interactions are of van
der Waals type [22,23]

V1,1(r) = V2,2(r) = C6

(
r4

0

r10
− 1

r6

)
, (2)

with C6 the species-specific dispersion coefficient. The param-
eter r0 controlling the short-range barrier is tuned such that
both channels have eight uncoupled dimer states, which we
confirm is sufficiently deep such that the scattering is univer-
sally determined by the van der Waals tail. The off-diagonal
terms of the interaction represent spin-exchange processes,
which we model using a Gaussian form inspired by Ref. [21]

V1,2(r) = V2,1(r) = βe−α(r−rW )2
, (3)

where {β, α, rW } are tuneable parameters. To enforce the
short-range nature of the spin-exchange interaction, we fix
rW = 0.15 rvdW [24]. We will take the channel σ = 1 to be
energetically open and set its internal energy as ε1 = 0 such
that H0

1 (r) = −h̄2∇2
r /m. The channel σ = 2, referred to as the

closed channel, has a magnetic-field-dependent internal en-
ergy H0

2 (r, B) = −h̄2∇2
r /m + ε2(B). To model the Feshbach

resonance, we define [19]

ε2(B) = εb + δμ(B − Bres ), (4)

where εb is the bare binding energy of the resonant bound state
in the closed channel, δμ the differential magnetic moment of
the particles which is inferred from experiment, and Bres the
bare resonant magnetic field. Given a background scattering
length abg, resonance width �B, and resonant magnetic field
B0, we can extract an associated set of model parameters
{r0, α, β, rW , Bres}. The details of this mapping are outlined
in Appendix A. The resulting resonance strength is obtained
as [14]

sres = m

h̄2 āabgδμ�B, (5)

which quantifies the ratio r∗/ā as mentioned in Sec. I.

B. EST separable potential

As pointed out in previous studies, the universal van der
Waals three-body parameter and three-body potential can be
reproduced by accounting for the full finite-range detail of
the van der Waals interaction [12]. Similarly, it was recently
shown that reproducing the three-body recombination rate for
resonances of intermediate strength in 39K requires an inclu-
sion of the exact three-body spin structure in the Hamiltonian
[25]. Such approaches, however, are complicated numerically
and not conducive to our goal of developing a simple and
flexible model. Fortunately, it was pointed out in Refs. [13,26]
that van der Waals universality can be reproduced using a
much simpler model, based on the Ernst, Shakin, and Thaler
(EST) separable potential [27]. In this section we develop
such an approach for our multichannel interaction. The crucial
point is that we approximate the interaction in such a way
that the full two-body wave function at zero energy is taken
into account, while retaining the simplicity of a single-term
separable potential.

For an arbitrary multichannel interaction V , we may de-
fine a separable approximation as V sep = |g〉 ξ 〈g|. In the EST
formalism, the form factor |g〉 and potential strength ξ are de-
rived from a given eigenfunction |ψ〉 of the full multichannel
Hamiltonian

|g〉 = V |ψ〉 , ξ−1 = 〈ψ |V |ψ〉. (6)

With these definitions we may show that |ψ〉 is also an eigen-
function of the Hamiltonian where V is replaced with V sep

with the exact same eigenvalue [27]. Adopting the approach
of the authors of Ref. [13], we take |ψ〉 to be the zero-
energy scattering state, such that our model takes as input
the low-energy scattering detail of the actual interaction. The
separable interaction has an associated separable t matrix,
given by the Lipmann-Schwinger equation [28]

t sep(z) = V sep + V sepG0(z)t sep(z). (7)

Here G0(z) = (z − H0)−1 is the Green’s function in the ab-
sence of interactions. We define its s-wave eigenstates as
|k, σ 〉, where k = |k| is the relative momentum and σ the
scattering channel introduced in the previous section. In this
basis, the transition matrix may be written as

t sep
σ ′,σ (z, k′, k) = gσ ′ (k′)τ (z)g∗

σ (k), (8)

where t sep
σ ′,σ (z, k′, k) = 〈k′, σ ′|t sep(z)|k, σ 〉 and gσ (k) =

〈k, σ |g〉. Explicit expressions for τ (z) and gσ (k) are given in
Appendix B. To obtain the eigenfunction |ψ〉 we explicitly
diagonalize the two-body Hamiltonian, using a mapped
grid discrete variable representation [29,30]. For the broad
resonance limit sres � 1, the Feshbach resonance is well
approximated by a potential resonance in a single-channel
model with the interaction in Eq. (2). In this case, we obtain
|ψ〉 using an efficient Numerov method [31]. The behavior of
the form factor as a function of resonance width is illustrated
in Fig. 1. Note that the arbitrary normalization of the form
factors is fixed by taking g1(0) = 1. Since the open-channel
component of the wave function is independent of sres (see
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FIG. 1. The form factors gσ (k) as a function of momentum k,
tuned to two different resonance strengths. Inset shows a zoom of
the low momentum regime, where one observes the normalization
g1(0) = 1.

Sec. IV B), the open-channel form factors are much less
sensitive to changes in the resonance strength than the
closed-channel form factors.

We emphasize that the EST model is based on the zero-
energy wave function and hence loses accuracy when used to
describe deep bound states. To illustrate this behavior we com-
puted the shallow dimer energy around the eighth potential
resonance in the two-channel model, both by a direct numeri-
cal solution of the multichannel Schrödinger equation and via
the EST potential of this section. In the later case, a dimer so-
lution is found through the condition τ−1(ε) = 0, with ε < 0
the binding energy. The two results are compared in Fig. 2,
where we observe that the EST potential is most accurate
near threshold and is thus naturally suited to treat states near
resonance. For smaller scattering lengths the EST potential
becomes inaccurate for broad resonances where the dimer be-
comes too strongly bound, but remains reasonably accurate in
describing narrower resonances. In this paper we only concern
ourselves with the near-resonant regime a � rvdW, where the
EST potential is accurate regardless of the resonance strength.
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FIG. 2. Binding wave number κ2b =
√

m|ε|/h̄2 of the Feshbach
dimer that manifests in the two-channel model of Sec. II A, as a
function of inverse scattering length. Results are shown both with
the EST model potential (solid lines) and a direct solution of the mul-
tichannel Schrödinger equation (dashed lines). We show results for
two different resonance strengths and additionally plot the universal
resonant result κ2b ∼ 1/a as the black dotted line.

III. THREE-BODY APPROACH

A. Three-body integral equation

To find the three-body bound-state energy E and wave
function |�〉, we adopt the methodology of the authors of
Ref. [18]. Three-body states are expressed in the s-wave basis
|k, p, σ, σ3〉. Here {k, p} are the dimer and atom-dimer Jacobi
momenta, respectively, σ = σ1σ2 gives the channel of the
two-body system as introduced in Sec. II, where the underline
denotes symmetrization, and σ3 the spin of the third particle
(in general in this section we shall use subscripts to label
particles 1,2, and 3). The internal energy of the three particles
as dictated by the spin states will be denoted as E (σ, σ3). The
wave function |�〉 is written into the Faddeev decomposition
[32,33]

|�〉 = (1 + P+ + P−) |�̄〉 , (9)

with |�̄〉 the Faddeev component and P± cyclic permutation
operators of the particle indices. For the EST separable two-
body transition matrix [see Eq. (8)], the state |�̄〉 projected on
our three-body basis can be formulated as

〈k, p, σ, σ3|�̄〉 = gσ (k)Fσ3 (p)

E − h̄2k2

m − 3
4

h̄2 p2

m − E (σ, σ3)
. (10)

Here the function Fσ3 (p) captures the dynamics of the third
particle and is obtained from the one-dimensional integral
equation,

τ−1[Zσ3 (p)]Fσ3 (p) =
∑
σ ′

3

∫
d3q Zσ3σ

′
3
(p, q)Fσ ′

3
(q), (11)

known as the Skorniakov-Ter-Martirosian (STM) equation.
Here Zσ3 (κ, p) = E − 3h̄2 p2/(4m) − Eσ3 , with Eσ3 the inter-
nal energy of the third particle and the kernel Zσ3σ

′
3
(p, q) is

given as

Zσ3σ
′
3
(p, q) =

∑
σσ ′

gσ

(∣∣q + 1
2 p

∣∣)g∗
σ ′

(∣∣ 1
2 q + p

∣∣)
E − h̄2

m (p2 + q2 + p̂ · q̂) − E (σ ′, σ ′
3)

× 〈σ, σ3|2Ps
+|σ ′, σ ′

3〉.
(12)

Here Ps
+ is the cyclic permutation operator that acts solely in

the space of internal states and the factor of 2 accounts for the
anticyclic permutation. We will label distinct single-particle
states in alphabetical order, taking the open two-body channel
as |σ = 1〉 ≡ |aa〉 and the closed-channel as |σ = 2〉 ≡ |bc〉.
The presence of Ps

+ in the integral equation expresses that
the three-body problem is complicated by the appearance
of the additional nonresonant closed channels |ab, c〉 and
|ac, b〉. However, the nonresonant interaction in |ab〉 and |ac〉
is much weaker than the resonance enhanced interaction in
|bc〉, which we illustrate numerically in Appendix C. Hence,
we choose to neglect Vab,ab and Vac,ac, which restricts the
multichannel three-body equation (11) to the channels |aa, a〉
and |bc, a〉. This is equivalent to the fixed spectating spin ap-
proximation, which is widely implemented in previous studies
of the three-body problem [11,16,25,34–38].

As was shown in Ref. [18], the open-channel projection
〈k, p, aa, a|�̄〉 of the Faddeev component completely decou-
ples from the closed channel |bc, a〉. Since 〈k, p, aa, a|�̄〉
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contains the long-range physics associated with the Efimov
effect, we only need to solve an effective single channel (ESC)
form of Eq. (11), which contains purely the open-channel
component of the two-body transition matrix. Effects of the
closed-channel are then included purely at the two-body level.
Note that the situation is entirely different for closed channels
of the type |ab〉, where one particle conserves its spin [18]. We
choose to exclude this special case from our model, but will
comment on it briefly in Sec. IV C. For closed channels of the
type |bb〉 our model applies without any complications.

B. Effective three-body potential

The momentum space approach as outlined in the previous
section will be used to solve the three-body problem. How-
ever, for the analysis of the Efimovian three-body potential,
we need to make a transformation to position space. In this
section we give a brief overview of the hyperspherical formal-
ism in which the Efimovian potential is usually expressed. For
a more detailed discussion we refer to Refs. [5,39–41].

For identical particles, the Jacobi dimer separation ri and
atom-dimer separation ρi are transformed to a hyperradius R
and hyperangle αi,

tan αi =
√

3ri

2ρi
, R2 = r2

i + 4

3
ρ2

i . (13)

Here i = 1, 2, 3 denotes the Jacobi index, which we will sup-
press in this section. As the notation implies, R is invariant
to a change in Jacobi set. The hyperangle α is often denoted
together with the polar and azimuthal angles of the unit vec-
tors r̂ and ρ̂ as �. We expand the open-channel wave function
into a complete and orthonormal set of hyperangular functions
�ν (R,�), by the following expansion:

〈R,�, aa, a|�〉 = 1

R
5
2

∞∑
ν=0

fν (R)�ν (R,�). (14)

Note that we will suppress spin indices for this expansion as
we will always use the open-channel component of the three-
body wave function. The hyperangular functions �ν (R,�) are
eigenfunctions of the angular momentum part of the three-
body Schrödinger equation. The index ν is usually referred
to as the hyperspherical channel and the associated expansion
coefficient fν (R) as the hyperradial wave function. It obeys
the following set of coupled equations [42]:

[
− d2

dR2
+ λν (R) − 1

4

R2
+ κ2 + Qνν (R)

]
fν (R)

+
∑
ν ′ �=ν

[
Qνν ′ (R) + 2Pνν ′ (R)

d

dR

]
fν ′ (R) = 0. (15)

Here λν (R) is the eigenvalue associated with the hyperangular
function �ν (R,�), where R is interpreted as a parameter of
the eigenvalue equation. We also introduced a trimer binding
wave number κ =

√
m|E |/h̄2, which we use going forward.

Equation (15) defines an infinite set of equations coupled

through the presence of the coupling potentials

Pνν ′ (R) = −
〈
�ν | ∂

∂R
|�ν ′

〉
�

,

and

Qνν ′ (R) = −
〈
�ν | ∂2

∂R
|�ν ′

〉
�

.

(16)

The inner products on the right-hand side should be taken
over the space of angular coordinates �. The coupling poten-
tials quantify the dependence of the hyperangular distribution
on the hyperradius and are often referred to as nonadiabatic
contributions to the three-body problem [42]. In the so-called
scale-free region, where rvdW � R � |a|, one may show that
the eigenvalue λ becomes independent of the hyperradius [5].
This has the consequence that all nonadiabatic contributions
vanish and the coupled set presented in Eq. (15) uncouples
into single-particle Schrödinger equations with “effective”
hyperradial three-body potentials Um(R) = (λν − 1

4 )/R2. The
Efimov channel ν = 0 has eigenvalue λ0 = −s2

0, with s0 ≈
1.00624. Thus the associated three-body potential is attrac-
tive, inducing the Efimov effect with its characteristic 1/R2

scaling. In the scale-free region all channels with ν �= 0 have
associated three-body potentials that are purely repulsive [42].

Due to the nontrivial behavior of the coupling potentials
in the short-range regime, the full behavior of the effective
potential is very complicated. Upon solving the STM equa-
tion (11), however, we can use the three-body wave function to
derive an approximation to the Efimovian three-body potential
in the scale-free region. First, we formulate the three-body
probability as

P̄�(R) ∼ R5
∫ π

2

0
dα sin2(2α)

∫ 1

−1
dx |�(R, α, x)|2, (17)

where x = r̂ · ρ̂ gives the inner product of the two Jacobi
vectors and �(R, α, x) is obtained by a Fourier transformation
of Eq. (9). By virtue of the orthonormality of the hyperangular
functions �(R,�) it is possible to use the three-body prob-
ability to derive an effective three-body potential, a method
also applied in Ref. [13]. The validity of this method relies
on the efficiency of the hyperspherical expansion in Eq. (14).
Since the Efimov channel is the only attractive channel, we
are justified in neglecting all higher-lying repulsive channels
which suppress the local probability [12]. Then the expansion
contains only one term and the resulting three-body proba-
bility is equal to | f0(R)|2. Since we can choose f0(R) to be
real by the normalization of the wave function, the following
expression for an effective three-body potential follows from
Eq. (15):

Ueff (R) = 1√
P̄�(R)

d2

dR2

√
P̄�(R) − κ2. (18)

At unitarity this effective potential is expected to be a good
approximation of the actual Efimov potential in the scale-free
region. In particular, it is sufficiently accurate to reproduce
the characteristic repulsive barrier around R ≈ 2 rvdW and
the potential well which appear for broad resonances, as was
shown in Ref. [13].
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TABLE I. Parameters of the physical resonances used as a start-
ing point for our computations. The value of sres in the last column
will be varied with all other parameters held fixed. Data taken from
(39K: [43]), (85Rb: [44,45]), and (133Cs: [14,46]).

Species B0 [G] abg [rvdW] δμ [EvdW/G] sres

39K 33.50 −0.31 −0.154 2.46
85Rb 155.04 −5.40 −0.517 28.6
133Cs −11.7 17.02 1.21 565
133Cs 547.0 24.74 0.94 167

IV. RESULTS

To fix the degrees of freedom in the model of Sec. II A we
take sets of resonance parameters measured from physical res-
onances, summarized in Table I. We then shift the resonance
strength sres away from the physical value by altering �B,
keeping all other parameters fixed. As reported in Ref. [37],
the change in the three-body parameter with varying reso-
nance strength becomes more abrupt as abg approaches the
value of a− in the open-channel potential. We check whether
our model reproduces this behavior by artificially altering the
rubidium resonance in Table I such that abg = −9.75 rvdW,
noting that the open-channel potential has a three-body pa-
rameter a− = −10.85 rvdW in the EST approximation.

A. Efimov spectra

We first apply our model to the computation of the Efimov
spectra and associated three-body parameters as a function
of the Feshbach resonance strength. First, we show in Fig. 3
the spectrum of the two lowest-lying Efimov states for fi-
nite scattering lengths surrounding the Feshbach resonance.

−0.50 −0.25 0.00 0.25 0.50 0.75

sgn(a)
(

rvdW

|a|
)1

4

−0.8

−0.6

−0.4
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−(
κ

r v
d
W

)1 4

sres
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100.0

FIG. 3. Binding wave number of the two lowest-lying Efimov
states as a function of the inverse scattering length, computed at two
different resonance strengths. For a > 0 the atom-dimer thresholds
from Fig. 2 are plotted with thin lines. Gray lines show the energies
obtained from a single-channel EST model, which corresponds with
the broad-resonance limit sres → ∞. Multichannel model used to
produce this figure is tuned to the 39K resonance in Table I.

Comparing with the broad resonance limit sres → ∞, we find
that, as the resonance strength is decreased, the Efimov spec-
trum is squeezed into a smaller area of the (κ, 1/a) plane,
corresponding to an increase of the three-body parameter |a−|.
Alternatively, we can also define the three-body parameter via
the wave number κ∗ of the ground-state trimer at resonance,
which decreases as the resonance becomes narrow.

The shift in three-body parameters can be more clearly
seen in Fig. 4, where we show a scan of |a−| and κ∗ from the
broad to narrow resonance limit. For the sake of comparison,
Fig. 4 also contains experimental data for a select set of
physical resonances. As the resonance strength decreases, the
three-body parameter |a−| shows a monotonous increase, con-
sistent with findings in earlier studies such as Refs. [36,37].
Within the narrow resonance limit our results approach the
universal limit a− = −10.9 r∗. The effect of the background
scattering length can mainly be observed in the intermediate
strength regime, where larger negative values of abg tend to
push the three-body parameter closer to the universal broad
resonance value for a larger portion of the resonance strength
regime. This finding is consistent with more artificial models
of the two-body interaction, such as the approach adopted in
Ref. [37]. However, our more realistic EST model strongly
suppresses the sensitivity of the three-body parameter to the
background scattering length. Similarly, we find that replac-
ing our EST potential by a simple ultraviolet cutoff greatly
increases the sensitivity to abg. This is especially true for
the binding wave number κ∗, whose dependence on abg is
negligible on the scale of Fig. 4. In Ref. [37], the sensitivity of
κ∗ to abg was attributed to beyond effective range effects. For
van der Waals potentials, the effective range rvdW

e as a function
of sres is known to behave as [47,48]

rvdW
e = ā

6

(
�

(
1
4

)
�

(
3
4

)
)2[

1 − 2
ā

a
+ 2

(
ā

a

)2
]

− ā

sres

[
1 − abg

a

]2

.

(19)

The first term contains all nonresonant contributions that give
a universally determined effective range at unitarity [49],
while the second term captures the additional contribution due
to the Feshbach resonance. Since the EST model reproduces
the zero-energy wave function exactly, the effective range in
our multichannel model is well described by this equation.
At resonance, where abg/a → 0, the effective range becomes
fully independent of the background scattering length similar
to the three-body parameter κ∗.

B. Three-body repulsion

Having confirmed that the three-body parameter in our
model scales as expected in both the narrow and broad res-
onance limits, we now move on to a position space analysis
using the formalism of Sec. III B. Given that our results are
largely insensitive to abg at the position of the resonance,
we limit ourselves in this section to the 39K resonance with
abg = −0.31 rvdW. Before analyzing the three-body state di-
rectly, it is instructive to consider the two-body scattering
wave function 〈r|ψ〉 [see Eq. (B2)] that is used to construct
the EST potential. To this end we plot the open and closed
channel radial components of the wave function for a set of
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FIG. 4. Plots of the three-body parameters as a function of resonance strength for (a) negative abg and (b) positive abg. In the top panels we
show the inverse of the dissociation scattering length a− associated with the ground-state Efimov trimer. Here colored lines show the results
of our multichannel model for different background scattering lengths. Scatter points represent experimental data, measured in 133Cs (green
circles) [7], 7Li (purple triangles) [8,9], 85Rb (blue squares) [10], and 39K (red diamonds) [11,50]. The color of the line plots is chosen to
match the data points, e.g., the red plots were computed using resonance parameters matching a resonance in 39K. In the narrow resonance
limit sres � 1 we illustrate the limiting behavior a− = −10.9 r∗ as a black dotted line. In the bottom panels we plot the trimer binding wave
number κ∗ at resonance. Here results for different background scattering length practically overlap on the scale shown, so we use scatter
plots to distinguish between them. In both the upper and lower panels the three-body parameter obtained with a single-channel EST model,
corresponding with the broad resonance limit sres � 1, is shown as a gray horizontal line.

different resonance strengths in Fig. 5, normalized such that
the wave function asymptotes to 1 for r � rvdW. As predicted
by multichannel resonance theory the open-channel ampli-
tude |u1(r)| is independent of sres, while the closed-channel
amplitude |u2(r)| scales as ∼1/

√
sres [51]. Previous analyses

of single-channel van der Waals interactions connected the
suppression of the two-body wave function below distances of
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FIG. 5. (a) Open and (b) closed channel functions u1(r) and u2(r)
for different values of the resonance strength, computed at unitarity
for the Feshbach resonance with abg = −0.31 rvdW. The r = rvdW

boundary is emphasized by the black dotted line. The normalization
is chosen such that the total wave function asymptotes to unity in
the long range. The inset in (b) shows the scaling of the integrated
closed-channel two-body probability p2 = ∫

dr|u2(r)|2 with sres.

1 rvdW to the appearance of a universal repulsive barrier in the
three-body potential at R ≈ 2 rvdW [12,13]. In the two-channel
case this suppression persists in the open-channel component,
while there appears an increase in total short-range two-body
probability due to the finite lifetime of the closed-channel
state.

To examine the effect of the closed-channel on the three-
body level we first compute the three-body probability in the
{R, α} plane by omitting the integration over the hyperangle
in Eq. (17). The results are shown in Fig. 6. Here the effect
of the open-channel suppression is highlighted by plotting
the boundary beyond which any two particles approach be-
low the van der Waals length. As expected, the three-body
probability is strongly suppressed beyond this boundary for
the broad resonance (the first two panels of Fig. 6), where the
closed-channel component is small. Interestingly, as we tune
our interaction towards the narrow resonance regime and the
closed-channel amplitude increases we see no additional pen-
etration of the region of open-channel suppression. Instead,
we find that both the average and the spread of the three-
body wave function in the hyperradial coordinate increase.
This suggests that the open-channel suppression of two-body
probability remains a dominant factor for small hyperradii,
strongly suppressing the three-body probability regardless of
resonance strength. The increase in closed-channel two-body
amplitude mainly impacts the intermediate to long-distance
regime where R > 2 rvdW. As was noted before [12,13], the
appearance of a three-body repulsive barrier is associated
with a repulsive potential energy peak due to the nonadiabatic
correction Q00(R) in Eq. (15), reminiscent of an angular mo-
mentum barrier. This peak arises due to a squeezing of the
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FIG. 6. Contour plots of the three-body probability at four dif-
ferent values of sres. Computed using the 39K resonance with abg =
−0.31 rvdW as input. The boundary below which any two particles
approach closer than 1 rvdW is shown by a black dashed line. Format
inspired by Ref. [13].

hyperangular distribution function �(R,�) as R decreases,
driven by the short-range two-body suppression. Our results in
Fig. 6 show that the location of this barrier remains universally
determined by the van der Waals length also near a narrow
resonance.

We now proceed by integrating out the hyperangle to ob-
tain P̄�(R) and use Eq. (18) to derive the effective three-body
potential. The results are plotted in Fig. 7, where, for the sake
of comparison, we also show the result with a single-channel
interaction (corresponding with sres → ∞) and the universal
∼1/R2 potential from zero-range theory which corresponds
with the limit R/rvdW → ∞ [5]. Consistent with Fig. 6, a
decreasing resonance strength manifests most strongly in the
intermediate to long distance regime, where we observe a
strong decrease in the depth of the effective potential that
pushes the Efimov state closer to threshold. This corresponds
with a decrease of the binding energy κ∗, as observed in
Fig. 4. To verify whether this behavior continues into the
narrow resonance limit, we tracked the effective potential
up to sres = 0.01. Here the potential at larger separations
becomes practically flat, signifying that all hyperradii have
approximately equal probability. To obtain a more quantitative
characterization of the decrease in depth we plot the minimum
of the effective potential as a function of sres, shown in the
inset of Fig. 7. In the broad resonance limit we find that the
depth of the barrier scales with 1/

√
sres, and is hence inversely

proportional to the closed-channel amplitude as plotted in
Fig. 5. Consistent with Fig. 6 the position of the repulsive
barrier is set by the van der Waals length with the relation
R ≈ 2 rvdW, regardless of the resonance strength.

To supplement our findings we also computed three-body
effective potentials for particles interacting via exponentially
decaying potentials, common in nuclear physics. Here the
three-body parameter was predicted to be likewise different
compared to the single-channel van der Waals interaction
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FIG. 7. Plot of the effective three-body potential as a function of
the hyperradius, computed with starting parameters taken from the
39K resonance as outlined in Table I. Colored lines show the effective
potential at different values of the resonance strength parameter. In
the regime of small hyperradius R � rvdW there appear unphysical
and meaningless oscillations in the potential as artifacts of the model
[13], which we removed from the plot to avoid unnecessary clutter.
Black line shows the effective potential computed by using the as-
sociated single-channel EST model. Gray line shows the asymptotic
∼1/R2 Efimov attraction as follows from the zero-range theory. Plot
includes an inset showing the scaling of the minimum Umin(R) of the
effective potential with sres.

[26]. However, in contrast to the multichannel case, we find
that this change originates from a shift in the location of the
three-body repulsive barrier, see Appendix D for more detail.
The contrast highlights the underlying multichannel nature in
our observation in Fig. 7

C. Analysis in spin-position space

To gain a better physical understanding of the origin of
the observations made in the previous section, it is instruc-
tive to consider explicitly the multichannel structure of the
three-body problem. In the open-channel state |aa, a〉, every
pair of particles interacts via the strongly resonant van der
Waals interaction which induces the Efimov effect. Together
with the suppression of two-body probability when r < rvdW,
this will drive the particles towards equilateral three-body
configurations which minimize the likelihood of small nu-
clear distances. As mentioned in the previous section, these
dynamics are recognized in the hyperspherical picture via the
nonadiabatic potential Q00(R), which forms a strong repul-
sive barrier at small hyperradii [12,13]. In the multichannel
case, the physical picture is complicated by the presence of a
three-body closed channel |bc, a〉. In this state there appears
an asymmetry in the strength of the two-particle interactions,
given that two of the three pairs exist in the nonresonant chan-
nels |ab〉 and |ac〉. Hence the interaction with the third particle
is much weaker than the interaction felt by two particles in the
|aa〉 state, which is resonantly enhanced.

With these effects in mind we now turn our attention once
more to the results presented in Fig. 7. As we decrease sres,
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FIG. 8. Contour plots of three-body probability Pbc,a(r, ρ ) ∼
r2ρ2|〈rρ; bc, a|�〉|2 in the plane of Jacobi coordinates r and ρ for
a broad and narrow Feshbach resonance. Note that 〈bc, a|�〉 =
〈bc, a|�̄〉 since 〈ab, c|�̄〉 and 〈ac, b|�̄〉 vanish by neglecting nonres-
onant interactions [18]. The drawings show the changing structure of
the Efimov state, where particles in the closed channel |bc〉 are drawn
with a cross.

the lifetime of the closed-channel state increases, scaling as
1/sres. The third atom then interacts with the pair |bc〉 via
a nonresonant van der Waals interaction, much weaker than
the resonant interaction present for the broad resonance. This
leads to a gradual decrease of the depth of the effective
potential shown in Fig. 7, as the coupling to the closed chan-
nel |bc, a〉 stretches the three-body state to more elongated
configurations. To illustrate this behavior we computed the
closed-channel component 〈bc, a|�̄〉 of the three-body wave
function, which can be directly obtained from Eq. (10) once
Fa(p) is computed. We then formulate the closed-channel
three-body probability Pbc,a, plotted in Fig. 8. Here ew clearly
observe the stretching of the wave function that occurs near
a narrow resonance, which is directed along the ρ coordinate
quantifying the separation of the third particle. In the limit
of a very narrow resonance, the third particle is free to drift
towards separations far beyond rvdW, consistent with a flat
three-body potential. In contrast, the shape of the probability
along the dimer separation r is relatively unaffected by the
resonance strength, and in fact follows the structure of the
two-body closed channel wave function as shown in Fig. 5.
Figure 8 also shows that there is no repulsive barrier at small
hyperradii in the closed channel state, which allows particles
to approach to within the van der Waals range. The fact that a
universal short-range repulsive barrier remains in 〈aa, a|�̄〉
also for narrow resonances, as shown in Figs. 6 and 7, is
due to the influence of the open-channel component, where
a universal barrier due to Q00(R) always exists and is inde-
pendent of resonance strength. This prevents coupling to the
closed-channel state for small hyperradii, hence preserving
the short-range suppression of the wave function, as clearly
observed in Figs. 6 and 7.

As was discussed in Sec. III A, the relative weakness of
nonresonant interactions is a commonly used assumption for
the three-body problem. It is important to note that, while
this assumption is valid for most systems, there are special
cases where it is expected to be incorrect. For example, if
the resonant closed channel state is taken as |ab〉, i.e., just
one particle changes its state, then both the open and closed
channel three-body states have purely resonant interactions.

We expect this to alter the behavior of the three-body potential
and indeed it was shown in Ref. [18] that for closed channels
of this type the scaling of the three-body parameter with sres

is actually inverted. Additionally, our model is not expected
to hold for strongly overlapping Feshbach resonances, where
several channels have resonantly enhanced interactions simul-
taneously.

V. CONCLUSION AND OUTLOOK

In this work we analyzed the change in the Efimovian
three-body potential as the Feshbach resonance strength is
tuned from the broad to narrow resonance regime. For this
purpose we developed a two-channel separable model that
takes into account the full coupled-channels low-energy scat-
tering wave function. Our numerical results show that, as the
resonance strength is tuned away from the broad limit, the
associated change in the three-body parameter a− originates
from a decrease of the three-body potential depth in the in-
termediate distance regime where R > 2 rvdW. In contrast, the
three-body repulsive barrier that is observed in single-channel
models at R ≈ 2 rvdW remains universally determined by the
van der Waals length. We interpreted our observations to
originate from the relative weakness of interactions between
nonresonant spin-channels compared to the resonant interac-
tion that exists in the open channel and drives the Efimov
effect. Hence our results should apply generally to systems
in which the Feshbach resonance is sufficiently isolated.

There are several possible opportunities for extensions of
our approach. Our physical picture of the decreasing three-
body attraction for narrow resonances rests on the assumption
that the interaction between closed and open-channel particles
is off-resonant, such that it may be neglected. Consequently,
we expect that the presence of a resonant third-channel alters
the behavior of the potential significantly, which could be
accurately captured in a three-channel EST model. Another
point of interest is the analysis of special closed-channel
configurations of the type |ab〉, where it is known that the
value of |a−| decreases for a narrow resonance [18]. Such
a system, however, is not easily analyzed with our model
since the trimer wave function becomes more localized in the
short-range where the effective three-body potential is not a
useful construct.
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APPENDIX A: TUNING OF FESHBACH RESONANCE
PARAMETERS

In this Appendix we given some additional detail on the
tuning of the parameters of our two-body multichannel inter-
action. A Feshbach resonance is typically parametrized by the
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following relation [14]:

a(B) = abg

(
1 − �B

B − B0

)
. (A1)

The background scattering length abg can be set directly by
tuning the short-range parameter r0. The resonance width �B,
is given as [14]

�B =
k→0

π

abgkδμ
|〈φres|V21|ψε〉|2. (A2)

Here |φres〉 is the unit normalized wave function of the res-
onant bound state, |ψε〉 is the energy normalised scattering
wave function in the open-channel, and k =

√
mε/h̄2. We

vary the parameters α and β until Eq. (A2) is satisfied for
a given �B. Note that this mapping is not unique, but we
numerically confirmed our results to be insensitive to different
choices of α and β. The last parameter to fix is the bare
resonance position Bres, which is shifted to B0 by the presence
of the spin-exchange interaction. In van der Waals potentials
it is possible to approximate the relation between B0 and Bres

using the techniques of multichannel quantum defect theory
(MQDT) [52–56]. This leads to the direct relation

B0 = Bres +
[

rbg(1 − rbg)

1 + (1 − rbg)2

]
�B, (A3)

where rbg = abg/ā. With Eqs. (A1), (A2), and (A3) we can fix
all the parameters of our model.

APPENDIX B: EST TWO-BODY TRANSITION MATRIX

In this Appendix we give explicit expressions for the mo-
mentum projection of the separable transition matrix in our
multichannel EST separable potential. The function τ (z) fol-
lows from Eq. (7),

τ−1(z) = m

h̄2

[
2π2

a
|g1(0)|2

+ 4π
∑

σ

∫ ∞

0
dk

k2
(

mz
h̄2

)|gσ (k)|2(
k2 + mεσ

h̄2

)(
k2 + mεσ

h̄2 − mz
h̄2

)]
.

(B1)

This form is inspired by Ref. [6] and uses the fact that the
zero-energy on-shell transition matrix is related to the scat-
tering length as t1,1(0, 0, 0) = h̄2a/(2π2m). The form factors
can be computed directly from Eq. (6), by inserting complete
sets of position states. Our normalization gives 〈r|k, σ 〉 ∼
sin (kr)/(kr) |σ 〉 and we expand the scattering wave function
into channel functions uσ (r) as

〈r|ψ〉 ∼
∑

σ

uσ (r)

r
|σ 〉 . (B2)

Then the form factors, normalized such that g1(0) = 1, are
given by

gσ (k) =
∑

σ ′
∫ ∞

0 dr sin (kr) Vσ,σ ′ (r) uσ ′ (r)

k
∑

σ ′
∫ ∞

0 dr r V1,σ ′ (r) uσ ′ (r)
, (B3)

where Vσ,σ ′ = 〈σ |V |σ ′〉.
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FIG. 9. Comparison of the absolute magnitude of the resonance
enhanced interaction Vres(r), with a nonresonant van der Waals in-
teraction Vnon−res(r). Note that for Vres(r) the diagonal elements of
the nonlocal potential matrix are plotted. Energy given in units of
EvdW = h̄2/(mr2

vdW ).

APPENDIX C: COMPARISON OF RESONANT TO
NONRESONANT INTERACTIONS

The fixed spectating spin reduction of the multichannel
STM equation, as discussed in Sec. III A, rests on the as-
sumption that interactions in the nonresonant closed channels
|ab, c〉 and |ac, b〉 are negligible compared to the resonance
enhanced channel |bc, a〉. To illustrate numerically that this
is a reasonable assumption, we parametrize the effective in-
teraction in the |bc〉 channel by computing an EST separable
potential Vres, associated with the resonant two-body bound
state |ϕres〉. It is formulated as

Vres = Vbc,bc |ϕres〉 〈ϕres|Vbc,bc|ϕres〉−1 〈ϕres|Vbc,bc. (C1)

In Fig. 9 we compare the magnitude of 〈r|Vres|r〉 to the van der
Waals interaction without any resonant enhancement Vnon−res.
One clearly observes that the resonant enhancement augments
the bare interaction by several orders of magnitude, which
supports the assumption made in Sec. III A.

APPENDIX D: COMPARISON WITH NUCLEAR
INTERACTIONS

In Sec. IV C we argue that our observations in the multi-
channel model arise due to a distinct interplay between the
different possible spin-states on the three-body level. It is
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FIG. 10. Two-body radial wave functions at the appearance of
the eighth potential resonance of the three nuclear interactions in
Eq. (D1) and the van der Waals (vdW) interaction in Eq. (2). All
distances are expressed in the associated effective range scale re/2.
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zero-range theory.

known, however, that the value of |a−| can also increase with
different kinds of asymptotic three-body interactions, without
any need for additional spin-channels. In this Appendix we
contrast the changing three-body potential in systems of this
type with our previous multichannel results to show that the
underlying mechanisms are indeed fundamentally different.
Specifically, we will consider single-channel EST models
based on two-body interactions that decay exponentially in the
long range, common in nuclear physics. For this class of in-
teractions the short-range two-body suppression looks rather
different from the van der Waals potential, where “short-
range” is now interpreted as r < re/2, with re the effective
range constant. To illustrate the differences we plot in Fig. 10
the two-body wave function at unitarity for the following set

of nuclear potentials:

VPT ∼ −η cosh−2 (r),

VYk ∼ −η

r
exp (−r),

VGs ∼ −η exp
(−r2

)
,

(D1)

which, respectively, are the usual Pöschl-Teller (PT), Yukawa
(Yk), and Gaussian (Gs) potentials [12,26]. The strength pa-
rameter η is used to tune the potential towards resonance.
Similar to the case of van der Waals interactions, the short-
range suppression in the two-body wave function leads to
the formation of a three-body repulsive barrier and hence
a universal value for the three-body parameter in the limit
of broad Feshbach resonances. As was shown in Ref. [26],
this universal value matches the three-body parameter that
one obtains when using a simple step function as input into
the EST model, which is zero for r < re/2 and unity every-
where else. Indeed for an infinite number of two-body bound
states the PT, Yk, and Gs wave functions in Fig. 10, will
all approach step functions [26]. This is not the case for the
interaction in Eq. (2) whose infinitely deep limit is obtained
by taking r0 → 0, yielding a pure (but ill-behaved) van der
Waals potential. Interestingly for this work is the fact that
the three-body parameter |a−| obtained from the step-function
limit in a single-channel model is ∼19% larger than the
value obtained from the van der Waals interaction [26]. In
our multichannel model we similarly observe an increased
value of |a−| when sres is decreased away from the broad
resonance limit. Evidently, however, the associated change in
the two-body wave function is very different, as becomes clear
when comparing Figs. 5 and 10. Whereas in the multichannel
model the open-channel component that underlies the Efimov
state was unchanged, for the interactions in this section there
is a clear change in the short-range suppression in the open
channel. As shown in Fig. 11, this subsequently leads to a
shift in the location of the three-body barrier, which is absent
in the multichannel model as explained in Sec. IV C.
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