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Relativistic analytical R-matrix theory for strong-field ionization
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The analytical R-matrix (ARM) theory has been known for an efficient description of the Coulomb effects
of the atomic core in strong-field ionization in the nonrelativistic regime. We generalize the ARM theory into
the relativistic domain aiming at the application to strong-field ionization of highly charged ions in ultrastrong
laser fields. Comparison with the relativistic Coulomb-corrected strong-field approximations (SFA) is provided,
highlighting the advantages and disadvantages. The weakly relativistic asymptotics and its accordance with the
nondipole Coulomb-corrected SFA are examined. As an example of a physical application of the relativistic
ARM, the Coulomb enhancement of tunneling ionization probability for highly charged ions at the cutoff of the
direct channel is discussed.
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I. INTRODUCTION

Advances in the experimental technique for high-
resolution measurements of photoelectron and ion momentum
distributions [1,2] allowed the recent extension of experi-
mental investigations of strong-field ionization beyond the
dipole regime [3–13]. The leading nondipole effect is the
radiation pressure, which is responsible for the partitioning
of the absorbed photon momentum between the photoelectron
and the parent ion in strong-field ionization [3,14–19]. Inter-
esting dynamical properties arise due to the interplay between
Coulomb effects of the atomic core and the nondipole effects
[4–6,20–26]. The nondipole theory has been developed for the
interpretation of experimental results, including the strong-
field approximation (SFA) [14,18,19,27–37], the numerical
solution of the time-dependent Schrödinger equation (TDSE)
[30,38,39], as well as the classical trajectory Monte Carlo
(CTMC) simulations [12,40–42].

While presently strong laser fields up to the intensity of
1023 W/cm2 are achievable [43], the relativistic regime of the
laser-atom interaction in ultrastrong fields is far from deep
experimental scrutiny. This is because the most interesting dy-
namics, including electron correlations, is expected when the
atomic and laser fields are of the same magnitude. The latter
necessitates dealing with an atomic system of highly charged
ions (HCI), which are extremely difficult to handle experimen-
tally. The pioneering experiment in this field by Moore et al.
[44] more than 20 years ago at an intensity of 3×1018 W/cm2
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has been followed by a series of fine experiments aimed at the
observation of signatures of the atomic bound dynamics in
the photoelectron momentum distribution (PMD) during the
ionization process in external fields of relativistic intensity
[45–53]. It was clearly shown that the drift of the electron
induced by the laser magnetic field suppresses the usual
electron correlation channel—the recollision, and related phe-
nomena of high-order harmonic generation, above-threshold
ionization, and nonsequential double ionization, see, e.g.,
Refs. [40,46,54]. However, it is still not clear whether specific
electron correlations in the relativistic regime of strong-field
ionization, such as shake-up, shake-off processes, collective
tunneling, etc. [55], would exist at suppressed recollisions.

The workhorses of analytical investigations in strong-field
physics, strong-field approximation (SFA) [56–58] and the
quasi-classical imaginary time method (ITM) [59,60] have
been generalized into the relativistic regime in Refs. [61,62]
and [63–66], respectively. However, in the standard SFA, the
influence of the Coulomb field of the atomic core is neglected
in the electron continuum dynamics. This approximation is
especially unsuitable in the case of HCI.

In the nonrelativistic regime the ITM has been im-
proved to treat Coulomb field effects during ionization
and the well-known quantitatively correct Perelomov-Popov-
Terent’ev (PPT) ionization rates have been derived [67] (in the
adiabatic regime also known as Ammosov-Delone-Krainov
(ADK) rates [68]). The PPT theory uses the quasi-classical
wave function for the description of the tunneling part of the
electron wave packet through the nonadiabatic barrier formed
by the laser and the atomic field. The continuum wave func-
tion is matched to the exact bound state [59,69], in this way
removing the singularity in the phase of the quasi-classical
wave function at the Coulomb center. The PPT theory does
not address Coulomb effects during the photoelectron dy-
namics in the continuum. The latter is very important for
the forming of various features of the photoelectron momen-
tum distribution (PMD) and has been treated within different
versions of the Coulomb-corrected SFA (CCSFA). The
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simplest approach is the Coulomb-Volkov ansatz when the
Volkov wave function [70] in the SFA matrix element is re-
placed by the Coulomb-Volkov wave function [71,72], which
incorporates the asymptotic phase of the exact Coulomb con-
tinuum wave function into the phase of the Volkov state.
While the Coulomb-Volkov approach can be formulated rig-
orously as an S-matrix expansion [73], it accounts for the
coupling between the Coulomb and the laser field perturba-
tively, and the approach fails when the electron appears in the
continuum after tunneling close to the atomic core [74].

The extension of the nonrelativistic PPT theory to treat
the Coulomb effects in the continuum also employs the elec-
tron continuum wave function in the eikonal approximation
[75–77]. The CCSFA via the eikonal approximation has been
rigorously formulated in [78,79], evaluating the eikonal phase
of the continuum electron wave function along the exact
classical electron trajectories driven by the laser and the
Coulomb field. The same approximation has been worked out
in Refs. [80,81] via the Feynman path integration concept.
Higher-order contributions in CCSFA have been discussed in
Ref. [82] by removing the Coulomb singularity with the use
of the saddle-point approximation [83] rather than with the
matching procedure to the bound state.

An innovative way of matching the electron eikonal wave
function for the continuum to the atomic bound state within
the nonrelativistic SFA approach has been advanced in the
analytical R-matrix (ARM) theory [84–87]. Here, it has been
shown that the rigorous matching procedure is equivalent
to a particular (imaginary) shift of the starting point of the
complex time integration in the phase of the eikonal wave
function in the SFA amplitude. The ARM theory provides
the most efficient version of CCSFA. While the employed
eikonal approximation in different versions of CCSFA allows
the treatment of rescattering effects, it restricts the rescattering
only to soft ones [88].

The relativistic regime of strong-field ionization can be
characterized by the following parameters. For the subbarrier
dynamics, the parameter υ ≡ κ/c ∼ 1 indicates the rela-
tivistic domain, with the atomic momentum κ = √

2Ip, the
ionization energy Ip, and the speed of light c. For the contin-
uum dynamics, the relativistic domain is achieved when the
relativistic invariant field parameter ξ ≡ E0/(cω) ∼ 1, with
the laser field amplitude E0 and the frequency ω. Recollisions
in the relativistic regime are suppressed when the Lorentz
deflection parameter �R � 1, with �R ≡ (1/16)υξ 3(c2/ω)
[40,89]. Atomic units are used throughout.

The relativistic domain of strong-field ionization is ac-
cessible with HCI driven by ultrastrong lasers fields. The
ITM including Coulomb corrections during ionization has
been extended into the relativistic regime [63–66], allowing
to calculate quantitatively relevant ionization rates in the rel-
ativistic case. The relativistic version of the plain SFA has
been put forward by Reiss in Refs. [61,62]. The CCSFA,
based on the relativistic eikonal-Volkov wave function for
the continuum electron [90], has been proposed in Ref. [91].
The calculation of spin-resolved ionization probabilities in the
relativistic regime using relativistic CCSFA has been provided
in Ref. [92], showing the equivalence of the CCSFA to the
Coulomb-corrected ITM.

We indicate also the significant efforts in the numerical
investigations of the relativistic ionization dynamics via the
Dirac equation, in particular with HCIs and superstrong laser
fields, carried out in Refs. [93–105].

In this paper the ARM theory is extended into the rel-
ativistic domain aiming at the application of strong-field
ionization of HCIs in ultrastrong laser fields. The ARM the-
ory [84–87] is a version of the eikonal approximation in the
description of the Coulomb field of the atomic core for the
electron during its continuum dynamics after ionization in a
strong laser field. The main advantage of the ARM theory is
that the explicit matching procedure of the continuum wave
function to the bound state is replaced by the specific shift
of the border of the time integration into the complex plane
in the eikonal. The consequence of this procedure is that the
singularity of the wave function at the saddle point of the
time integration (corresponding to the center of the Coulomb
potential) is eliminated. For the extension of the ARM theory
into the relativistic regime we make use of the latter property,
namely, derive such a shift of the time integration border in
the complex domain, which eliminates the singularity of the
phase of the relativistic CCSFA wave function at the time
saddle point. Finally, we apply the relativistic ARM theory
for the investigation of the Coulomb enhancement effect at
the cutoff of the direct ionization channel in the relativistic
domain with HCIs. This effect is known in the nonrelativistic
regime, described in Refs. [88,106].

The structure of the paper is the following. In Sec. II we be-
gin with the nonrelativistic regime, elucidating our approach
for the derivation of the ARM theory amplitude, then apply
it for the relativistic case in Sec. III. Examples of the appli-
cation of the derived relativistic ARM theory are discussed in
Secs. IV–VI, and our conclusions are formulated in Sec. VII.

II. NONRELATIVISTIC THEORY

In this section we elucidate our approach for the derivation
of the ARM-theory amplitude in the nonrelativistic regime.
Note that the ionization amplitude in the nonrelativistic ARM
theory has been derived in Refs. [84–87] by dividing the
interaction region into two subregions (inner region and outer
region), and by rigorously matching the eikonal wave function
for the continuum electron in the outer region to the bound
state wave function in the inner region using an R-matrix ap-
proach. Here, we use an operational approach, namely, taking
into account that the above-mentioned matching procedure of
the wave functions is equivalent to a shift of the time integra-
tion border in the complex domain, and we derive such a shift
of the time integration border in the eikonal that eliminates the
singularity of the SFA amplitude. Firstly, we derive with our
operational approach the strong-field ionization amplitude in
the case of a short-range atomic potential and then discuss the
case with the Coulomb field.

We apply SFA for the description of the laser-driven ioniza-
tion process of the atomic bound electron. The SFA ionization
amplitude of the electron with asymptotic outgoing momen-
tum p is given by [107]

mp = −i
∫

dt〈ψp(t )|Hi(t )|φ(t )〉, (1)
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where φ(t ) is the bound state wave function, ψp(t ) the
electron outgoing continuum state, and the interaction Hamil-
tonian in the length gauge

Hi(t ) = r · E(t ), (2)

with the laser electric field E = −∂t A.

A. Short-range potential

Let us first derive the analytical expression of the ionization
amplitude in the leading order E0/Ea term in the case of a
short-range atomic potential, where Ea = κ3 is the atomic
field. In this case the continuum state in the laser field in
Eq. (1) is described by the Volkov state [70], ψp(r, t ) →
ψ (0)

p (r, t ):

ψ (0)
p (r, t ) = 1

√
(2π )

3 exp

{
i[p + A(t )] · r

+ i
∫

t
ds

[p + A(s)]2

2

}
, (3)

with the laser vector potential A(t ); here we consider a lin-
early polarized laser field. The bound state in the case of the
short-range potential is φ(r, t ) → φ(0)(r, t ):

φ(0)(r, t ) =
√

κ

2πr2
exp

[
−κr + i

κ2

2
t

]
. (4)

In this case we straightforwardly arrive at the amplitude
mp → m(0)

p :

m(0)
p = − i

√
κ

4π2

∫
d3r

∫
dt

r · E(t )

r
exp

{
− i[p + A(t )] · r

− i
∫

t
ds

[p + A(s)]2

2
+ i

κ2

2
t − κr

}
. (5)

In the next step we approximate the t integration via the
saddle-point approximation (SPA). Here the solution of the
t-saddle-point equation,

[p + A(t )]2 + κ2 + 2r · E(t ) = 0, (6)

is found perturbatively with respect to the last term, which is
equivalent to an expansion in the parameter E0/Ea. It yields

ts = t̃0 + i
r · E(t̃0)

|E(t̃0)|κ̃ ≈ t̃0 + i
r · E(t0)

|E(t0)|κ , (7)

where κ̃ =
√

κ2 + p2
⊥, and t̃0 is the common zeroth-order

solution [108] via

[p + A(t̃0)]2 + κ2 = 0. (8)

Here, we distinguish between t̃0 and t0 = t̃0(pmax), with
pmax = [0, A(tmax), 0] the most probable quasi-classical mo-
mentum in the nonrelativistic case, corresponding to the
ionization at the time tmax. In the perturbation term in Eq. (7),
we approximate κ̃ ≈ κ and t̃0 ≈ t0, because otherwise higher-
order terms with respect to E0/Ea would be included. Note
that the time dependence of the preexponential in Eq. (5)
∂t ln[E (t )] ∼ ω is small and can be neglected with an accuracy

of ω/Ip. With the solution Eq. (7), the amplitude in SPA yields

m(0)
p = −i

∫
d3rM(0)(r), (9)

M(0)(r) = 1

4π2

√
2π

|E(t0)|
r · E(t0)

r

× exp

{
−i[pmax + A(t0)] · r − (r · E(t0))2

2κ|E(t0)| − κr

− i
∫

t̃0

ds
1

2
[p + A(s)]2 + i

κ2

2
t̃0

}
, (10)

where the terms up to the first order in E0/Ea in the exponent
are kept, and with the same accuracy, the prefactor is esti-
mated at p = pmax. The remaining r integral is then calculated
analytically:

m(0)
p = i√

2π |E(t0)| exp

{
−i

∫
t̃0

ds
[p + A(s)]2

2
+ i

κ2

2
t̃0

}
.

(11)

B. Coulomb potential

Now, with our operational approach we derive the strong-
field ionization amplitude in the case of the atomic Coulomb
potential. In this case, the bound state as well as the continuum
state in the eikonal approximation obtain exponential correc-
tions proportional to ν = Z/κ , with the charge Z of the atomic
core. The bound state in the Coulomb potential in r → ∞
asymptotics reads

φ(r, t ) = φ(0)(r, t )φ(1)(r),
(12)

φ(1)(r) = C exp [ν ln(κr)],

where C is the normalization constant (for hydrogen-like ions
with Z = κ , it is C = √

2) and the continuum state in the
eikonal approximation is

ψ (r, t ) = ψ (0)(r, t )ψ (1)(r, t ),

ψ (1)(r, t ) = exp

[
iν

∫
t
ds

κ

|r + p(s − t ) + α(s) − α(t )|
]
,

(13)

where α(t ) = ∫
dtA(t ). The t dependence in the Coulomb

correction (CC) terms is weak and can be neglected with an
accuracy of ω/Ip. In this case the CC momentum amplitude
of Eq. (9) reads (cf. [85])

m(1)
p = −i

∫
d3rM(0)(r)C exp

{
ν

[
ln(κr)

+ i
∫

ts

ds
κ

|r + p(s − ts) + α(s) − α(ts)|
]}

. (14)

The s integral in the phase of Eq. (14) is diverging at the
low limit t = ts at the Coulomb center r = 0. However, the di-
verging term can be canceled with the bound CC term φ(1)(r)
when using appropriate approximations. We separate the di-
verging term in the integral of Eq. (14)

∫
ts

= ∫ t0−iδ
ts

+ ∫
t0−iδ ,

and show that with appropriate choice of the parameter δ,
the diverging term

∫ t0−iδ
ts

will be canceled by the bound CC
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TABLE I. Estimation of the variables and parameters via SFA
for the approximate calculation of the integral in Eq. (15), where
r = (rk, rE , rB); p = (pk, pE , pB ); the components of the vectors are
defined along the laser propagation direction, the laser electric field,
and along the laser magnetic field; and the function g(Ip/c2 ) depends
on Ip/c2.

Quantity Nonrelativistic estimate Relativistic estimate

rk 0 0
rE

√
Ea/E0/κ g(Ip/c2)

√
Ea/E0/κ

rB 0 0
pk0 0 c(λ2 − 1)/(2λ)
pE0 0 0
pB0 0 0
�pk

√
E0/Ea κ g(Ip/c2)

√
E0/Ea κ

�pE
√

E0/Ea E0/ω g(Ip/c2)
√

E0/Ea E0/ω

�pB
√

E0/Ea κ g(Ip/c2)
√

E0/Ea κ

term when using the following approximations. Firstly, in
the analytical calculation of CC in the continuum state, we
neglect all higher-order corrections with respect to

√
E0/Ea,

in the spirit of ARM [85]. To apply the given approxima-
tion, we estimate the variables in the integrand of Eq. (14),
with the result summarized in Table I. We refer to Ref. [83]

[below Eq. (21)] for the estimation rE = √
Ea/E0/κ , which

is the scaling of the coordinate saddle point of the inte-
grand in Eq. (9), i.e., the point where the ionizing trajectory
starts; rk ≈ rk (t0) = 0 is approximated, assuming that the
most probable trajectory has zero impact parameter at t0 near
the core. Further, we express pk,E ,B = pk,E ,B 0 + �pk,E ,B, with
the most probable value of the momentum pk,E ,B 0 [in the
nonrelativistic theory pk,E ,B 0 = 0, and in the relativistic one
pk0 = c(λ2 − 1)/(2λ), pE ,B 0 = 0, see Eq. (28) below], and
the new variables �pk,E ,B corresponding to the momentum
width of the tunneling wave packet. The latter are estimated
as �pE ∼ √

E0/EaE0/ω, �pk = �pB ∼ √
E0/Eaκ according

to the PPT theory [60]. In the relativistic estimations an addi-
tional factor depending on Ip/c2 arises. Here, r = (rk, rE , rB),
p = (pk, pE , pB), and the components of the vectors are
defined along the laser propagation direction rk ≡ r · k/k,
pk ≡ p · k/k, along the laser electric field rE ≡ −r · E/E0,
pE ≡ −p · E/E0, and along the laser magnetic field rB ≡ −r ·
B/B0, pB ≡ −p · B/B0. We introduce dimensionless variables
RE , Pk, PE , PB, dividing the given variable over its estimated
value in Table I: RE ≡ rEκ (

√
E0/Ea), Pk ≡ �pk/(

√
E0/Eaκ ),

PE ≡ �pE/(
√

E0/EaE0/ω), PB ≡ �pB/(
√

E0/Eaκ ). Further,
we apply a variable transformation s = ts + σ (t0 − iδ − ts)
and expand the integrand up to leading order in E0/Ea in a
quasistatic approximation, arriving at

exp

[
iν

∫ t0−iδ

ts

ds
κ

|r + p(s − ts) + α(s) − α(ts)|

]
≈ exp

[
ν

∫ 1

0
dσ

(√
E0/Ea

[
2δκ2 − (σ − 1)2R2

E

]
2(σ − 1)2RE

+ 1

σ − 1

)]

+ O(
√

E0/Ea) ≈ [δκ2(1/RE −
√

E0/Ea)
√

E0/Ea]ν + O(
√

E0/Ea)

≈ (δκ/rE )ν + O(
√

E0/Ea). (15)

The singular term at r → 0 in Eq. (15) will be canceled with
the similar term in the Coulomb correction of the bound state,
see Eq. (14), if we choose δ = 1/κ2. Secondly, we approxi-
mate

|r + p(s − ts) + α(s) − α(ts)|
≈ |pmax(s − t0) + α(s) − α(t0) + O(

√
E0/Ea)|, (16)

which again follows from the scaling laws given in Table I.
Consequently, we obtain that the correction terms are ap-

proximately independent of the coordinates and arrive at the
momentum amplitude:

m(1)
p = −iC

∫
d3rM(0)(r)

× exp

[
i
∫

t0− i
κ2

Z ds

|pmax(s − t0) + α(s) − α(t0)|

]
. (17)

The latter after the final coordinate integration yields

m(1)
p = Cm(0)

p exp

[
i
∫

t0− i
κ2

Z ds

|pmax(s − t0) + α(s) − α(t0)|

]
.

(18)

III. RELATIVISTIC THEORY

In the relativistic regime we employ SFA based on the
Dirac equation [92]. The ionization SFA amplitude is again
formally given by Eq. (1), where the interaction Hamiltonian
in the Göppert-Mayer gauge within the dressed partition [92]
reads

Hi(r, t ) = r · E(η), (19)

H0 = Ha − r · E(η)αk, (20)

where αk ≡ α · k̂, α are Dirac matrices, k̂ is the unit vector
along the laser propagation direction, and η = t − k̂ · r/c.
The spin quantization axis is chosen along the laser magnetic
field. We employ the four-vector potential of the laser field
in the Göppert-Mayer gauge: Aμ = −[k̂(r · E(η), r · E(η)]. In
Ref. [92] we have shown that the relativistic SFA provides
more close expressions to the relativistic PPT theory [66] for
the total ionization rate if the dressed partition is applied. In
the dressed partition, the unperturbed bound state is corrected
[92] by a factor

S = exp

(
i

A

2c − Ip/c

)
. (21)
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A. Short-range potential

In the case of a short-range potential the outgoing state is
the relativistic Volkov state ψp(r, t ) → ψ (0)

p (r, t ):

ψ (0)
p (r, t ) =

(
1 + (1 + αk )α · A(η)

2c�̃

)
cu f√

(2π )3ε̃

× exp

[
i(p + A(η)) · r − iε̃t

+ i
∫

η

ds

(
p · A(s) + A(s)2/2

�̃

)]
, (22)

with the asymptotic energy ε̃ =
√

c4 + c2p2, the constant of
motion �̃ = ε̃/c2 − pk/c, and the bispinor

u f =
(√

c2 + ε̃

2c2
χ f ,

σ · p√
2(c2 + ε̃)

χ f

)T

, (23)

where χ+ = (1, 0)T and χ− = (0, 1)T . The bound state of the
short-range potential is

φ(0)(r, t ) =
√

κ

2πr2
exp[−κr + i(Ip − c2)t]vi, (24)

with the atomic momentum κ =
√

2Ip(1 − Ip

2c2 ), and the
bispinor

vi =
(

χi, i
c(κr + 1)σ · r
(2c2 − Ip)r2

χi

)T

. (25)

We consider two cases: firstly, when there is no spin flip,
χ f = χi = χ+, and secondly, when there is a spin flip during
ionization, i.e., χ f = χ− and χi = χ+. In the first case we
have

m(0)
p+ = − i(2Ip)1/4

4π2

∫
d3rdηS(η)P+

r · E(η)

r
exp

{
−i

[
pmax + A(η) + c2 − Ip − ε

c
k̂
]

· r − i
∫

η

ds

[
ε̃ + p · A(s) + A(s)2/2

�̃

]

+ i(Ip − c2)η − κr

}
, (26)

with

P+ = 2c�[−c
√

Ip(2c2 − Ip)pk0 − c2(−2ε + Ip) + 2c4 − Ipε] + √
2�(ε − c2 + Ip)[

√−Ip(−2c2 + Ip) + 2c2 − Ip][ε + c(c + pk0)]

2c3/2�(4c2 − 2Ip)3/4
√

ε(c2 + ε)

+O(
√

E0/Ea), (27)

where the amplitude is evaluated at the most probable quasiclassical momentum pmax = (pk0, 0, 0), with

pk0 = c(λ2 − 1)/(2λ), (28)

λ = (
√

ε2 + 8 − ε)/2, ε = 1 − Ip/c2 and the notations � ≡ �̃(pmax) and ε ≡ ε̃(pmax). In the second case the amplitude reads

m(0)
p− = − i(2Ip)1/4

4π2

∫
d3rdηS(η)P−

r · E(η)

r
exp

{
−i

[
pmax + A(η) + c2 − Ip − ε

c
k̂
]

· r − i
∫

η

ds

[
ε̃ + p · A(s) + A(s)2/2

�̃

]

+ i(Ip − c2)η − κr

}
, (29)

with P− = 0 + O(
√

E0/Ea). We have expanded the expressions in the parameter E0/Ea with the relativistic atomic field Ea = κ3

and κ along the lines of SFA. From the expansion it follows that in leading order in this parameter no spin flip occurs and,
consequently, we focus only on the spin flip free process.

In the next step we approximate the η integration via SPA. Here, the η-saddle-point equation is

ε̃ + p · A(η) + A(η)2/2

�̃
+ Ip − c2 + r · E(η) = 0, (30)

which is solved perturbatively with respect to the last term, yielding the solution

ηs = η̃0 + r · E(η0)�

[pmax + A(η0)] · E(η0)
, (31)
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with the zeroth order solution η̃0 and η0 = η̃0(pmax) [92]. The time dependence of the preexponential ∂η ln[E (η)] ∼ ω is small
and can be neglected. After the η-SPA, the amplitude is

m(0)
p+ = −i

∫
d3rM(0)(r) (32)

M(0)(r) = (2Ip)1/4

4π2
S(η0)P+

√
−2iπ�

[pmax + A(η0)] · E(η0)

r · E(η0)

r
exp

{
−i

[
pmax + A(η0) + ε − c2 + Ip

c
k̂
]

· r

+ i[r · E(η0)]2�

2[pmax + A(η0)] · E(η0)
− κr − i

∫
η̃0

ds

(
ε̃ + p · A(s) + A(s)2/2

�̃

)
+ i(Ip − c2)η̃0

}
, (33)

where terms up to the next to leading order in E0/Ea in the exponent are kept. The remaining r integral is then calculated
analytically in leading order in E0/Ea,

m(0)
p = i√

2π |E(η0)| SP+Q exp

{
−i

∫
η̃0

ds

[
ε̃ + p · A(s) + A(s)2/2

�̃

]
+ i(Ip − c2)η̃0

}
. (34)

with the prefactor

Q =
√

ε − c2 + Ip

Ip
(35)

also evaluated at the most probable quasi-classical momentum.

B. Coulomb potential

In the relativistic case the corrections to the wave functions of the order of Z/κ due to the Coulomb potential are, for the
bound state,

φ(r, η) = φ(0)(r, η)φ(1)(r) (36)

φ(1)(r) = C exp [ν ln(κr)], (37)

ν = (c2 − Ip)Z

c2
√

Ip(2 − Ip/c2)
, (38)

with the normalization constant C = 2ν− 1
2

√
ν+1

�(2ν+1) for hydrogen-like systems with Z = κ , and for the continuum state,

ψ (r, η) = ψ (0)(r, η)ψ (1)(r, η) (39)

ψ (1)(r, η) = exp

{
i
∫

η

ds
Z ε̃(s)

�̃c2

1

|r + [p(s − η) + α(s) − α(η)]/�̃ + rk (s, η)|
}
, (40)

with rk (s, η) = k̂{p · [α(s) − α(η)] + β(s) − β(η)}/(c�̃2), β = ∫
dsA2/2 and ε̃(η) = ε̃ + [p · A(η) + A(η)2/2]/�̃.

The singularity in the s integral in the phase of Eq. (39) is removed using the same procedure as in the nonrelativistic case.
The first term in the integral

∫
ηs

= ∫ η0−iδ
ηs

+ ∫
η0−iδ is divergent, which is canceled with the bound CC term φ(1)(r), when using

an appropriate value for the parameter δ.
Taking into account that the η dependence in the CC terms is weak, the momentum amplitude for the Coulomb potential is

approximated by Eq. (32) including extra CC terms:

m(1)
p+ = −iC

∫
d3rM(0)(r) exp

{
νln(κr) + i

∫
ηs

ds
Z ε̃(s)

�̃c2

1∣∣r + (p(s − ηs) + α(s) − α(ηs )
�̃

+ rk (s, ηs)
∣∣
}

. (41)

The choice of δ for the singularity removal is possible when the following approximations are applied. We integrate the Coulomb
correction in the continuum state analytically around ηs:

exp

[
i
∫ η0−iδ

ηs

Z ε̃(s)ds

�̃c2|r + [p(s − ηs) + α(s) − α(ηs)]/�̃ + rk (s, ηs)|

]
≈

( √
3λκδ√

(4 − λ2)rE

)ν

, (42)

where the same method as in the derivation of Eq. (15) is applied, i.e., the same scaled variables are introduced (RE , Pk and
PE , PB), the variable transformation s = ηs + σ (η0 − iδ − ηs) is used, and then, before analytical integration the integrand is
expanded in

√
E0/Ea in a quasistatic approximation, using estimations of Table I. Further, the atomic correction term is in

023107-6



RELATIVISTIC ANALYTICAL R-MATRIX THEORY FOR … PHYSICAL REVIEW A 107, 023107 (2023)

leading order in E0/Ea,

(κr)ν =
(

κ

√
4 − λ2rE√

3

)ν

. (43)

With the choice δ = 1/(λκ2) = �/κ2 ≈ [1 − κ2/(6c2)]/κ2, we cancel the singular term of the Coulomb correction to the bound
state. Then, we approximate in leading order in E0/Ea:

|r + [p(s − ηs) + α(s) − α(ηs)]/�̃ + rk (s, ηs)| ≈ |[pmax(s − η0) + α(s) − α(η0)]/� + rk (s, η0) + O(
√

E0/Ea)|. (44)

Thus, we conclude that the correction terms are approximately independent of the coordinates, and arrive at the momentum
amplitude,

m(1)
p = −iC

∫
d3rM(0)(r) exp

{
i
∫

η0−i�/κ2

Zε(s)/(c2�) ds

|pmax(s − η0) + α(s) − α(η0) + rk (s, η0)|
}
. (45)

After the final coordinate integration, this yields

m(1)
p = Cm(0)

p exp

{
i
∫

η0−i�/κ2

Zε(s)/(c2�) ds

|pmax(s − η0) + α(s) − α(η0) + rk (s, η0)|
}
. (46)

Equation (46) is the main result of the paper, providing the
Coulomb-corrected strong-field ionization amplitude for the
relativistic regime using the ARM approach.

IV. COMPARISON WITH THE RELATIVISTIC CCSFA

Comparison of the total ionization probability in relativis-
tic ARM (RARM) with CCSFA of Ref. [92] and PPT theories
is provided in Fig. 1. The RARM probability coincides with
the PPT theory, whereas the CCSFA overestimates slightly the
PPT theory. Here, the rate is calculated in leading order in
E0/Ea and the final momentum integration is accomplished
via SPA at the most probable momentum after a transfor-
mation from the asymptotic momentum p to the tunnel exit
distribution (ηe, pe,B, pe,k ), with pE + A(ηe) = 0, pB = pe,B,
and pk = pk,e + A(ηe)2/2/c/�̃.

FIG. 1. Comparison of the theoretical data for the total prob-
ability WT per the laser period with the result of the numerical
calculation [104]: via RARM (yellow short-dashed line with squares)
with CCSFA of Ref. [83] (green long-dashed line with diamonds)
using dressed partition, ADK (blue solid line) theories at Z/κ = 1,
and (red dash-dotted line with triangles) the numerical calculations
via the Klein-Gordon equation [104]. Numerical calculations in
Ref. [104] have been carried out for the ionization energies Ip/c2 =
0.00866, 0.0351, 0.0809, 0.158, 0.259, using E0/Ea ≈ 1/16.

In Fig. 1, the comparison of the results for the total prob-
ability per laser cycle via RARM, CCSFA, and PPT with the
numerical calculation of Hafizi et al. using the Klein-Gordon
equation [104] is shown. While the theoretical results almost
coincide with each other, there is a significant deviation from
the numerical calculation, especially at high values of Ip/c2.
There are two reasons for the deviation of the analytical
quasi-classical theories, CCSFA and RARM, with respect to
the numerical result. We compare the total ionization rate
via RARM based on the Dirac equation with the numerical
solution of the Klein-Gordon equation, intuitively assuming
that for the total ionization rate spin effects would not matter
much. However, this assumption is valid only for Ip/c2 � 1.
The results of Refs. [60,109] show that at large Ip/c2 ∼ 1
spin asymmetry arises in the ionization (difference in ioniza-
tion probability of different spin states), which will lead to a
modification of the spin averaged probability. However, this
effect is of the order of at most 1% even for hydrogen-like
uranium and cannot account for the large discrepancy appar-
ent in Fig. 1. The main source of the deviation (by a factor
of ∼20) possibly comes from the Stark shift and polarization
of the atomic state in strong fields near the threshold of the
over-the-barrier ionization. These corrections are especially
relevant in the near-threshold regime of tunneling ionization
at E0/Ea ∼ 1/10, which is the case in the numerical data of
Hafizi (E0/Ea ∼ 1/16). We assume that this deviation could
be corrected, at least partly, via the next-order quasi-classical
CCs to the eikonal approximation. As is shown in Ref. [82]
with one-dimensional (1D) CCSFA for the nonrelativistic the-
ory [see Eq. (47) in this reference], this kind of correction
leads to a decrease of the tunneling ionization probability.
High-order quasi-classical CCs within ARM are generally
possible, but it would require the change of the matching
procedure to the bound state and, consequently, the change
of the complex shift of the time integration.

From a technical point of view, RARM has a clear
advantage with respect to relativistic eikonal CCSFA of
Refs. [29,92] when applying SPA. While in RARM the
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FIG. 2. The nondipole shift of the peak of the longitudinal mo-
mentum due to the subbarrier CC for hydrogen-like highly charged
ions: via RARM (blue solid) via Eq. (49), via nondipole CCSFA
[19] (orange short dash), and via the approximate Eq. (50) with the
leading correction ∼Ip/c2 (green long dash) .

ionization amplitude is found via a one-dimensional η-SPA,
in CCSFA at least the two-dimensional (in the case of linear
polarization) or four-dimensional (in the case of elliptical
polarization) SPA for (r, η) integrations is required.

A disadvantage of RARM is that it includes accurately the
CC near the tunnel exit, but overestimates those due to rescat-
terings. To account for CC at hard recollisions, the generalized
eikonal approximation (GEA) has been developed on the basis
of CCSFA. Generalization to elliptical polarization in both
cases (RARM/CCSFA) is possible.

V. COMPARISON WITH THE NONDIPOLE CCSFA

To test the derived RARM theory, it will be useful to com-
pare its results with those of the nondipole CCSFA describing
Coulomb effects in strong-field ionization in the nondipole
regime. In the nondipole CCSFA only the first relativistic cor-
rection to the dipole theory of the order of 1/c is included. We
expect that the fully relativistic theory will coincide with the
nondipole one in the limit Ip/c2 � 1, with significant devia-
tions at Ip ∼ c2, as 1/c2 terms are neglected in the nondipole
theory.

While in the nonrelativistic theory the electron transverse
momentum distribution at the tunnel exit has a peak at zero
momentum, in the relativistic treatment the peak is shifted to
pk0 = Ip/3c along the laser propagation direction due to the
subbarrier effect of the laser magnetic field [14]. Recently,
we showed [19] within nondipole CCSFA that the subbar-
rier Coulomb effect increases counterintuitively the nondipole
shift of the longitudinal momentum pk at the tunnel exit:

pk = pk0 + δpk

δpk = 6(E0/Ea)pk0. (47)

FIG. 3. PMD in the case of HECE: (first column) via relativistic plain SFA (RSFA), (second column) via RARM, (third column) via
nonrelativistic ARM; (first line) for Ar9+, ν = 2.34, Ip = 17.63 atomic units (AU), laser intensity 1.75×1018 W/cm2 (E0 = 7.07 AU), and
ω = 0.07 AU (υ = 0.043, ξ = 0.74, Zω/E0 = 0.14); (second line) for Ar9+, and XUV beam ω = 0.5 AU of intensity 1.75×1018 W/cm2

(υ = 0.043, ξ = 0.1, Zω/E0 = 0.99); (third line) for Xe36+, ν = 2.626, Ip = 93.94 AU, and X-ray beam of intensity 8.6×1019 W/cm2 (E0 =
65.4 AU) and ω = 2 AU (υ = 0.1, ξ = 0.24, Zω/E0 = 1.13).
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The CC effect induces an additional dependence of the longi-
tudinal momentum shift on E0/Ea. Let us compare the RARM
result for the relativistic shift of the peak of the longitudi-
nal momentum due to the subbarrier CC with the nondipole
theory of Ref. [19], see Fig. 2, where δpk/[(E0/Ea)pk0] for a
hydrogen-like highly charged ion is presented. According to
the nondipole approximate theory [19], δpk/[(E0/Ea)pk0] =
6 [Eq. (47)]. The relativistic shift of the peak of the longitu-
dinal momentum presented in Fig. 2 is calculated analytically
using the exact RARM theory. To this end, the atomic as well
as the laser action is expanded up to the next-to-leading order
with respect to E0/Ea:

S0(pk ) = S0(pk0) − 2κλ
(
λ2 + 2

)
√

12 − 3λ2(λ2 + 1)2

(pk − pk0)2

E0
.

S1(pk ) = S1(pk0) + 2
√−λ4 + 5λ2 − 4

(
1 − λ2+λ−2

λ

)
(λ2 + 1)κ

× (p − pk0). (48)

The longitudinal momentum distribution is given by exp{S} =
exp[S0(pk ) + S1(pk )]. It has a maximum at pk − pk0 =
−S′

1(pk0)/S′′
0 (pk0), which, after using the expansion over λ −

1 ∼ Ip/c2, reads

pk − pk0 = −
√

3(4 − λ2)3/2(λ2 − 2)(λ2 + 1)

λ2(λ2 + 2)

E0

κ3
pk0 (49)

≈ [6 − 28(λ − 1)]
E0

κ3
pk0 + O(λ − 1), (50)

with pk0 = c(λ2 − 1)/2λ ≈ Ip/3c. Thus, the first term of the
shift of the most probable momentum in the propagation di-
rection due to the subbarrier CC corresponds to the nondipole
result, and the second term ∼λ − 1 = Ip/(3c2) is the relativis-
tic CC. The momentum shift coincides with the nondipole
result at small Ip/c2 � 1. It is reduced when taking into
account the relativistic corrections ∼Ip/c2. This is because
the subbarrier CC originates from the bound state CC, as
discussed in Ref. [19]. The decrease of the parameter ν ≈
1 − Ip/c2 with higher Ip/c2, see Eq. (38), yields a larger width
of the bound state in momentum space. Then, the most prob-
able subbarrier tunneling trajectory begins at the atomic core
with larger pk , ending up at the tunnel exit with a smaller one,
because the magnetic-field-induced momentum drift along the
propagation direction is fixed.

Heuristically, the momentum shift can be estimated via
S′

a(pk ) ∼ ∂pk {ln[κ
√

r(η)2]} ∼ ∂pk {ln[κ
√

p2
i (s − ti )2/�]} ∼

∂pk {ln(κ2(s − ti )/�)} ∼ ∂pk {ln(�)} ∼ ∂pk {pk/c} ∼ 1/c. With
pk,0 ∼ κ2/(6c) and S′′

0 (pk0) ∼ κ/E0, the momentum shift
−S′

a(pk0)/S′′
0 (pk0) ∼ 6E0/κ

3 pk0 follows.

VI. HIGH-ENERGY COULOMB ENHANCEMENT
IN THE CASE OF HCIs

We apply the relativistic ARM theory for the investiga-
tion of the Coulomb enhancement effect at the cutoff of
the direct ionization channel in the relativistic domain with
HCIs. This effect of the high-energy Coulomb enhancement
(HECE) in the nonrelativistic regime is known, described

FIG. 4. The HECE spectra of Fig. 3 integrated over pk , for the
same species and the laser fields: (blue dotted) via RSFA, (orange
solid) via RARM, (green dashed) via nonrelativistic ARM; (first
line) for Ar9+, ν = 2.34, Ip = 17.63 AU, laser intensity 1.75×1018

W/cm2 (E0 = 7.07 AU), and ω = 0.07 AU (υ = 0.043, ξ = 0.74,
Zω/E0 = 0.14); (second line) for Ar9+, and XUV beam ω = 0.5
AU of intensity 1.75×1018 W/cm2 (υ = 0.043, ξ = 0.1, Zω/E0 =
0.99); (third line) for Xe36+, ν = 2.626, Ip = 93.94 AU, and X-ray
beam of intensity 8.6×1019 W/cm2 (E0 = 65.4 AU) and ω = 2 AU
(υ = 0.1, ξ = 0.24, Zω/E0 = 1.13). The distributions are rescaled
to the peak value.

in Refs. [88,106]. The effect emerges due to the Coulomb
momentum transfer in the continuum. The electron trajectory
that ends up at the cutoff of the direct channel starts at the
tunnel exit at relatively weak fields and stays near the exit a
long time, obtaining rather large Coulomb momentum trans-
fer [106]. The parameter which quantifies HECE is Zω/E0

[88]. In the calculation of the continuum CC, the continuum
action is expanded in E0/Ea, which yields an expansion in the
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imaginary part of the complex trajectory:

S1[r(η)] = S1{Re[r(η)]} + iIm[r(η)] · ∇S1{Re[r(η)]}. (51)

We calculated PMD for three cases via Eq. (46), pre-
sented in Fig. 3. In the first case we consider HECE for
Ar9+ Ip = 479.76 eV, Zeff = 14.008, ν = 2.34, laser inten-
sity 1.75×1018 W/cm2 (E0 = 7.07 AU) using IR laser beam
with ω = 0.07 AU (υ = 0.043, ξ = 0.74, Zω/E0 = 0.14). In
the second case the same atomic species are used with an
XUV (extreme ultra-violet) laser beam (ω = 0.5 AU) of the
same high intensity 1.75×1018 W/cm2 (υ = 0.043, ξ = 0.1,
Zω/E0 = 0.99). And in the third example we consider Xe36+

(Ip = 2556 eV, ν = 2.626) exposed to the strong X-ray field
(ω = 2 AU) E0 = 65.4 AU (υ = 0.1, ξ = 0.24, Zω/E0 =
1.13). To elucidate the HECE effect we compare PMD via
RARM with the plain relativistic SFA. The transverse width
of PMD is pB = √

E0/κ/2.
In the first example, the continuum relativistic parameter ξ

is the largest. Consequently, we see the parabolic dependence
of pk with respect to pE , which is typical for the electron
relativistic dynamics in the continuum, and absent in the non-
relativistic consideration (third column in Fig. 3). However,
the Coulomb enhancement (HECE) parameter Zω/E0 is the
smallest in the first example, and we do not see a significant
Coulomb effect, HECE, as the integrated spectrum over pk

coincides with the plain SFA result. The HECE parameter
increases for the second and the third cases, which results
in the appearance of significant shoulders in PMD at 2Up

energies. The continuum relativistic features in PMD also
enhance. The relativistic and nonrelativistic PMD via ARM
are clearly distinguishable (second and third columns) by the
parabolic feature in pk dependence of pE ; however, after pk

integration the HECE features are the same (Fig. 4). The
bound state relativistic character is not very pronounced in the
given examples as υ < 0.1.

VII. CONCLUSION

We have generalized the ARM theory for the relativistic
regime of strong-field ionization. The CCSFA based on the
eikonal wave function for the continuum electron (accounting
for the Coulomb interaction of the outgoing electron with
the atomic core) has a singularity in the eikonal phase at
the Coulomb center, where strong-field ionization starts in
the imaginary time. While in the PPT theory the singularity
is remedied via matching the continuum wave function to
the undisturbed bound state one, in the ARM theory this
procedure is equivalent to the shift of the starting point of
the time integration in the ionization amplitude by an appro-
priate imaginary value. In this paper we have found how the
value of the corresponding imaginary time shift is modified in
the relativistic regime, which eliminates the singularity of the
relativistic CCSFA amplitude for ionization.

The advantage of RARM with respect to CCSFA is that it
simplifies the calculations of the ionization amplitude using
SPA. However, CCSFA offers a possibility for systematic
second-order Coulomb corrections when using SPA in the
coordinate integration, rather than the matching procedure
with the bound state. Moreover, CCSFA allows for the devel-
opment of the generalized eikonal approximation to treat CC
at hard recollisions. For subbarrier CC, the RARM provides
results similar to the nondipole CCSFA.

Finally, we employed RARM theory to calculate the
Coulomb enhancement of the above-threshold ionization
yield at the cutoff of the directly ionized electrons in the
relativistic regime.
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