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Single-atom high-order harmonic generation (HHG) induced by an intense linearly polarized infrared (IR)
field and assisted by a perturbative extreme ultraviolet (XUV) short pulse with linear polarization is analyzed
in perpendicular geometry. It is shown that for the case of the initial p state, the two independent projections of
the laser-induced dipole are formed by two independent physical channels, which are responsible for IR-induced
HHG and XUV-initiated HHG. This property of the laser-induced dipole is utilized for polarization control of
the generated radiation. An alternative scheme for studying XUV-initiated HHG is proposed.
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I. INTRODUCTION

High-order harmonic generation (HHG) in atomic and
molecular medium attracts enduring attention due to a wide
range of practical applications: Generation of coherent light
in the extreme ultraviolet (XUV) region [1–3], attosecond
pulse generation [4–6], HHG-based spectroscopy [7–9], etc.
Most of these applications are based on the plateau effect in
the HHG spectrum, which can be interpreted within the well-
known three-step scenario [10], which splits HHG into three
steps: (i) laser-field-induced tunneling of an atomic electron,
(ii) propagation of the liberated electron in the laser-dressed
continuum along a closed classical trajectory, and (iii) elec-
tron recombination to the initial state with the emission of a
high-energy photon (harmonic). The validity of the three-step
scenario is limited by an intense low-frequency field, which
ensures the applicability of semiclassical approximation for
HHG description [11–14]. Different configurations of the low-
frequency field are used in HHG experiments aiming to extend
the high-energy plateau [1–3], increase the HHG conversation
efficiency [15], and control the polarization properties of emit-
ted harmonics [16–18].

In the past decade, the theoretical and experimental in-
terests in the HHG process were extended to the study of
so-called XUV-induced HHG, for which IR-induced HHG is
affected by high-frequency pulse or pulse trains with the car-
rier frequency in the XUV range. The additional perturbative
XUV field induces new HHG channels led by modification
of recombination and ionization steps of HHG. One of these
channels originates from the absorption of XUV photons at
the moment of recombination, resulting in the formation of a
second XUV-induced plateau with an extended cutoff [19,20].
Harmonics on the additional plateau can be utilized for several
practical applications such as HHG-based spectroscopy [20],
attosecond pulse metrology [21,22], and visualization of con-
tributing closed classical trajectories in the IR field [23].
Although the XUV-assisted HHG channel shows a wide range

of practical applications, its utilization is limited by the small
magnitude of the corresponding HHG amplitude. The other,
more intense channel is led by single XUV photon ionization,
thereby initiating the HHG process by placing the atomic
electron in the IR-dressed continuum [24–28]. The XUV-
initiated ionization step leads to the formation of a new set
of closed electron trajectories which bring the electron back
to the atomic residue with slightly smaller energy than the
electron can gain in an intense IR field starting with zero
initial velocity. In order to separate the XUV-initiated HHG
channel from other channels, comparatively low intensity of
the IR field is used in actual experiments [26–28]. Lowering
the intensity of the IR field drastically decreases the tunneling
probability, thereby ensuring the dominant contribution of the
XUV-initiating channel. We note that the XUV-induced HHG
experiment is performed by utilizing harmonics generated by
an intense IR field [25,27–29]. However, the recent progress
in the shaping and pulse-to-pulse stabilization of subfem-
tosecond and attosecond XUV pulses from free electron laser
(FEL) sources [30] opens a new avenue for using FEL-based
attosecond pulse sources in HHG experiments [31].

In this work, we consider single-atom XUV-induced HHG
with an intense IR field and perturbative attosecond XUV
pulse. Two pulses are linearly polarized in two mutually
perpendicular directions. Within this geometry of the XUV-
induced HHG, we suggest an alternative way to separate
the XUV-initiated HHG channel from other channels based
on the features, which are initiated by the interaction of a
two-component field with an atomic electron having nonzero
angular momentum in an initial state. We also discuss the
polarization control of the generated harmonics through the
variation of time delay between IR and attosecond pulses.

This paper is organized as follows. In Sec. II we discuss the
theoretical background for XUV-initiated HHG: In Sec. II B
XUV-initiated HHG amplitude is considered in the adiabatic
approximation, and Sec. II C considers initial state symme-
try effects for XUV-initiated ionization and recombination.
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Numerical results and their discussions are presented in
Sec. III. Our work is summarized in Sec. IV. Atomic units
are used throughout this article if not specified otherwise.

II. THEORETICAL BACKGROUND

A. Laser field and initial state

We consider an atomic system in a two-component field
consisting of an intense low-frequency field and a time-
delayed high-frequency pulse. Both components are linearly
polarized in orthogonal directions:

F(t ) = x̂FIR(t ) + ŷFXUV(t − τ ), (1)

where τ is the time delay between the two pulses. The electric
field for both pulses can be parametrized in terms of the
envelope [ fα (t )], peak strength (Fα), carrier frequency (ωα),
and carrier-envelope phase (CEP) (φα):

Fα (t ) = Fα fα (t ) cos(ωαt + φα ), (2)

where α = IR or XUV for IR or XUV pulse, respectively.
We assume that the carrier frequency of the low-frequency
component belongs to the IR spectral region, and the Keldysh
parameter corresponding to the IR component is small, γIR =
ωIRκ/FIR � 1 (κ = √

2Ip, where Ip is the ionization poten-
tial). The smallness of γIR allows one to treat the interaction of
the IR field with the atomic target semiclassically. We also as-
sume that the high-frequency component belongs to the XUV
region so that its carrier frequency exceeds the ionization
potential of the atomic system, ωXUV > Ip. The application
of the perturbation theory in the XUV field is managed by the
smallness of parameter βXUV = FXUV/(ω2

XUVa) � 1, where a
is the spatial scale of the atomic system [32–34]. It should
be noted that the perturbation theory regime is realized up
to comparatively high intensity (∼1015 W/cm2 for noble gas
atoms). Finally, intensities and carrier frequencies of the con-
sidered IR and XUV fields ensure the validity of the dipole
approximation, i.e., (i) the laser-induced electron velocity,
which characterizes the energetics of a nonlinear process in a
strong laser field, is much less than the speed of light, so that
the effects induced by the magnetic component of the laser
field are negligible; and (ii) the wavelength of the XUV pulse
is considerably larger than the atomic scale a, so that spatial
nonhomogeneity of the XUV field is not important.

In this work, we assume that the active electron is initially
bound in the p state, which is triple degenerate in angular
momentum projection m. For a free atom, the atomic state is
characterized by the binding energy (E0 = −Ip), angular mo-
mentum (l = 1), and its projection (m), while the laser field
having two spatial projections can couple different magnetic
sublevels and classification of an initial state in terms of single
magnetic projection may not be appropriate (see discussion
for the elliptically polarized field in Refs. [35,36] and for
the two-color field in Ref. [37]). For the laser field having
two independent spatial projections [see, e.g., Eq. (1)], the
more appropriate basis for angular dependence of an initial
state is the set of real tesseral spherical harmonics, which are
presented by a linear combination of spherical functions [38].
For l = 1, these functions are

f0(r̂) = Y10(r̂), (3a)

fq(r̂) = i
3−q

2
Y1,1(r̂) + qY1,−1(r̂)√

2
, q = ±1, (3b)

where q = 0,±1 is the polarization index.1 The functions (3)
are unity normalized and orthogonal to each other and can be
used as a counterpart of spherical functions for the case of the
absence of the cylindrical symmetry, i.e., in the case of not
conserved m.

We present the wave function of an optical electron in the
absence of the laser field as a product of the radial part and
angular one determined by Eq. (3):

ψq(r, t ) = ϕq(r)eiIpt , ϕq(r) = φ0(r) fq(r̂). (4)

For large distances (κr � 1), the function φ0(r) decreases
exponentially,

φ0(r) ≈ CκrZ/κ−1e−κr, (5)

where Cκ is the asymptotic coefficient and Z is the charge of
an atomic residue. It is worth noting that the state with fixed
polarization index q is aligned in space along a corresponding
Cartesian axis.

B. HHG amplitude within adiabatic approximation

Amplitude for generated harmonic of frequency � and
polarization vector eh is determined by the expression

A(�; eh) = (e∗
h · D(�)), (6)

where D(�) is the laser-induced dipole moment at the
frequency �. For the initially unpolarized atom, all afore-
mentioned states may be equally populated, so that the
laser-induced dipole moment D(�) should be averaged in
polarization states,

D(�) = 1

3

∑
q=0,±1

Dq(�), (7)

where Dq(�) is the laser-induced dipole for a given polar-
ization state q. Our theoretical analysis is limited by the first
order of the perturbation theory in the XUV field. More-
over, from all channels induced by XUV pulse in the first
order, we consider only one associated with XUV-initiated
HHG [25,27–29]. Within these approximations, the dipole
Dq(�) can be further expanded in series over FXUV,

Dq(�) = D0,q(�) + D1,q(�), (8)

where Dn,q ∝ F n
XUV for n = 0, 1. The explicit form of the

dipole matrix element Dn,q for n = 0 was discussed in

1The quantize axis is the z axis.

023113-2



HIGH-ORDER HARMONIC GENERATION IN ORTHOGONAL … PHYSICAL REVIEW A 107, 023113 (2023)

Ref. [13] and for n = 1 in Ref. [14]:

D0,q(�) =
∑

j

a(tun)
q (t̃ j, t̃ ′

j )g
(pr)(t̃ j, t̃ ′

j )d
(rec)
q (K̃ j ), (9)

D1,q(�) = FXUVei(ωXUVτ−φXUV )

×
∑

j

fXUV(t ′
j − τ )a(ion)

q (t j, t ′
j )g

(pr)(t j, t ′
j )

× d (rec)
q (K j ), (10)

where t̃ ′
j and t̃ j (t ′

j and t j) are ionization and recombination
times for IR-induced (XUV-initiated) HHG, and the vectors
K̃ j ≡ K(t̃ j ; t̃ j, t̃ ′

j ) and K j ≡ K(t j ; t j, t ′
j ) are expressed in terms

of auxiliary vector K(τ ′; t, t ′):

K(τ ′; t, t ′) = x̂K (τ ′; t, t ′), (11a)

K (τ ′; t, t ′) = AIR(τ ′) − 1

t − t ′

∫ t

t ′
AIR(τ ′′)dτ ′′, (11b)

AIR(t ) = −
∫ t

FIR(τ ′)dτ ′. (11c)

The factors a(tun)
q and a(ion)

q , g(pr) and d (rec)
q (K j ) describe

ionization, propagation, and recombination steps in the three-
step scenario [10]. We note that since the interaction of an
atomic system with the XUV field is considered as a perturba-
tion, the laser-induced dynamics in the IR-dressed continuum
is steered only by the IR field, thereby ensuring the identical
structure of propagation factors for D0,q and D1,q.

The factor a(tun)
q is given by the tunneling exponential factor

a(tun)
q (t̃ j, t̃ ′

j ) = CκQj
e−κ3/(3F̃j )√

κF̃j

fq(e j ), (12)

where Cκ is the asymptotic coefficient (5), F̃j is the mag-
nitude of the IR field strength at the moment of ionization,
F̃j = |F IR(t̃ ′

j )|, e j is the complex vector

e j = i
˙̃K ′

j

F̃j
, ˙̃K ′

j = ∂K̃
′
j

∂ t̃ ′
j

, (13)

where K̃
′
j ≡ K(t̃ ′

j ; t̃ j, t̃ ′
j ) is electron momentum at the moment

of ionization, and Qj is the Coulomb factor [39].
The ionization factor a(ion)

q (t j, t ′
j ) is given by the dipole

transition matrix element describing the transition from the
bound state ψq(r, t ) to the continuum state ψ

(+)
K ′

j
(r) through

the absorption of the XUV photon:

a(ion)
q (t j, t ′

j ) = − (dq(K ′
j ) · eXUV)e−iωXUVt ′

j

2π
√

K ′
j · [F j + K ′

j/(t j − t ′
j )]

, (14)

dq(k) = 〈ψ (+)
k (r)|r|ϕq(r)〉, (15)

where K ′
j = K(t ′

j ; t j, t ′
j ), and F j = F IR(t ′

j ). We note that,
since we assume that eXUV = ŷ, the ionization factor
a(ion)

q (t j, t ′
j ) is determined by the y component of the transition

dipole (15).
The propagation factor g(pr)(t, t ′) is determined by the clas-

sical action S(t, t ′) of the electron gained in an intense IR field

between the two time instants t ′ and t :

g(pr)(t, t ′) = e−iS(t,t ′ )+i�t

(t − t ′)3/2
, (16)

S(t, t ′) = 1

2

∫ t

t ′
K2(τ ′; t, t ′)dτ ′ + Ip(t − t ′). (17)

The recombination matrix element d (rec)
q (k) is given by

d (rec)
q (k) = d∗

q(k) = 〈ϕq(r)|r|ψ (+)
k (r)〉, (18)

where k = K̃ j for the IR-induced channel and k = K j for the
XUV-initiated HHG channel.

The real ionization and recombination times in the absence
of the XUV pulse (t̃ ′

j and t̃ j) are found from the system of
nonlinear equations [13],

K (t̃ ′
j ; t̃ j, t̃ ′

j ) = 0, (19a)

K2(t̃ j ; t̃ j, t̃ ′
j ) = 2(� − Ip) + �E , (19b)

where �E is given by

�E = κ2

t̃ j − t̃ ′
j

K (t̃ j ; t̃ j, t̃ ′
j )

FIR(t̃ ′
j )

.

This system of equations shows that the electron liberates
from an atom with zero momentum at the instant t̃ ′

j [see
Eq. (19a)] and propagates along closed classical trajectories
up to moment t̃ j with some energy gained from the IR field,
which is emitted by the electron as a photon with energy �

through the recombination [see Eq. (19b)].
The corresponding system of nonlinear equations for pair

of times t j and t ′
j is

K2(t ′
j ; t j, t ′

j ) = 2(ωXUV − Ip), (20a)

K2(t jt j, t ′
j ) = 2(� − Ip). (20b)

The system (20) describes the three-step scenario for the
XUV-initiated HHG channel: The electron escapes from an
atom by a single XUV photon ionization by getting nonzero
initial momentum in the continuum [see Eq. (20a)], which
allows the electron to propagate along a closed classical tra-
jectory up to moment t j , with subsequent emission of gained
in IR field energy through the recombination photon with
energy � [see Eq. (20b)]. We note that the maximum gained
energy for the XUV-initiated HHG channel is smaller than in
the IR-induced one.

It should be mentioned that propagation factor g(pr) orig-
inates from the electron motion in an intense IR field and
does not depend on the atomic structure, while ionization
and recombination factors significantly depend on the atomic
structure and spacial symmetry of an initial state, which we
discuss in turn.

C. Initial state symmetry effects in ionization
and recombination steps

We start our analysis from the ionization step of the HHG
process. For the IR-induced HHG (corresponding to the zero
order of perturbation theory in the XUV field), the impact of
the initial state symmetry is enclosed in the form factor fq(e j )
[see Eq. (12)]. For the field (1), this form factor differs from
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zero only for q = −1, since K̃
′
j = x̂K̃ ′

j and the vector e j has
only one x component [see Eq. (13)].

In order to obtain the general result for dq(k) in terms of
the principal vectors of the problem, we consider the dipole
transition matrix element from the state having zero projection
of angular momentum on the quantized axis. For q = 0, the
quantized axis coincides with the z axis. The transition dipole
amplitude from the initial state with m = 0 can be presented
in terms of the irreducible tensor product [38,40]

d0(k) · e =
∑
l=0,2

Al{Yl (k̂) ⊗ e}1,0. (21)

Coefficients Al are proportional to the radial matrix elements

Al = C10
10,l0

√
2l + 1

3
Dl , (22)

Dl (k) = 〈Rk,l |r|φ0(r)〉, (23)

where C10
10,l0 is the Clebsch-Gordan coefficient, and Rk,l is the

radial part of the continuum wave function

ψ
(+)
k (r) =

∑
l,m

Rk,l (r)Y ∗
l,m(θk, φk )Yl,m(θ, φ). (24)

The tensor products in Eq. (21) can be represented as [38]

{Y0(k̂) ⊗ e}1,0 =
√

1

4π
(e · ẑ),

{Y2(k̂) ⊗ e}1,0 =
√

15

8π
{{k̂ ⊗ k̂}2 ⊗ e}10

= 1√
2

[(e · ẑ) − 3(k̂ · e)(k̂ · ẑ)].

Using definitions (22), one can transform the transition dipole
to the form

d0(k) =
√

3

4π

[
D0(k) − D2(k)

3
ẑ + D2(k)

(k · ẑ)

k2
k
]
. (25)

The ionization factor in Eq. (14) contains the dipole transition
elements dq(K ′), which we obtain from Eq. (25) by substitut-
ing k → K ′

j and ẑ → ŷ for q = +1 and ẑ → x̂ for q = −1,

d+1(K ′
j ) =

√
3

4π

[
D0(K ′

j )− D2(K ′
j )

3
ŷ+ D2(K ′

j )
(K ′

j · ŷ)

K ′2
j

K ′
j

]
,

(26a)

d−1(K ′
j ) =

√
3

4π

[
D0(K ′

j )− D2(K ′
j )

3
x̂+ D2(K ′

j )
(K ′

j · x̂)

K ′2
j

K ′
j

]
.

(26b)

Since K ′ is directed along the x axis [see Eq. (11a)], K ′ = x̂K̃ ′,
the transition dipole d−1(K ′) has only an x component. The
ionization factor (14) is determined by the y component of the
dipole matrix element, so that it turns to zero for the state with
q = −1, while for the state with q = +1 the transition dipole
d+1(K ′) has the nonzero y component

d+1,y =
√

3

4π

D0(K ′
j ) − D2(K ′

j )

3
, (27)

determining nonzero ionization factor a(ion)
+1 .

Analysis of ionization and tunneling factors allows us to
conclude that the initial state with q = −1 (having zero mo-
mentum projection on the direction of IR field polarization)
gives a contribution only to the IR-induced HHG, while the
initial state with q = +1 (having zero momentum projection
on the direction of XUV field polarization) gives a contribu-
tion only to the XUV-initiated HHG.

The initial state symmetry affects the polarization prop-
erties of the emitted radiation, which are determined by the
recombination dipoles. These dipoles can be obtained from
Eq. (26) by complex conjugation and further substitution of
K ′

j → K j for the XUV-initiated HHG channel and K ′
j →

K̃ j for the IR-induced HHG channel. Returning electron
momentum has one nonzero component along the IR field po-
larization vector so that the recombination dipole is oriented
along the x axis (y axis) for the state with q = −1 (q = +1).

Taking into account that the state with q = +1 is orientated
along the y axis and the state with q = −1 is orientated along
the x axis, the role of initial state symmetry can be summa-
rized as follows: (i) the HHG process is initiated by the field
with a polarization vector parallel to the orientation of the
initial state; (ii) the polarization of the generated harmonics
from oriented states coincides with the polarization of the
field initiating the HHG process (for q = −1, harmonics are
polarized along the x axis, while generated harmonics are
linearly polarized along the y axis for the initial state with
q = +1).

The total field-induced dipole (summed in polarization)
can be presented as

D(�) ≈ 1
3 [x̂(x̂ · D0,−1(�)) + ŷ( ŷ · D1,+1(�))], (28)

where the corresponding components of the vector Dn,q(�)
are given by Eqs. (9) and (10). The total HHG yield can also
be presented as the sum of two terms:

Y ≈ 1
9 (Yx + Yy), (29)

where Yx (Yy) is the harmonic yield for a fixed harmonic
polarization eh = x̂ (eh = ŷ):

Yx = �4

2πc3
|A(�; eh = x̂)|2 = �4

2πc3
|D0,−1(�)|2, (30)

Yy = �4

2πc3
|A(�; eh = ŷ)|2 = �4

2πc3
|D1,+1(�)|2. (31)

We note that in Eq. (28), we neglect the contribution of state
with q = 0. Indeed, the state q = 0 is oriented along the z axis,
i.e., perpendicular to IR and XUV fields, so that ionization
and recombination steps are strongly suppressed. According
to Eqs. (12) and (14) [see also Eq. (25)], the tunneling and
ionization factors are zero within the presented semiclassical
accuracy and the first order of perturbation theory in the XUV
field. Suppression of the recombination step for state q = 0
follows from the analysis above [see also Eq. (25)]. We also
confirm the small contribution of the state with q = 0 to HHG
by numerical calculations (see next section).

III. NUMERICAL RESULTS AND DISCUSSIONS

In order to check the consistency of our analytical predic-
tions for the laser-induced dipole moment in the two-color
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FIG. 1. HHG yield (35) for eh = x̂ (a) and eh = ŷ (b) calculated for the Ne atom subjected to the two-color field (1). Red lines: the yield
from the initial state ψ−1; blue lines: the yield from the initial state ψ+1; orange lines: the yield from the initial state ψ0. The dashed (solid) black
line in (a) denotes the HHG spectra in the absence of the XUV pulse from the initial state ψ−1 (ψ+1). The IR pulse parameters: TIR = 20 fs
[see Eq. (32)], ωIR = 1 eV, and peak intensity IIR = cF 2

IR/(8π ) = 4 × 1014 W/cm2 [see Eq. (2)]. The XUV pulse parameters: TXUV = 0.55 fs
[see Eq. (33)], ωXUV = 30 eV, and peak intensity IXUV = cF 2

XUV/(8π ) = 4 × 1013 W/cm2 [see Eq. (2)]. The time delay is τ = 8.3 fs. Panels
(c) and (d), respectively, show the Gabor transformation of (a−1 · x̂) from (a) and (a+1 · ŷ) from (b).

field (1), we numerically solve the three-dimensional time-
dependent Schrödinger equation (3D TDSE) in a single-active
electron approximation (see the details in the Appendix). The
IR component of the two-color field (1) was parametrized
within the sin2 envelope:

fIR(t ) =
{

sin2(πt/TIR ) t ∈ [0, TIR]
0 otherwise,

(32)

where TIR is the full duration of the IR pulse. The envelope of
the XUV pulse was chosen in terms of the Gaussian function:

fXUV(t ) = exp
[−2 ln(2) t2/T 2

XUV

]
, (33)

where TXUV is the full-width at half maximum of intensity.
The time delay between IR and XUV components is varied
from 0 to TIR.

The 3D TDSE was solved with the initial condition, which
corresponds to the laser field-free state ψq for the Ne atom.2

The numerically obtained time-dependent wave function is
further utilized for the calculation of the Fourier transform of
the dipole acceleration aq:

aq(�) =
∫

aq(t )ei�t dt, q = 0,±1, (34)

which was calculated for the initial state ψq [see Eq. (4)].
We note that there is a connection between acceleration and

2We note that since Ne has six outer electrons, expression (7)
should be multiplied by 6.

the dipole moment: aq(�) = −�2Dq(�). The probability of
harmonic generation with frequency � and polarization vector
eh is calculated as

Yq(�, eh) = |aq(�) · e∗
h|2

2πc3
, q = 0,±1. (35)

In Fig. 1(a), we present the dependence of Y±1(�, eh) and
Y0(�, eh) on the harmonic frequency for eh = x̂. The nu-
merical calculations of the harmonic yield (35) for eh = x̂
confirm our theoretical prediction; namely, linearly polarized
harmonics generated from the initial state ψ−1 are fully de-
termined by the laser-induced dynamics caused by the IR
pulse (compare red solid line with black dashed line). Lin-
early polarized harmonics that came from the initial state
ψ+1 have five orders of magnitude smaller intensity [see blue
line in Fig. 1(b)]. The dynamics describing the generation
of linearly polarized harmonics from the state ψ+1 is the
same as for HHG in a linearly polarized field from a state
having a nonzero magnetic projection on the polarization
vector of the laser field. Within the semiclassical picture
of HHG consisting of three steps—tunneling, propagation,
and recombination—the HHG process from the initial states
ψ+1 and ψ0 is significantly suppressed by the tunneling and
recombination steps.

Our numerical calculations show a resonant-like peak
near � = 60 eV. The resonant-like peak is placed near � =
2ωXUV, and thus is associated with the generation of the sec-
ond harmonic of the XUV pulse by the IR-dressing atom [41].
According to the dipole selection rule, the polarization of even
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FIG. 2. HHG yield (35) for eh = x̂ (a) and eh = ŷ (b) calculated for the Ne atom subjected to the two-color field (1). Red lines: the
yield from the initial state ψ−1; blue lines: the yield from the initial state ψ+1. IR pulse duration is TIR = 12 fs, XUV pulse intensity is
IXUV = 4 × 1012 W/cm2, other parameters of IR and XUV pulses are the same as in Fig. 1. The time delay is τ = 4.3 fs. Panels (c) and (d),
respectively, show the Gabor transformation of (a−1 · x̂) from (a) and (a+1 · ŷ) from (b).

harmonics of the XUV field coincides with the polarization
of the IR field, whose polarization is perpendicular to the
polarization vector of the XUV field.

The dependency of Y±1(�, eh) and Y0(�, eh) on the har-
monic frequency for eh = ŷ is presented in Fig. 1(b). Contrary

to the results in Fig. 1(a), the contribution from the initial
state ψ+1 is dominant, while the generation of high-order
harmonics from the state ψ−1 is suppressed by a few orders
of magnitude. Moreover, the oscillation pattern and exten-
sion of the high-energy plateau in Fig. 1(b) is different from

FIG. 3. HHG yield (35) for eh = x̂ (a and b) and eh = ŷ (c and d) calculated for the Ne atom subjected to the two-color field (1)
with initial state ψ+1 (a and c) and ψ−1 (b and d). Red lines: IXUV = 4 × 1014 W/cm2; blue lines: IXUV = 4 × 1013 W/cm2; black lines:
IXUV = 4 × 1012 W/cm2; other parameters of IR and XUV pulses are the same as in Fig. 1.
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FIG. 4. The degree of circular polarization of harmonics as a
function of harmonic energy � (a) for the raw harmonic yield and
(b) for optimized harmonic yield originating from a single short
trajectory. The parameters of the laser field are the same as in Fig. 1.

that in Fig. 1(a), thereby eliminating a different physics in
the formation of the high-energy harmonics in the two-color
field (1) for initial states ψ+1 and ψ−1. The main part of the
high-energy plateau in Fig. 1(b) is formed by two trajectories,
while the plateau in Fig. 1(a) is formed by four and more
trajectories [see spectrogram in Figs. 1(c) and 1(d)]. Our nu-
merical results show that linearly polarized harmonics with
eh = ŷ that originate from the ψ−1 initial state have a much
smaller intensity compared with the ψ+1 initial state, which
confirms the validity of Eqs. (28). The resonant-like peak near
� = 30 eV is associated with the elastic scattering of the
XUV pulse on the Ne atom [42]. The contribution of state
with q = 0 is negligibly small, as in the case eh = x̂.

In Fig. 2 we present HHG spectra as in Fig. 1 but for the
shorter duration of the IR pulse. The shortening of IR pulse
duration leads to a decrease in the number of contributing
closed electron trajectories. Part of high-energy HHG spectra
is determined only by a single pair of short and long trajec-
tories [43] [see harmonics with energy more than 125 eV
in Fig. 2(a) and more than 50 eV in Fig. 2(b)], thereby
forming the characteristic oscillation pattern in HHG yield
caused by the interference between short and long trajecto-
ries. In Figs. 2(c) and 2(d) we present the Gabor transform,
which confirms the contribution of single-pair short and long
electron trajectories in the IR field. In order to clarify the per-
turbative character of the XUV field contributing to different
HHG channels, we present in Fig. 3 HHG spectra (35) for
different XUV field intensities. The XUV intensity is changed

FIG. 5. The same as in Fig. 4 but for the parameters of the laser
field as in Fig. 2.

in the range 4 × 1012 − 4 × 1014 W/cm2 corresponding to
the IR intensity to explicitly show the validity of the first-
order perturbation theory in the XUV field for the IR-dressed
atom. The gradual increasing of the XUV intensity by order
of magnitude shows that the generation of linearly polarized
harmonics with eh = x̂ from the ψ+1 state is suppressed3 [see
Fig. 3(a)], while generation from the ψ−1 state is essentially
independent of the XUV field intensity and determined by
dynamics of the IR-induced HHG. As seen from Figs. 3(c)
and 3(d), the HHG spectra for harmonics with polarization
vector eh = ŷ are linearly scaled by XUV field intensity,
thereby numerically justify Eq. (10).

Our theoretical and numerical analysis shows that x and
y components of the HHG dipole moment are induced by
two independent HHG channels, thereby allowing to affect
the polarization properties of harmonic by controlling one of
the channels, e.g., through the time-delay control between IR
and XUV components. In Figs. 4(a) and 5(a), we show the
degree of circular polarization (DCP) of emitted harmonic as
a function of energy:

ξ (�) = Y (circ)
+ (�) − Y (circ)

− (�)

Y (circ)
+ (�) + Y (circ)

− (�)
,

(36)

Y (circ)
± (�) = |a · e∗

±|2
2πc3

, a = 2(a+1 + a−1),

3Excluding the “narrow” region of second harmonic generation
of the XUV field, whose intensity quadratically depends on XUV
intensity.
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where Y (circ)
± is the partial yield of harmonic with left- and

right-hand circular polarization, e± = (x̂ ± iŷ)/
√

2. The DCP
rapidly oscillates in the range from +1 to −1. The origin
of these rapid oscillations is the interference of many partial
amplitudes associated with electron trajectories contributing
to the x component of the laser-induced dipole. The num-
ber of contributed trajectories can be reduced by decreasing
the duration of the IR pulse. Indeed, for � > 125 eV [see
Fig. 5(a)], the small-scale oscillations are caused by interfer-
ence between short and long trajectories in the IR-induced
dipole moment, while large-scale oscillation in Fig. 5(a) is
determined by a short trajectory. In order to smooth the rapid
oscillations in the energy dependence of DCP, it is necessary
to reduce the number of contributed trajectories and thus sep-
arate the contribution of amplitudes related to the single short
trajectory [see the pink blurred area in Figs. 1, 2(c), and 2(d)].
The number of contributed trajectories can be reduced by uti-
lizing extremely short IR pulses with a duration near the one
optical cycle [44–47], while short trajectory separation results
from the propagation effects, and it is realized by satisfying
phase-matching conditions [48–50].

As we pointed out above, harmonic polarization control
can be realized by changing either the XUV pulse intensity
and phase or the time delay between IR and XUV pulses.
According to Eq. (10), the parameter τ affects both the phase
of the y component of the laser-induced dipole through the
exponential factor eiωXUVτ and its amplitude through the XUV
pulse envelope fXUV(t ′

j − τ ); therefore, the time delay may
be an effective parameter for polarization control. Figure 6
shows the dependence of DCP on the harmonic frequency
for different time delays (7.8 fs < τ < 8.8 fs). In Fig. 6, only
amplitudes associated with short trajectories were taken into
account. Our calculation shows that with the variation of time
delay, the DCP of a fixed harmonic (see, e.g., � = 125 eV)
can be changed from −1 to +1, thereby realizing the polar-
ization control.

IV. SUMMARY

In this work, we have considered HHG from an atom
interacting with the linearly polarized intense IR and synchro-
nized perturbative XUV pulses, whose polarization vectors
are mutually perpendicular to each other. An atom was con-
sidered within the assumption that active electrons are in p
states. These triple-degenerate (in the projection of the an-
gular momentum) states subjected to the two-color field are
transformed to the “oriented” states, which are given by a
superposition of states with different projections of the an-
gular momentum and oriented along Cartesian unit vectors.
We have shown that these states interact differently with
orthogonal components of the two-color field by making it
possible to separate different channels in the XUV-induced
HHG. Our theoretical analysis, based on the analytical and
numerical treatment of HHG, showed that harmonics gener-
ated from the state oriented along the IR polarization vector
are formed according to the “classical” three-step scenario
(tunneling, propagation, and recombination) driven by the IR
field. Effects from the XUV component of the two-color field
are negligibly small so that this state realizes IR-induced HHG

FIG. 6. The degree of circular polarization of harmonics as a
function of harmonic energy � for optimized harmonic yield orig-
inating from a single short trajectory for different time delays (see
figure for τ ). The laser parameters are the same as in Fig. 1. Dashed
lines mark the position of the harmonic with � = 125 eV.

in the absence of the XUV field. However, the state oriented
along the XUV polarization vector realizes the XUV-initiated
HHG channel, which also consists of three steps: XUV ion-
ization, propagation in an intense IR field, with subsequent
recombination. We have found that harmonics generated from
the IR-induced HHG channel are linearly polarized along
the IR polarization vector, while for the XUV-initiated HHG
channel, generated harmonics are linearly polarized along the
XUV pulse polarization vector. The aforementioned polariza-
tion properties make it possible to separate the XUV-initiated
HHG channel from the IR-induced channel on a single-atom
level by measuring harmonics with fixed polarization coin-
ciding with XUV pulse polarization. We emphasize that this
separation of channels in XUV-induced HHG is achieved
without decreasing the IR field intensity, which is resorted in
the collinear geometry of IR and XUV pulses [24–28].

We have discussed the polarization control of generated
harmonics, which can be realized through the variation of
the time delay between two components. Indeed, the laser-
induced dipole moment is presented as a sum of vectors,
which are mutually perpendicular to each other [see Eq. (28)].
The x component does not depend on the time delay and
determines the amplitude for IR-induced HHG, while the
magnitude and phase of the y component significantly depend
on the time delay, thereby making possible polarization con-
trol through the time delay variation. Although polarization
properties are rapidly changed with harmonic frequency, the
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possible optimization for reducing these fast oscillations is
suggested by separating partial HHG amplitudes associated
with short trajectories. Within optimized HHG amplitudes, the
time-delayed polarization control is more suitable for experi-
mental realization. It should be noted that in this work we have
considered a single-atom HHG and thereby neglected prop-
agation effects, which may be crucial for two-dimensional
laser fields (see Ref. [51] and references therein) and require
a further challenged analysis.
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APPENDIX: NUMERICAL SOLUTION OF THE 3D TDSE

We consider the dipole interaction of the Ne atom with the
laser pulse (1). Our analysis is based on the numerical solution
of the 3D TDSE in a single-active electron approximation:

i
∂

∂t
ψq(r, t ) =

[
−1

2
∇2 + V (r) + r · F(t )

]
ψq(r, t ), (A1)

where ψq(r, t ) is the time-dependent electron wave func-
tion corresponding to the initial condition (4) at t = 0, and
V (r) is the effective one-electron potential, which was found
numerically by solving stationary Kohn-Sham equations for
the Ne atom [52] using local density approximation with a
self-interaction correction for the exchange-correlation po-
tential [53]. The method of numerical solution of the 3D
TDSE (A1) is based on the expansion of electron wave func-
tion in spherical harmonics [52,54]:

ψq(r, t ) = r−1
lmax∑
l=0

l∑
m=−l

�
(q)
lm (r, t )Ylm(θ, φ), (A2)

where �
(q)
lm (r, t ) is the radial part of the wave function ψq(r, t )

in the given orbital channel, Ylm(θ, φ) is the spherical har-
monic, and θ and φ are the polar and azimuthal spherical
angles, respectively, corresponding to the polar axis z.

Using expansion (A2), we reduce Eq. (A1) to the system
of coupled equations:

i
∂

∂t
�

(q)
lm =

[
−1

2
∇2 + V (r)

]
�

(q)
lm +

+ r

√
2π

3

lmax∑
l ′=0

l ′∑
m′=−l ′

[−F̃ ∗(t )〈lm|11|l ′m′〉+

+ F̃ (t )〈lm|1(−1)|l ′m′〉]� (q)
l ′m′ , (A3)

TABLE I. The initial condition for the wave function
�

(q)
l=1,m(r, t = 0). For l �= 1, �

(q)
l,m(r, t = 0) ≡ 0.

m = 1 m = 0 m = −1

q = 1 iφ0(r)/
√

2 0 iφ0(r)/
√

2

q = 0 0 φ0(r) 0

q = −1 −φ0(r)/
√

2 0 φ0(r)/
√

2

where F̃ (t ) = FIR(t ) + iFXUV(t − τ ), 〈lm|LM|l ′m′〉 =∫
d�Y ∗

lmYLMYl ′m′ can be expressed in terms of Clebsch-
Gordan coefficients Ccγ

aα,bβ :

〈lm|LM|l ′m′〉 =
√

(2L + 1)(2l ′ + 1)

4π (2l + 1)
Cl0

l ′0,L0C
lm
l ′m′,LM . (A4)

The propagation of �lm(r, t ) over the time step �t is
performed by using three-split-operator symmetric decom-
position together with the Crank-Nicolson method and the
Numerov approximation following Sec. 4 in Ref. [55]. We
use a nonuniform spatial grid, which has a higher density of
nodes near the nucleus. The radial nodes of the spatial grid are
specified as

rk = k�r + (δr/�r − 1)rα tanh(k�r/rα ), (A5)

where k is an integer; δr = 10−3 atomic units (au) is a tiny
step of the radial grid, which is realized near the nucleus;
�r = 0.1 au is the radial step for large distances; and rα = 20
au is the scale for changing spatial step from δr to �r. The size
of the radial grid was limited by Rmax = rmax + Rabs, where
rmax = 110 au is the size of the simulation region and Rabs =
30 au is the width of the multihump absorbing layer [56]. The
time step is �t = 0.02 au, and maximum orbital momentum
is lmax = 192.

The system of Eqs. (A3) is solved within the initial con-
ditions given by Table I. The radial part of electron wave
function φ0(r) [see Eq. (4)] corresponds to the ground state
of the 2p electron in a Ne atom. To find φ0(r), we use propa-
gation in the imaginary time of Eqs. (A3) for zero laser field
and for some random initial wave function. The laser-induced
dipole acceleration aq(t ) is calculated based on the Ehrenfest
theorem:

aq(t ) = −E(t ) −
∫

|ψq(r, t )|2∇V (r)dr. (A6)
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