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Strong-field ionization experiments are routinely performed with different atomic targets. While these ex-
periments helped reveal many details about the light-matter interaction in intense laser fields, the target atoms
are often modeled in a rather crude manner by neglecting most of their electronic structure. Until the present,
therefore, many above-threshold ionization measurements had been understood only qualitatively, and this
especially applies to the ionization with elliptically polarized laser pulses, for which the photoelectron angular
distributions are known to exhibit a quite strong (Coulomb) asymmetry. This asymmetry arises from the Coulomb
and short-range forces between the photoion and the outgoing field-dressed electron in the continuum. We
demonstrate here how the strong-field approximation (SFA) can be combined with atomic structure theory for
modeling such target-resolved observations. Using a partial-wave representation of the SFA, we show that this
combination reproduces the Coulomb asymmetry for argon and xenon targets in good agreement with previous
experiments and especially if a distorted-wave Volkov continuum is applied for the active electron. We therefore
conclude that a better account of the initial and final electron waves in strong-field theories will enhance our
understanding of ionization phenomena in intense fields.
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I. INTRODUCTION

The interaction of intense laser beams with atomic tar-
gets has lead to new insights into the quantum dynamics on
short timescales [1]. In these experiments, more often than
not, the electric field of a laser first ionizes one or several
electrons from an atom, which subsequently move in the
continuum under the influence of the laser field. If the beam
parameters are chosen properly, some of the electrons can be
driven back to the photoion, leading either by rescattering to
high-energy photoelectrons in processes such as high-order
above-threshold ionization (ATI) [2,3] and nonsequential dou-
ble ionization [4] or by recombination to high-energy photons
in high-order harmonic generation [5,6].

In typical ATI experiments, however, most of the photo-
electrons are simply pushed away from the photoions and
are recorded at some detector. In these measurements, the
observed energy spectra typically exhibit distinct peaks that
are spaced by the photon energy. Moreover, often the angular
distribution of photoelectrons is measured as well at fixed
energy. If the (strong) electric field of the laser dominates the
electron dynamics in the continuum, e.g., for one of the central
assumptions of the strong-field approximation (SFA) [7–9],
these angular distributions should reflect also the symmetry
of the beam’s vector potential [10]. In practice, however,
this symmetry has been found to be broken for most neu-
tral targets, particularly if the ionization process is driven by
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elliptically polarized beams [11–13]. A (semi)classical anal-
ysis of the electronic motion in the continuum showed that
this (Coulomb) asymmetry mainly arises from the long-range
electrostatic field of the photoion, which affects the photo-
electron even after it has been released from the atom [14].
Quantum mechanically, this static field contributes a phase
to the wave function of the outgoing electron, which then
becomes visible in a rotation of the angular distribution with
regard to the (main) polarization axis [12,15].

Within the SFA, indeed, many ionization and recom-
bination measurements in strong fields can be understood
qualitatively; this even applies if hydrogenic target atoms are
assumed throughout the derivations [16]. If required, further
semiempirical corrections are then added to the motion of the
photoelectrons as, for instance, for the electrostatic field of
the photoion from above. Nonetheless, such an empirical ap-
proach is often not directly comparable to the measured data.
Slightly better agreement with experiment has been found
if the hydrogenic wave functions were replaced by realistic
initial states of the active electron [17,18]. An improvement of
the predicted spectra and angular distributions is therefore ex-
pected if the SFA is combined explicitly with atomic structure
theory. However, since the SFA and the many-body theory of
atoms are formulated quite differently, such computations still
require major efforts and have been performed until now only
for a few selected systems [19,20].

In this work we expand our previous partial-wave rep-
resentation of the SFA [18] by the proper treatment of the
atomic target states for computing ATI photoelectron energy
spectra and angular distributions. In particular, we apply here
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realistic one-electron wave functions for both the bound and
continuum states as directly obtained from atomic structure
theory. All ATI spectra are therefore predicted for given target
atoms and for elliptically polarized laser pulses. Moreover,
different approximations can be applied and compared quite
readily with available measurements in order to better un-
derstand the major reasons for the Coulomb asymmetry in
the photoelectron angular distributions. This comparison re-
veals that target-specific distorted continuum states, which are
dressed by the laser field, lead indeed to the best agreement
with experiments and offer a considerable refinement to those
approximations as typically applied within the SFA.

The paper is structured as follows. In Sec. II we first re-
call the standard formulation of the SFA but by expressing
the vector potential of the laser beam in a spherical basis
(Sec. II A). We also rewrite both the atomic states and the
SFA amplitude in a basis of coupled angular momenta in
order to describe the active electron as an integral part of the
target atom (Sec. II B). The implementation of this combined
treatment is then briefly summarized in Sec. II C. In Sec. III
we discuss the theoretical spectra as obtained for the three
selected targets: lithium, argon, and xenon. Our results nicely
demonstrate how the Coulomb asymmetry can be reproduced
if the electronic structure of the target atoms is taken into
account, particularly for the distorted continuum states of the
outgoing photoelectron. A summary is given in Sec. IV.

Note that atomic units (me = h̄ = e2/4πε0 = 1) are used
throughout the paper unless stated otherwise.

II. THEORETICAL FRAMEWORK

Let us follow Ref. [18] and first recall how a partial-wave
representation of the SFA can be formulated for modeling the
ATI of atomic targets. By using such a partial-wave expan-
sion of the active-electron wave, we are able to rewrite the
initial and final electronic states in a basis of coupled angular
momentum for the spatial and spin motion of the electron,
rather analogously to the standard treatment of many-electron
atoms. To specify the geometry of typical strong-field exper-
iments, Fig. 1 displays an atom that is irradiated by a laser
pulse of intensity I , wavelength λ, and ellipticity −1 � ε � 1.
In this setup, the laser pulse propagates along the z axis,
while the photoelectrons are recorded in spherical coordinates
with asymptotic momentum p = (p, ϑp, ϕp) at the detector.
Moreover, in typical ionization experiments, either the energy
distribution of photoelectrons (εp = p2/2) is measured along
a fixed direction or their angular distribution W (ϑp = 90◦, ϕp)
is recorded as a function of the azimuthal angle ϕp but at
fixed energy of the emitted electrons. Because of the inter-
action of the target electrons with the strong laser field, the
photoelectron can absorb more photons than required for over-
coming the ionization potential of the target, which then leads
to the well-known and equally spaced ATI peaks in the energy
spectrum.

To model this nonlinear ionization process, the electro-
magnetic fields of the laser beam are described by the
vector potential A(r, t ). In the electric dipole approximation
[A(r, t ) ≈ A(t )] and velocity gauge, this vector potential can

FIG. 1. Geometry of a typical ATI experiment. An atomic target
is illuminated by a laser beam, with intensity I , wavelength λ, and
ellipticity ε, that propagates along the z axis. After its release, the
photoelectron propagates outward and is measured with (asymptotic)
momentum p = (p, ϑp, ϕp) in spherical coordinates.

be written for an elliptically polarized pulse as [21,22]

A(t ) = Re[Ac(t )] = 1
2 [Ac(t ) + A∗

c (t )], (1)

with a complex-valued vector potential of the form

Ac(t ) = A0u f (t )e−i(ωt+φCEP ). (2)

In this expression, A0 is a (real-valued) amplitude, f (t ) the
pulse envelope, ω = 2πc/λ the fundamental frequency, and
φCEP the so-called carrier-envelope phase. Furthermore, the
(complex) polarization unit vector

u = 1√
1 + ε2

(ex + iεey) (3)

defines the orientation of the polarization ellipse and is
parametrized in terms of the ellipticity −1 � ε � 1.

Within the SFA, the single-active-electron approximation
is typically made, which neglects the coupling of the photon
field to all except one of the electrons in a target atom. Often,
this active electron is initially taken in a hydrogenic |1s〉
bound state, though with an effective nuclear charge Zeff in
order to adjust its binding to the ionization potential of the tar-
get. Moreover, due to the interaction with the laser pulse, the
electron undergoes a transition from this (undisturbed) initial
state into the laser-dressed continuum. In the standard SFA,
however, both the correct representation of the initial state of
the target atom and the influence of the photoion upon the
continuum electron are typically neglected. A more realistic
description of the ATI process should therefore account for the
(effective) interaction of the active electron in its initial orbital
|nlm〉 with the other bound electrons as well as the potential
of the residual ion that acts upon the outgoing photoelectron.
In the following, we will therefore first recall the derivation of
the SFA amplitude as well as its transformation into a coupled
angular momentum basis for the active electron. This recou-
pling simplifies the combination with atomic structure theory
and, prospectively, will enable us to extend this formalism to
many-electron states in modeling strong-field ionization and
recombination processes.
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A. Strong-field approximation

The SFA provides an analytical approach to compute
the energy- and angle-differential photoionization probability
[10,21]

P (p) = p|T (p)|2 (4)

for the ATI of atoms in strong laser fields in terms of a transi-
tion amplitude T (p), where p is the photoelectron momentum
as measured at the detector. In this formalism, a single active
electron is initially bound in the state |
i(t )〉 and, due to
its interaction with the laser field, finally found in the state
|
p(t )〉 with asymptotic momentum p. The final state of the
photoelectron |
p(t )〉 is thereby expressed via the continuum
states |χp′ 〉, which we will analyze below.

By neglecting the laser field for the bound system, the
initial state is obtained as an eigenstate of the atomic

Hamiltonian HA = p2/2 + V (r), with the (effective) potential
V (r) due to the nucleus and the other electrons. After its
ionization, the electron is assumed to only move within the
laser field and hence to just follow the Hamiltonian Hle =
[p + A(t )]2/2. With these two assumptions in mind, the tran-
sition amplitude

T (p) = T0(p) + T1(p)

can be written in terms of the amplitudes T0(p) and T1(p),
which distinguish between the directly emitted and the rescat-
tered photoelectrons, respectively. They are often briefly
referred to as direct and rescattering amplitudes.

In our recent work [18] we demonstrated that the direct
SFA amplitude can be expressed as

T0(p, m, ms, m′
s) = −i

∫ ∞

−∞
dτ 〈χp(τ )|Vle(r, τ )|
i(τ )〉

= −i

√
2

π
F1[ω; f ; p]〈χs′,m′

s
|χs,ms〉

⎛
⎝ ∞∑

p=0

∑
q=0,±1

(−1)quqYp,m−q(ϑp, ϕp)〈m, 1(−q)|pm − q〉〈εpp‖p‖n〉
⎞
⎠

−i

√
2

π
F1[−ω; f ; p]〈χs′,m′

s
|χs,ms〉

⎛
⎝ ∞∑

p=0

∑
q=0,±1

u∗
qYp,m+q(ϑp, ϕp)〈m, 1q|pm + q〉〈εpp‖p‖n〉

⎞
⎠

−i
1√
2π

F2[ f ; p]〈χs′,m′
s
|χs,ms〉Ym(ϑp, ϕp)〈εpm|nm〉. (5)

In this form, the radial shape of the initial bound state |
i(t )〉
and final continuum state |
p(t )〉 just enters the (reduced)
matrix elements 〈εpp‖p‖n〉 in terms of the (single-electron)
orbital functions |n〉 and |εpp〉, respectively. Moreover, the
detailed shape of the driving laser pulse is contained in the
so-called pulse-shape integrals

F1[±ω; f ; p] = A0e∓iφCEP

∫ ∞

−∞
dτ f (τ )e−i(εi±ω)τ+iSV (τ ), (6)

F2[ f ; p] =
∫ ∞

−∞
dτA2(τ )e−iεiτ+iSV (τ ). (7)

Using the rotational symmetry of the single-electron atomic
Hamiltonian HA, the initial bound state of the active electron
can be characterized by its principal quantum number n as
well as the orbital angular momentum  and its projection m,
quite analogously to a hydrogenic atom. Together with its spin
component χs,ms , this state has the well-known form

|
i(t )〉 = e−iεit |ψi〉 = e−iεit |nm〉 ⊗ |χs,ms〉

× ∝ Pn(r)

r
Ym(ϑ, ϕ)e−iεitχs,ms , (8)

where Pn(r)/r denotes the radial wave function. The electron
continuum in the laser field is given by Volkov-type states
which, similarly, can be expanded into (distorted) partial

waves

|χp(t )〉 =
√

2

π
e−iSV (t )

∞∑
p=0

p∑
mp=−p

Y ∗
pmp

(ϑp, ϕp)|εppmp〉

⊗ |χs′,m′
s
〉 (9)

and characterized by their energy εp = p2/2 as well as
the orbital angular momentum quantum numbers p and mp,
respectively. In the velocity gauge, the interaction between the
continuum electron and laser field is thereby accounted for by
the so-called Volkov phase

SV (t ) = 1

2

∫ t

dτ [p + A(τ )]2. (10)

In the representation of the direct amplitude (5), the inter-
action of the photoelectron with the remaining photoion can
be readily considered by means of the radial wave functions
Pεpp (r) as defined by

〈r|εppmp〉 = ip
Pεpp (r)

r
Ypmp (ϑ, ϕ).

Apart from a plane wave

Pεpp (r) = r jp (pr), (11)

as originally assumed in the SFA with the spherical Bessel
functions j(x), this radial function can be approximated by
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either a Coulomb wave

Pεpp (r) = wp (ηp, pr) = 1

p
eiσp Fp (ηp, pr) (12)

or any distorted wave as common in atomic structure theory.
Moreover, in Eq. (12) the functions Fp (ηp, pr) are, as known,
often expressed in terms of hypergeometric functions, where
σp denotes the Coulomb phase shift [18].

The form (5) of the transition amplitude above enables
one to implement a number of physical scenarios (approxima-
tions) for modeling the ATI in terms of different partial waves
but without the need for further analytical work. In the next
section we will make use of this expansion to proceed one
step further and to express the amplitude in a basis of coupled
angular momenta. Apart from the simplification of expression
(5), it is this form of coupled wave functions and, potentially,
configuration expansions that will enable one to combine the
SFA with atomic structure theory and to readily explore the
contributions due to the fine structure (coupling) or the corre-
lated motion of many-electron systems in the future.

B. Use of a coupled angular momentum basis

Instead of dealing separately with the orbitals (, m) and
spin angular momenta (s, ms), they are often coupled right

from the beginning to the total angular momentum ( j, mj ).
We make use of this coupling for both the initial and
final continuum states. Let us note, however, that the sim-
ple multiplication of the continuum waves by the (purely
time-dependent) Volkov phase factor e−iSV (t ) is a result of the
dipole approximation and cannot be ensured so easily if the
approximation is abandoned [21,23]. In the electric dipole ap-
proximation, different expansions of the spatial part of these
states can be applied rather easily. If we replace the initial and
continuum states from above by

|
i(t )〉 = e−iεit |n jm j〉 (13)

and

|χp,m′
s
(t )〉 =

√
2

π
e−iSV (t )

∞∑
p=0

p∑
mp=−p

∑
jp�1/2

Y ∗
pmp

(ϑp, ϕp)

× 〈pmp,
1

2
m′

s| jp, mp + m′
s〉|εpp jp, mp + m′

s〉,
(14)

we can follow Ref. [18] and rewrite the direct SFA transition
amplitude (5) within the coupled basis as

T0(p, mj, m′
s) = − i√

2π
F1[ω; f ; p]

( ∞∑
p=0

∑
jp�1/2

∑
q=0,±1

(−1)quqYp,mj−m′
s−q(ϑp, ϕp)

×〈p(mj − m′
s − q),

1

2
m′

s| jp(mj − q)〉〈 jm j, 1(−q)| jp(mj − q)〉〈εpp jp‖p‖n j〉
)

− i√
2π

F1[−ω; f ; p]

( ∞∑
p=0

∑
jp�1/2

∑
q=0,±1

u∗
qYp,mj−m′

s+q(ϑp, ϕp)

×〈p(mj − m′
s + q),

1

2
m′

s| jp(mj + q)〉〈 jm j, 1q| jp(mj + q)〉〈εpp jp‖p‖n j〉
)

− i√
2π

F2[ f ; p]Yp,mj−m′
s
(ϑp, ϕp)〈(mj − m′

s),
1

2
m′

s| jm j〉〈εp jm j |n jm j〉. (15)

As before in Eq. (5), all properties of the driving laser pulse are entirely encoded into the pulse-shape integrals (6), which
account for the Volkov phase as well. The spatial dependence of both the initial and continuum electron states remains again
in the reduced matrix elements 〈εpp jp‖p‖n j〉 of the momentum operator. It is instructive to expand the initial and continuum
states back into the uncoupled basis, i.e., to use

|n j〉 =
∑

m=−

∑
ms=±1/2

|m,
1

2
ms〉〈m,

1

2
ms| jm j〉,

|εpp jp〉 =
p∑

mp=−p

∑
m′

s=±1/2

|pmp,
1

2
m′

s〉〈pmp,
1

2
m′

s| jpm′
j〉.

Based on these expressions, one can write the reduced matrix elements within the coupled basis in terms of the reduced matrix
elements from the uncoupled basis,

〈εpp jp‖p‖n j〉 =
⎛
⎝ ∑

m=−

p∑
mp=−p

∑
ms=±1/2

〈pmp,
1

2
ms| jp(mp + ms)〉〈m,

1

2
ms| j(m + ms)〉

⎞
⎠〈εpp‖p‖n〉.
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If the radial wave functions are explicitly known, the reduced matrix elements can be evaluated via [18]

〈εpp‖p‖n〉 = (−i)p+1〈p‖C1‖〉
∫ ∞

0
dr

P∗
εpp

(r)

r

(
r
∂Pn(r)

∂r
− (p − )(p +  + 1)

2
Pn(r)

)
. (16)

Since the matrix elements in Eq. (15) often occur in atomic
computations, they can be readily obtained from different
codes known in the literature [24]. At the first glance, the ex-
pression (15) for the transition amplitude appears to be more
complicated than the amplitude (5) due to the coupling of the
spin and orbital angular momenta. In strong-field processes,
the spin quantum number of the outgoing electron can usually
be treated independently and then leads to a Kronecker delta
[25]. In many-electron targets, however, this only applies if
the spin-orbit interaction is negligible and if the antisymmetry
of the wave functions is handled manually. To readily include
this (well-known) interaction and to combine the SFA formal-
ism with atomic theory, a coupled basis is mandatory and will
help expand the formalism towards few- and many-electron
systems.

C. Implementation

The direct SFA transition amplitude (15) in the cou-
pled angular momentum basis facilitates the computation
of photoelectron energy spectra and momentum or angu-
lar distributions. However, in order to obtain experimentally
meaningful results for the photoionization probability (4),
we still need to average and sum over all spin and angular
momentum projections of the initial and final states,

P (p) = 1

2

p

2 + 1

∑
m=−

∑
ms=±1/2

∑
m′

s=±1/2

|T (p, m, ms, m′
s)|2

(17)

= p

2 j + 1

j∑
mj=− j

∑
m′

s=±1/2

|T (p, mj, m′
s)|2, (18)

where T (p, m, ms, m′
s) and T (p, mj, m′

s) are given by Eqs. (5)
and (15), respectively. Since both expressions are related to
each other by just a change of the (single-electron) basis,
the (numerical) results are of course identical. In prac-
tice, however, the coupling of angular momenta not only
simplifies the computations, but enables one to incorporate
relativistic terms or to exploit them in many-electron atomic
structure computations. Similar to the standard SFA, the re-
duced matrix elements in the amplitude (15) can still be
obtained by applying analytical expressions for hydrogenic
initial states and plane-wave Volkov states [10,26]. To analyze
the Coulomb asymmetry in the angular distributions below,
all the different approximations for evaluating the reduced
matrix elements 〈εpp‖p‖n〉 or 〈εpp jp‖p‖n j〉 have been
implemented within the JENA ATOMIC CALCULATOR [27]. In
this toolbox, the initial bound and final continuum orbitals
are obtained as part of a self-consistent-field procedure. In
these computations, a Hartree-Fock-Slater potential has been
applied in order to account for the repulsion and exchange
interaction among all bound electrons and to obtain binding

energies within about 5–10 %, when compared to experi-
ment. In contrast, the continuum orbitals of the targets below
are generated as usual in the static potential of the singly
charged photoion and for the energies as measured at the
detector [28].

Below we make use of the various approximations for the
initial bound and final continuum states in order to disentangle
the role of different contributions to the ATI energy spectra
and the (Coulomb asymmetry in the) angular distribution for
different target atoms.

III. NUMERICAL RESULTS

Four different approximation are selected below to under-
stand how the ATI energy spectra and angular distributions
depend on the choice of the initial and final continuum states;
they are all based on the SFA amplitude (15) and the associ-
ated ionization probability P (p). In this amplitude, different
radial orbital functions enter in particular the reduced matrix
elements and then lead to different predictions. To cover a
good range of light and medium elements, calculations are
performed for the atomic targets lithium, argon, and xenon
and are compared with measured spectra from the literature
for argon and xenon.

(i) Hydrogenic approximation. A hydrogenlike 1s initial
state has an effective nuclear charge and plane-wave Volkov
continuum states (11); the nuclear charge for this hydrogenic
state has been chosen to reproduce the ionization potential
of the target atoms (lithium, 5.39 eV; argon, 15.76 eV; and
xenon, 12.13 eV).

(ii) Hydrogenic Coulomb approximation. A hydrogenlike
n initial state has an effective nuclear charge as above and
an active electron from the valence shell of the target atoms
(lithium, 2s; argon, 3p; and xenon, 5p) as well as the final
Coulomb-Volkov continuum states (12).

(iii) Atomic Coulomb approximation. We use an atomic ini-
tial state (cf. Sec. II C) and final Coulomb-Volkov continuum
states to evaluate the reduced matrix elements in Eq. (15).

(iv) Atomic approximation. Atomic initial and distorted
Volkov continuum states are used to calculate all reduced
matrix elements (cf. Sec. II C).

In all these model computations, we moreover assume
some np = 8 cycle elliptically polarized laser pulses with
ellipticity ε, wavelength 800 nm (ω = 0.057 a.u.), and
carrier-envelope phase φCEP = 0. In order to compare these
computations with experiment, we have chosen ε = 0.25
(lithium and argon), ε = 0.36 (xenon), and ε = 0.56 (lithium,
argon, and xenon) as well as the two intensities I = 0.9 × 1014

and 1.5 × 1014 W/cm2 and compare these results for ε =
0.25 (argon) as well as ε = 0.36 and 0.56 (xenon) with exper-
imental data available in the literature. All these parameters
together specify the vector potential (2) and hence the laser-
electron interaction operator completely.
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FIG. 2. ATI energy spectra of photoelectrons emitted along the major axis of the polarization ellipse (x axis) for (a), (d), and (g) lithium,
(b), (e), and (h) argon, and (c), (f), and (i) xenon and for an np = 8 cycle laser pulse with ellipticity ε = 0.36. The spectra in (a)–(c) were
computed in the hydrogenic (black solid curves) and the hydrogenic Coulomb approximations (red long-dashed curves); in (d)–(f) use was
made of the atomic Coulomb (blue short-dashed curves) and atomic approximation (green dotted curves). All these spectra are normalized on
their maximum. (g)–(i) Radial wave functions P(r) of the associated initial states: hydrogenic (black solid curves), hydrogenic Coulomb (red
dashed curves), and atomic (green dash-dotted curves). A laser pulse with wavelength λ = 800 nm and intensity I = 0.9 × 1014 W/cm2 was
used in all these computations.

A. Photoelectron energy spectra

Let us begin with calculating the photoelectron energy
spectra (ATI spectra) for the given targets and by using the
four approximations from above. Figures 2 and 3 display
the calculated spectra for ε = 0.36 and 0.56, respectively. In
Figs. 2(g)–2(i), moreover, the radial wave functions of the
initial states are shown for these approaches.

Many ATI experiments have been performed with ei-
ther noble-gas or alkali-metal targets. For these targets, the
measured ATI spectra are often well reproduced, at least qual-
itatively, within the hydrogenic SFA above, i.e., by applying
a hydrogenic 1s initial state in the computation of the direct
amplitude (15). In particular, the positions of individual ATI
peaks in the energy spectra are known to be determined almost
entirely by the Volkov phase (10) and as readily seen from
Figs. 3(a)–3(f). In all four approximations, indeed, the energy

spectra peak at almost identical positions, quite independently
of how the initial and final wave functions were chosen.

Apart from the ionization potential, however, the SFA
amplitude (15) depends via the reduced matrix element
〈εpp jp‖p‖n j〉 also on the detailed form of the initial bound
and final continuum states. The role of the initial states upon
the photoelectron energy spectra has been discussed previ-
ously in Refs. [29,30] by comparing, for instance, the spectra
for hydrogenic 1s and n initial states of the target atoms.
We therefore expect that a realistic description of the atomic
target helps improve the predicted spectra and their agreement
with experiment. With the formulation of the direct amplitude
(15) above, we therefore provide a modular way to replace
the initial bound and final continuum states [18,31]. This
procedure is quite in contrast and much simpler than most
previous studies, in which elaborate analytical reformulations
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FIG. 3. Same as in Figs. 2(a)–2(f) but for the ellipticity ε = 0.56 of the driving beam.

were performed in order to incorporate approximate atomic
states into the SFA [32].

As seen from Figs. 2 and 3, the original hydrogenic ap-
proximation (black solid curves) strongly differ from all the
other spectra. This difference might be expected, perhaps, as
the wave function of the active target electron has little in
common with the 1s (radial) function, and this still remains
true if the nuclear charge is scaled to the ionization potential.
This is seen also from Figs. 2(g)–2(i). While the positions
of the ATI peaks in the spectra are affected mainly via the
Volkov phase by the temporal structure of the laser pulse, their
(absolute) values are rather different because of the detailed
shape of the wave functions or, speaking more technically,
the reduced matrix elements of the momentum operator in the
direct amplitude (15).

Besides the initial bound state, the continuum states exhibit
an even greater effect upon the energy spectra. A plane-wave
Volkov continuum only works well for rather high photoelec-
tron energies. This is seen particularly for xenon in Figs. 2(c)
and 2(f) and similarly in Figs. 3(c) and 3(f). Apart from the hy-
drogenic approximation (black solid curves), the magnitudes
of individual peaks are almost identical for all other approxi-
mations and for sufficiently high photoelectron energies εp. In
the low-energy region, in contrast, the ionization probabilities
with plane-wave Volkov states are known to strongly deviate
from experiment [33]. For low energies, the predictions have
been improved by including the Coulomb potential of the
residual ion in the continuum [34,35]. In the computational
framework above [27,36], this is easily done by replacing the
plane-wave Volkov states (11) by the Coulomb-Volkov states
(12). The impact of the Coulomb-Volkov continuum can be
seen particularly in the ATI energy spectra of argon and xenon
in Fig. 2. In these spectra, both the hydrogenic Coulomb

(red long-dashed curves) and atomic Coulomb approxima-
tions (blue short-dashed curves) display considerably larger
ionization probabilities when compared with the hydrogenic
solutions (black solid curves) at low energies.

The differences between the hydrogenic and hydrogenic
Coulomb approximations exemplifies first of all how the low-
energy photoelectrons are affected by the Coulomb potential
of the parent ion. They also demonstrate that the SFA is
suitable for quite different strong-field regimes, provided the
correct building blocks are applied in the formalism [31]. Still,
the hydrogenic Coulomb approximation simply models the
atomic potential by its (asymptotic) Coulomb behavior. As
shown by Milošević and Becker [37], the low-energy part
of the ATI spectra of noble gases can be improved further
if a short-range potential is added to the Coulomb potential
together with so-called atom Volkov states. This approach
roughly corresponds to our atomic Coulomb approximation
above. We can still proceed one step further by using distorted
Volkov continuum states that are adapted to the particular
target ions after the ionization has taken place. Figures 2 and
3(d)–3(f) compare the ATI energy spectra that are based on
either a Coulomb-Volkov continuum (blue dashed curves) or
a distorted Volkov continuum (green dotted curves). Since
the initial state of the active electron is chosen to be the
same in these spectra, the difference between the Coulomb-
Volkov and distorted-Volkov curves entirely arises from this
change of the continuum states in the SFA. While these two
approximations still differ from each other, they particularly
agree well in the low-energy part of the spectra. For these
spectra, slightly larger differences remain for the two noble
gases argon and xenon, for which the distorted Volkov approx-
imation reduces the photoionization probabilities at low and
medium photoelectron energies. Although perfect agreement
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with experiment cannot be expected, the comparison of the
ATI energy spectra in Figs. 2 and 3 may provide guidance to
the theoretical modeling in those cases, in which the standard
SFA formulation fails to explain the observations.

B. Coulomb asymmetry in angular distributions

For elliptically polarized laser pulses, the (Coulomb) asym-
metry in the photoelectron angular distribution was first
observed by Bashkansky et al. [11] in the ATI of helium,
krypton, and xenon gas targets. In their measurements, they
recorded the azimuthal photoelectron angular distributions in
the polarization plane at fixed energies and found that the
distributions merely possess an inversion symmetry about
the origin. This is in contrast to the (original) SFA based
on a plane-wave Volkov continuum, which predicted mirror-
symmetric angular distributions with regard to both the minor
and major axes of the polarization ellipse [12]. While this
mirror symmetry can be readily understood by the plane-
wave Volkov continuum, it is seen experimentally only in the
strong-field ionization of negatively charged anions [38].

Inspired by these observations, several theoretical studies
were carried out and showed that the predicted mirror symme-
try in the SFA just arises from neglecting the ionic potential
for the outgoing photoelectrons [39–41]. In a subsequent
semiclassical simulation by Goreslavski et al. [12], the correct
symmetry of the angular distribution was obtained by just in-
cluding the Coulomb field in the classical equations of motion.
Moreover, in this work the observed angular distributions for
xenon targets were shown for different ellipticities, which,
since then, have often been used as a benchmark for theo-
retical calculations. Indeed, several studies have meanwhile
been performed in order to explore how the pulse duration
and further laser parameters as well as the target potential
affect the shape and orientation of the photoelectron angular
distributions [14,17,42,43]. Despite all these efforts, however,
most of the calculated angular distributions have not agreed
well with experiment and mainly recover the more or less
correct asymmetry within the polarization plane.

Therefore, the Coulomb asymmetry in the angular dis-
tribution of strong-field ionized atomic targets provide an
excellent test bed for analyzing and comparing the (four)
approximations above. Figure 4 displays such angular distri-
butions for the ATI with elliptically polarized laser beams for
lithium, argon, and xenon targets. All these angular distribu-
tions are taken within the polarization plane (ϑp = π/2) but
for beams with different ellipticity and intensity. For the sake
of comparison, they are shown for the ATI peaks that refer to
fixed photoelectron energies εp between 4ω and 5ω above the
threshold. The purple dash-dotted curves in this figure display
the experimental distributions for argon [14] (ε = 0.25) and
xenon [12] (ε = 0.36 and 0.56). All these experimental curves
clearly possess inversion symmetry but do not exhibit any
mirror symmetry with regard to the horizontal or vertical axes.

We can compare these observations with the different ap-
proximations above as obtained for the direct SFA amplitude
(5). The black solid curves in Fig. 4, for example, show
the angular distributions from the hydrogenic approxima-
tion. Owing to the symmetry of the vector potential of the
driving beam, that is, the symmetry of the polarization ellipse,

these distributions must be mirror symmetric with respect
to the major (x) and minor (y) axes. This symmetry of the
angular distribution is however distorted (and rotated; cf.
the red dashed curves in Fig. 4), if the plane-wave Volkov
states are replaced by Coulomb-Volkov states. Therefore,
the hydrogenic Coulomb approximation already predicts a
Coulomb asymmetry of the angular distributions, although
their distributions are still quite different when compared to
measurements for argon and xenon. If we also replace the
(hydrogenic) initial state of the active electron by a more
realistic wave function in the atomic Coulomb approximation,
the deviations from experiment increase again. Indeed, the
blue dashed distributions exhibit a clearly reduced asymmetry
when compared to the red dashed distributions, as they are
rotated back towards the horizontal axis in all the panels of
Fig. 4.

In the atomic approximation (green dotted curves in
Fig. 4), we finally include also the ionic potential for the
outgoing photoelectrons. In this approximation, the maxima
of the lobes are found to be in quite reasonable agreement with
the observed distributions. For the two ellipticities ε = 0.25
(argon) and ε = 0.36 (xenon), however, the experimental dis-
tributions are already (fully) inversion symmetric, while our
best approximation still exhibit two lobes with quite different
maxima. One reason for this behavior is the limited duration
of the driving laser pulse as applied in the computations.
Figure 5 compares the angular distribution for laser pulses
of different durations for a xenon target and ε = 0.56. The
green dotted curve is identical to the green dotted curve in
Fig. 4(f). As easily seen from Fig. 5, the two lobes of the
angular distributions becomes (nearly) the same as the pulse
duration, i.e., the number of optical cycles, increases. An
analogous behavior is expected for the remaining asymmetries
in the curves of Fig. 4. At present, however, our numerical
implementation does not enable us to deal with pulses longer
than np ≈ 8 optical cycles because of numerical instabilities
due to the highly oscillating pulse shape integrals.

Particularly for xenon and ε = 0.56, the lobes are wider
than the experimental ones. Further work will be needed to
understand these differences which might result from the
velocity gauge for the coupling of the radiation field or from
omitted contributions in the amplitude (5). While all other
theoretical distributions in Figs. 4(a), 4(c), and 4(e) show
a rather similar structure, the full inversion symmetry with
regard to the maxima in the angular distributions may indeed
require one to use the length gauge. Unfortunately, however,
this length gauge is technically more complicated since the
time and radial integration can no longer be separated in a
simple manner. An implementation of this length gauge is
therefore beyond the scope of the present work. In addition,
the rescattering of photoelectrons at their parent ions may
have a measurable influence for ε = 0.25 and should be
examined further. In most of our approximations above, we
also found a visible rotation of the angular distribution if the
intensity of the laser pulse is changed by just a few percent.
For lithium and ε = 0.56, for example, a change of intensity
from I = 0.9 × 1014 to 0.93 × 1014 W/cm2 leads to almost
identical distributions of our computations with experiment.
Therefore, parts of the remaining disagreement between
experimental and theoretical distributions in Fig. 4
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Comparison of photoelectron angular distributions from the ATI with elliptically polarized np = 8 cycle laser beams for three
different target atoms: (a) and (b) lithium, (c) and (d) argon, and (e) and (f) xenon. All these angular distributions are taken within the
polarization plane (ϑp = π/2) and for beams with ellipticities ε = 0.25 and 0.56 and intensity I = 1.5 × 1014 W/cm2 for lithium and argon
as well as with ε = 0.36 and 0.56 and intensity I = 0.9 × 1014 W/cm2 for xenon, respectively. They are shown for the ATI peaks that refer
to fixed photoelectron energies εp between 4ω and 5ω above the threshold. These energies also slightly vary for the different approximations
and targets for which the wave functions were generated (cf. Figs. 2 and 3). For the sake of comparison, again, all these distributions are
normalized on their maximum. Angular distributions from different approximations are compared in each of these polar plots: hydrogenic
(black solid curves), hydrogenic Coulomb (red long-dashed curves), atomic Coulomb (blue short-dashed curves), and atomic (green dotted
curves). In addition, measured distributions from Refs. [14] (argon) and [12] (xenon) are displayed as well (purple dash-dotted curves). All
other laser parameters are the same as in Fig. 2.

may arise from the uncertainties of the experimental
intensity.

For the ellipticity ε = 0.56, the correct inversion symmetry
is found for all predicted angular distributions as seen from
Figs. 4(b), 4(d), and 4(f). Particularly for xenon, the angu-
lar distribution from the atomic approximation (green dotted
curves) are in good agreement with experiment and signifi-
cantly better than for any of the other approximations. The use
of a target-specific distorted Volkov continuum for the outgo-
ing electron helps improve the angular distributions and forms
a clear contrast to the typically applied Coulomb-Volkov
states in recent SFA computations. Similar good agreement
with available observations has been found also for other
photoelectron energies.

Despite all these improvements due to the use of the
target-adapted initial bound and final continuum states, some
discrepancies remain between experiment and our predictions
above. Possible reasons for these discrepancies may refer to
the (incomplete) knowledge of the intensity and time structure
of the laser pulses, as indicated above.

IV. CONCLUSION

A partial-wave representation of the SFA has been devel-
oped and applied to calculate the ATI photoelectron spectra
and angular distributions for different atomic targets. This rep-
resentation enables one to combine the (basic assumptions of
the) SFA with concepts from atomic structure theory [27,31].
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FIG. 5. Photoelectron angular distributions in the atomic approx-
imation for three different pulse lengths or number of optical cycles:
np = 2 (black solid curve), np = 4 (purple dashed curve), and np = 8
(green dotted curve). All curves were computed in the atomic ap-
proximation and for a xenon target, the wavelength λ = 800 nm,
laser intensity I = 0.9 × 1014 W/cm2, and an ellipticity ε = 0.56.
All curves are normalized on their maxima.

Following our previous work [18], the target-specific initial
bound and final continuum states have been applied in a basis
of coupled angular momenta in order to include the spatial and
spin motion of the active electron(s) on equal footing.

In this work we particularly show and discuss how different
approximations to the SFA can be readily utilized to stepwise
improve the initial and continuum states (wave functions).
Apart from using hydrogenic initial and plane-wave Volkov
continuum states, i.e., by following the original formulation of
the SFA, a target-specific initial bound and a distorted-wave
continuum help improve the calculated spectra or angular
distributions. These improvements put the predicted spec-
tra in reasonable agreement with experiment. We therefore
conclude that a proper treatment of the target wave func-
tions is essential for predicting the ATI energy spectra also
quantitatively.

In addition, we have studied the Coulomb asymmetry in the
photoelectron angular distributions following the ionization
by elliptically polarized laser pulses. While this asymmetry is
known to arise from the (Coulombic) interaction of the pho-
toelectron with its parent ion, the use of target-adapted initial
bound and distorted-Volkov continuum states generally gives
rise to the best agreement with experiment. Detailed compu-
tations have been performed for lithium, argon, and xenon
targets. Although some deviations from experiment remain
for argon and xenon, further studies for small ellipticities of
the driving beam are desirable within the length gauge and by
including also the rescattering amplitude in the computation
of the ionization probabilities.

Still, several further extensions to the SFA remain prefer-
able. For the ATI process, a coupling to other atomic bound
states could be incorporated as well within the partial-wave
representation. This representation will enable us also to ac-
count for nondipole contributions from the interaction with
the radiation field by just including reduced matrix elements
beyond the electric dipole terms [21,23]. Furthermore, a sim-
pler expansion of the SFA amplitude might be performed
for other strong-field processes, such as high-order harmonic
generation and nonsequential double ionization [19,44]. Since
all these “second-order” processes (with regard to the num-
ber of interactions of the atomic electrons) arise from either
a recombination or rescattering between the photoelectron
and photoion, we expect that a realistic description of the
target atom will have a significant impact upon all predic-
tions. Finally, one can formally rewrite the SFA amplitude
(15) also in terms of (correlated) many-electron states by
using partial waves and spherical tensor operators as described
above, where the single-electron matrix elements from above
then need to be replaced by corresponding many-electron
amplitudes as they frequently occur in atomic structure
theory.
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