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Interaction of twisted light with a trapped atom: Interplay between electronic and
motional degrees of freedom
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We present a theoretical study of nondipole excitation of a single trapped atom by twisted light. Special
emphasis is placed on effects that arise from the interplay between internal (electronic) and vibrational (center-
of-mass) degrees of freedom of an atom. In order to provide a fully quantum mechanical understanding of the
excitation, we used the density-matrix approach based on the Liouville–von Neumann equation. The developed
theory has been applied to the particular case of the 4s 2S1/2 → 3d 2D5/2 electric quadrupole (E2) transition in a
40Ca+ ion induced by Laguerre-Gaussian modes. It was found that the Rabi oscillations can show unconventional
anharmonic behavior that is attributed to the strong coupling between vibrational levels of the trap. This effect is
accompanied by the transfer of angular momentum to the center-of-mass motion and becomes most pronounced
when the Rabi frequency is comparable to the trapping frequency.
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I. INTRODUCTION

Techniques for the manipulation of trapped atoms or ions
are of great interest due to their applications in atomic clocks
[1], searches for new physics [2,3], quantum computing [4],
and quantum sensing [5,6]. At the heart of these applications
is the use of selective resonance excitation of an atom by
light. In the time domain, the excitation process manifests
itself as Rabi oscillations of atomic populations [7]. This
phenomenon is best understood in the case of conventional
“plane-wave” radiation for which the variations in the beam
intensity profile are negligible compared to the size of an
atomic absorber [8,9]. Significantly less is known, however,
about the mechanism of Rabi oscillations for an atom exposed
to high-order laser modes that have a strongly inhomogeneous
internal structure [10].

Radiation having a helical phase front and a ringlike in-
tensity profile with a central dark spot gives a good example
of inhomogeneous high-order modes [11–13]. This so-called
twisted light is particularly interesting because of its ability to
carry a nonzero projection of the orbital angular momentum
(OAM) upon the propagation direction [14–16]. Twisted light
has found applications in areas as diverse as waveguides for
cold atoms [17–19], optical traps [20–22], quantum memory
[23–25], super-resolution optical sensing [26], and crypto-
graphic schemes [27–29].

The first experiment on excitation of single trapped ions
by twisted light was reported in 2016 [30]. This research
has attracted considerable interest in the field of precision
spectroscopy, since the atomic excitation in the low-intensity
center of a twisted beam can suppress the undesirable
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light shift and efficiently induce dipole-forbidden transitions
[30,31]. Analysis of Rabi oscillations for such “excitation in
the darkness” experiments is, however, complicated due to the
fact that an atom is locally exposed to different electric fields
as it moves within the beam cross section.

Various theoretical approaches have been developed in the
past to analyze the influence of a position of an atom on its in-
teraction with twisted radiation. In the semiclassical approach
the atom’s internal degrees of freedom are described quantum
mechanically, while its center of mass is assumed to have a
well-defined impact parameter with respect to the beam center
[32–37]. This semiclassical method was successfully applied
to investigate how the polarization and OAM of twisted light
can affect the photoexcitation of different atoms and ions
[38–40]. Moreover, extensions of the theory to experimentally
relevant scenarios of uniform [41,42] and Gaussian [43,44]
spatial distributions of an atom have been proposed.

In contrast to the semiclassical approach, the rigorous treat-
ment of the twisted light-trapped atom interaction requires
quantum mechanical description of both internal and center-
of-mass degrees of freedom [45–53]; the interested reader is
referred to a recent review [54]. Within such a theory the
center-of-mass motion is described with the help of oscillator
eigensolutions for an external trapping potential. In the past
this approach has mainly been used to study the excitation
of electric dipole transitions [55,56], which are important,
for example, for manipulating atomic Bose-Einstein conden-
sates [57,58]. Much less attention has been paid, however,
to the dipole-forbidden transitions that are of special interest
for high-precision atomic spectroscopy and development of a
new generation of atomic clocks. In this contribution, there-
fore, we present a rigorous quantum mechanical approach
to investigate the effects of center-of-mass motion on the
nondipole coupling of atoms and twisted light. We explore
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a scenario in which a single atom is placed in a harmonic
trap and is irradiated by a Laguerre-Gaussian (LG) mode.
A fully quantum mechanical description of the atomic vibra-
tional (center-of-mass) and internal (electronic) states is based
on the Hamiltonian of the combined atom-plus-trap system,
which is briefly reviewed in Sec. II A. The perturbation of the
system induced by LG modes is then discussed in Sec. II B.
In order to describe the time evolution of the internal and
vibrational states of an atom, we employ in Sec. II C the
density-matrix approach based on the Liouville-von Neumann
equation. The solution of this equation requires knowledge of
the matrix elements for transitions between electronic and vi-
brational levels whose evaluation is discussed in Sec. II D with
a focus on nondipole coupling. While the developed approach
can be applied to any atomic system, we consider here a
particular case of the 4s 2S1/2 → 3d 2D5/2 electric quadrupole
(E2) transition in the 40Ca+ ion. Its excitation, especially
when accompanied by a change in the transverse ion motion,
is currently of particular experimental interest [59]. For this
E2 transition, theoretical predictions for the Rabi oscillations
are presented and discussed in Sec. III. Finally, a summary of
our results and an outlook to future work are given in Sec. IV.

II. THEORY

A. Atom in a trap

Before delving into the details of the photoexcitation pro-
cess, it is instructive to discuss the system of interest in the
absence of light fields. We consider a single alkalilike atom
or ion placed in a trapping potential V̂trap. The Hamiltonian of
such a system can in general be written as

Ĥ0 = Ĥcm + Ĥatom, (1)

where Ĥcm characterizes the motion of an atom, and Ĥatom

describes its internal electronic structure. The operator Ĥcm

reads

Ĥcm = − h̄2

2ma
∇2

R + V̂trap(R), (2)

with R and ma being, respectively, the atomic center-of-mass
coordinate and its total mass [60]. In order to obtain the
explicit form of Ĥcm, it is necessary to agree on the trap
parameters. We assume a trapping potential of the form

V̂trap(R) = 1
2ma

(
ω2

r R2
⊥ + ω2

z Z2
)
, (3)

where R = (R⊥ cos �, R⊥ sin �, Z ). Equation (3) implies
that an atom undergoes harmonic motion in the xy plane
with an oscillation frequency ωr. Moreover, we suppose that
ωz � ωr, so the atomic motion in the z direction is confined to
a negligibly small distance about Z = 0 (see Fig. 1). For such
a disk-shaped potential, Eq. (2) may be rewritten as

Ĥcm = − h̄2

2ma
∇2

R⊥ + 1

2
maω

2
r R2

⊥. (4)

This harmonic approximation is commonly used for atoms
moving near the center of the trap [61].

The operator (4) is nothing else but the well-known Hamil-
tonian of a two-dimensional oscillator [62]. Its eigenfunctions
can be expressed in terms of associated Laguerre polynomials

FIG. 1. Geometry for the excitation of a single trapped atom by
twisted light. The quantization axis is chosen to be along the applied
magnetic field and the trap’s z axis. Twisted light also propagates in
the z direction, and the beam axis coincides with the trap’s center.
The atom is moving in the xy plane, while its motion in the z
direction is frozen at Z = 0. The polar coordinates R⊥ and � define
the atomic center-of-mass position. The drawing is not to scale; the
beam diameter is much larger than the atomic target size.

as

Unl (R⊥) = unl (R⊥) eil�

=
√

n!

πb2(n + |l|)!
R|l|

⊥
b|l| e− R2⊥

2b2 L|l|
n (R2

⊥/b2) eil�, (5)

where we have introduced the harmonic oscillator length b =√
h̄/(maωr ). The corresponding energy eigenvalues

Enl = h̄ωr(2n + |l| + 1) (6)

are labeled by the vibrational quantum numbers n and l . Here
the positive integer n is related to the number of nodes of the
function (5), and the integer l denotes the OAM projection of
the atomic motion on the trap’s z axis.

In addition to the center-of-mass Hamiltonian (4), we also
need to specify its internal structure counterpart Ĥatom. The
explicit form of Ĥatom depends, of course, on a particular
atom. For simplicity, we consider here an alkalilike atom with
one electron outside of a closed shell. To describe such a
system, we assume that the outer electron moves in a frozen
potential Ŵ produced by the nucleus and the remaining elec-
trons. Moreover, Ŵ incorporates the spin-orbit interaction
to account for the fine structure; transitions between fine-
structure levels are often of experimental interest. Within this
single-active-electron approximation the atomic Hamiltonian
is given by

Ĥatom = − h̄2

2μ
∇2

r + Ŵ (r), (7)

where μ = memn/(me + mn) stands for the reduced mass, and
r is the relative coordinate of the outer electron of mass me

with respect to the nucleus, whose mass together with the
remaining electrons is mn [60].

Not much needs to be said about the eigenfunctions
ψαJM (r) and eigenenergies EαJM of Ĥatom. They satisfy the
equation ĤatomψαJM (r) = EαJMψαJM (r) and are characterized
by the total electronic angular momentum J , its projection
M, and all additional quantum numbers α. In our study, the
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FIG. 2. Excitation of the 4s 2S1/2 → 3d 2D5/2 electric quadrupole
transition in 40Ca+. Shown are transitions between individual
magnetic sublevels (a) Mg = −1/2 → Me = +3/2 and (b) Mg =
−1/2 → Me = +1/2, which are separated by the Zeeman effect.
(c) Energy levels of a two-level atom in a two-dimensional har-
monic trap with oscillation frequency ωr. The vibrational levels in
the ground and excited electronic states are labeled by the quantum
numbers ng, lg and ne, le, respectively. The atom is assumed to be
initially in the lowest vibrational and electronic state, while the light
frequency ω is slightly detuned from the transition frequency ω0 for
a free atom by δ = ω − ω0.

(2J + 1) degeneracy with respect to M is removed by applying
a magnetic field parallel to the trap’s z axis, which also pro-
vides the quantization axis of the overall system. The resulting
Zeeman splitting will allow us to reduce the system to only
two magnetic sublevels that are coupled by a near-resonant
radiation field, thereby greatly simplifying the calculations
(see Fig. 2).

Since the Hamiltonian of a trapped atom (1) is made up
of a term (4) involving only the center-of-mass coordinate R⊥
and a term (7) depending only on the relative coordinate r, its
eigenfunction is factorizable into a product:

�nl,αJM (R⊥, r) = 〈R⊥|nl〉 〈r|αJM〉
≡ Unl (R⊥) ψαJM (r). (8)

This factorization can be seen as a reflection of the fact that
the trap potential changes very little on the atomic scale. The
wave function (8) is a solution of the equation

Ĥ0 �nl,αJM (R⊥, r) = Enl,αJM �nl,αJM (R⊥, r), (9)

with Enl,αJM = Enl + EαJM being the total energy of the sys-
tem.

B. Twisted light

Let us now turn to the interaction between a trapped atom
and twisted radiation. Here we utilize a circularly polarized
Laguerre-Gaussian mode with zero radial index, LG0m, which
is often used in experimental studies [15,30]. This beam is
also characterized by the frequency ω = ck, the waist w0, the
helicity λ = ±1, and the OAM projection m. It is assumed
that the beam propagates parallel to the quantization (z) axis.
Herewith the waist plane z = 0 is superimposed on the plane
of atomic motion and the beam center coincides with the trap

center (see Fig. 1). The vector potential of the LG0m beam
may be written in the Coulomb gauge as

A(tw)(r) = A0

∫
am(k⊥) ei(m+λ)φk ekλ eikr d2k⊥

2π
, (10)

where A0 is the amplitude to be determined later, and the
weight function am(k⊥) reads

am(k⊥) = (−i)|m|
√

2

πw2
0|m|!

w
|m|+2
0 k|m|

⊥
2|m|/2+1

e− k2⊥w2
0

4 (11)

(see Refs. [34,35] for more details). Equations (10) and (11)
imply that the Laguerre-Gaussian mode can be seen as a
superposition of plane waves whose polarization vector

ekλ = 1√
2

⎛
⎝cos θk cos φk − iλ sin φk

cos θk sin φk + iλ cos φk

− sin θk

⎞
⎠ (12)

and wave vector k = (k⊥ cos φk, k⊥ sin φk, kz ) are orthogonal
to each other, k · ekλ = 0 [63,64]. Such a decomposition of
the electromagnetic field into plane waves is widely used in
atomic and optical physics [65,66].

Nowadays the twisted beams are usually produced in the
paraxial regime in which k is inclined by a small angle θk =
arctan(k⊥/kz ) with respect to the z axis [10]. In this case,
Eq. (12) can be approximated by

ekλ ≈ e−iλφk ξλ, (13)

where ξλ ≡ ekλ(θk =0, φk =0) = (1, iλ, 0)/
√

2 is just the
polarization vector of a circularly polarized plane wave prop-
agating in the z direction [67]. By using Eq. (13) and applying
a standard integral representation of the Bessel function [41]∫ 2π

0
einφ+iz cos φ dφ

2π
= in Jn(z) (14)

along with the relation [68]

xn e−x =
∫ ∞

0
(
√

xt )n Jn(2
√

xt ) e−t dt, (15)

we evaluate the integral (10) and obtain the well-known result
for the LG0m mode

A(tw)(r⊥, φ) ≈ ξλ A0

√
2

πw2
0|m|!

(
r⊥

√
2

w0

)|m|
e−r2

⊥/w2
0 eimφ

(16)

at the waist plane z = 0 where the atom is located [12]. By
means of Eq. (16) one can determine the intensity I of the
light beam and its total power P [7]. The intensity I is pro-
portional to the modulus squared of the vector potential and is
independent of the azimuthal angle φ:

I (r⊥) = 1
2 cε0ω

2 |A(tw)(r⊥, φ)|2. (17)

The total power

P =
∫

I (r⊥) d2r⊥ (18)

is given by an integral of the intensity I over the beam cross
section [69]. From these identities, we define the amplitude of
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the LG0m mode as

A0 =
√

2P

cε0ω2
. (19)

This expression, together with Eq. (11), provides a link
between the dynamics of the excitation process and the ex-
perimentally controlled light power and waist.

Having discussed the vector potential of the twisted light,
we can now evaluate its effect on a trapped atom. To do this we
recall that the nuclear mass mn is much larger than the elec-
tron mass me. Hence the interaction can be restricted to that
between radiation and electrons [60]. Within the model (7) the
interaction Hamiltonian for the optically active electron takes
the following form:

ĤI(t ) = 1
2 [V̂ e−iωt + V̂ †eiωt ], (20)

where V̂ is a time-independent operator,

V̂ = − ih̄e

me
A(tw)(re) · ∇re , (21)

with re being the electron coordinate with respect to the
trap’s center. For highly inhomogeneous twisted-light fields,
the dependence of the vector potential on re implies that the
perturbation (21) is very sensitive to the atom position within
the beam. Indeed, changing variables from re to previously
defined r and R⊥ one finds

V̂ = − ih̄e

me
A(tw)

(
mn

ma
r + R⊥

)
·
(

∇r + me

ma
∇R⊥

)

≈ − ih̄e

me
A(tw)(r + R⊥) · ∇r, (22)

where we have used mn ≈ ma and me � ma. Importantly, the
interaction Hamiltonian (22) cannot be expressed as a sum of
separate functions of r and R⊥. This means that the atom’s
internal dynamics is coupled to its center-of-mass motion by
the light field [61].

C. Density-matrix formalism

The atomic photoexcitation is most conveniently described
within the framework of the density matrix theory [70]. In
this approach, the atomic system is represented by the density
operator ρ̂(t ). Its time evolution is given by the Liouville–von
Neumann equation:

d

dt
ρ̂(t ) = − i

h̄
[Ĥ (t ), ρ̂(t )], (23)

where the total Hamiltonian of the system “trapped atom plus
light” is just the sum of the unperturbed Hamiltonian (1) and
the interaction Hamiltonian (20):

Ĥ (t ) = Ĥ0 + ĤI(t ). (24)

Since we focus on timescales shorter than the radiative life-
time of excited upper levels, spontaneous emission has been
omitted in Eq. (23). To express the operator ρ̂(t ) in ma-
trix form, we choose a set of basis states |nl, αJM〉 [see
Eq. (8)]. The number of internal atomic states is limited to
two, |αgJgMg〉 and |αeJeMe〉, between which the transition
is occurring. In contrast, the number of vibrational states
|nglg〉 and |nele〉 associated with electronic ones is unrestricted.
Within this approximation, we construct the matrix of the
operator ρ̂(t ) usually referred to as the density matrix. For
the sake of shortness we use the following notation for the
elements of the density matrix:

ρgg′ (t ) = 〈nglg, αgJgMg|ρ̂(t )|n′
gl ′

g, αgJgMg〉, (25a)

ρee′ (t ) = 〈nele, αeJeMe|ρ̂(t )|n′
el ′

e, αeJeMe〉, (25b)

ρge′ (t ) = 〈nglg, αgJgMg|ρ̂(t )|n′
el ′

e, αeJeMe〉, (25c)

ρeg′ (t ) = 〈nele, αeJeMe|ρ̂(t )|n′
gl ′

g, αgJgMg〉. (25d)

Here the diagonal elements ρgg(t ) and ρee(t ) give the prob-
ability of finding the system in the states |nglg, αgJgMg〉 and
|nele, αeJeMe〉, respectively. At the same time, the off-diagonal
elements describe the coherence between the states [71]. By
using Eqs. (9) and (23)–(25), one obtains the following:

d

dt
ρgg′ (t ) = −iωgg′ ρgg′ (t ) − i

2h̄

∑
nele

[(Vgee−iωt + V †
geeiωt ) ρeg′ (t ) − ρge(t )(Veg′e−iωt + V †

eg′eiωt )], (26a)

d

dt
ρee′ (t ) = −iωee′ ρee′ (t ) − i

2h̄

∑
nglg

[(Vege−iωt + V †
egeiωt ) ρge′ (t ) − ρeg(t )(Vge′e−iωt + V †

ge′eiωt )], (26b)

d

dt
ρge(t ) = iωeg ρge(t ) − i

2h̄

⎡
⎣∑

n′
el ′e

(Vge′e−iωt + V †
ge′eiωt ) ρe′e(t ) −

∑
n′

gl ′g

ρgg′ (t )(Vg′ee−iωt + V †
g′eeiωt )

⎤
⎦, (26c)

d

dt
ρeg(t ) = −iωeg ρeg(t ) − i

2h̄

⎡
⎣∑

n′
gl ′g

(Veg′e−iωt + V †
eg′eiωt ) ρg′g(t ) −

∑
n′

el ′e

ρee′ (t )(Ve′ge−iωt + V †
e′geiωt )

⎤
⎦, (26d)

where the transition matrix elements are

Veg = 〈nele, αeJeMe|V̂ |nglg, αgJgMg〉, (27a)

Veg′ = 〈nele, αeJeMe|V̂ |n′
gl ′

g, αgJgMg〉, (27b)

Vge = 〈nglg, αgJgMg|V̂ |nele, αeJeMe〉, (27c)

Vge′ = 〈nglg, αgJgMg|V̂ |n′
el ′

e, αeJeMe〉. (27d)
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In Eqs. (26), ω0 is the transition frequency for a free atom,
whereas ωeg, ωgg′ , and ωee′ are the frequencies of transitions in
which vibrational states of a trapped atom change:

ω0 = (EαeJeMe − EαgJgMg )/h̄, (28a)

ωeg = ω0 + ωr(2ne + |le| − 2ng − |lg|), (28b)

ωgg′ = ωr(2ng + |lg| − 2n′
g − |l ′

g|), (28c)

ωee′ = ωr(2ne + |le| − 2n′
e − |l ′

e|). (28d)

To eliminate the fast-oscillating terms in Eqs. (26), we follow
the standard procedure and introduce the new variables:

ρ̃gg′ (t ) = ρgg′ (t ), (29a)

ρ̃ee′ (t ) = ρee′ (t ), (29b)

ρ̃ge(t ) = ρge(t ) e−iωt , (29c)

ρ̃eg(t ) = ρeg(t ) eiωt . (29d)

As seen from Eqs. (29), the density matrix elements ρ̃ge(t )
and ρ̃eg(t ), which characterize the interference between the
ground and excited internal states, differ from their original
counterparts ρge(t ) and ρeg(t ) by a phase factor oscillating at
the light frequency. At the same time, all other density ma-
trix elements ρ̃gg′ (t ) and ρ̃ee′ (t ), including diagonal ones, are
identical to the original ρgg′ (t ) and ρee′ (t ). In fact, the trans-
formation of the density matrix elements (29) is equivalent
to using |nglg, αgJgMg〉 and |nele, αeJeMe〉e−iωt as basis states.
After substitution of Eqs. (29) into Eqs. (26), we employ the
rotating-wave approximation in which fast-oscillating terms
proportional to e±i2ωt are neglected [72,73]. Hence,

d

dt
ρ̃gg′ (t ) = −iωgg′ ρ̃gg′ (t ) − i

2h̄

∑
nele

[V ∗
eg ρ̃eg′ (t ) − ρ̃ge(t )Veg′],

(30a)

d

dt
ρ̃ee′ (t ) = −iωee′ ρ̃ee′ (t ) − i

2h̄

∑
nglg

[Veg ρ̃ge′ (t ) − ρ̃eg(t )V ∗
e′g],

(30b)

d

dt
ρ̃ge(t ) = −i(ω − ωeg) ρ̃ge(t )

− i

2h̄

⎡
⎣∑

n′
el ′e

V ∗
e′g ρ̃e′e(t ) −

∑
n′

gl ′g

ρ̃gg′ (t )V ∗
eg′

⎤
⎦,

(30c)

d

dt
ρ̃eg(t ) = i(ω − ωeg) ρ̃eg(t )

− i

2h̄

⎡
⎣∑

n′
gl ′g

Veg′ ρ̃g′g(t ) −
∑
n′

el ′e

ρ̃ee′ (t )Ve′g

⎤
⎦,

(30d)

where we have made use of the relation V †
ge = V ∗

eg. Because of
the absence of time-dependent exponential factors, the system
of Eqs. (30) is much simpler than the original system (26).

D. Evaluation of the transition matrix element

In order to solve Eqs. (30), one needs to evaluate the matrix
element Veg for the |nglg, αgJgMg〉 + γ → |nele, αeJeMe〉 tran-
sition. It involves internal and center-of-mass wave functions
and may be written as

Veg = 〈nele, αeJeMe|V̂ |nglg, αgJgMg〉

=
∫

U ∗
nele (R⊥)M(tw)

MeMg
(R⊥)Unglg (R⊥) d2R⊥, (31)

where

M(tw)
MeMg

(R⊥) = − ih̄e

me

∫
ψ∗

αeJeMe
(r)

× A(tw)(r + R⊥) · ∇r ψαgJgMg (r) dr (32)

is the matrix element for the transition between internal elec-
tronic levels. For inhomogeneous LG modes, M(tw)

MeMg
depends

on the atomic center-of-mass coordinate R⊥.
By means of the vector potential (10), we can express the

“electronic” matrix element

M(tw)
MeMg

(R⊥) = A0

∫
am(k⊥)

× ei(m+λ)φk+ik⊥R⊥ M(pl)
MeMg

(θk, φk )
d2k⊥
2π

(33)

in terms of its well-known plane-wave counterpart

M(pl)
MeMg

(θk, φk ) = − ih̄e

me

∫
ψ∗

αeJeMe
(r)

× ekλ eikr · ∇r ψαgJgMg (r) dr. (34)

Since the evaluation of M(pl)
MeMg

has been often discussed in the
literature [31,41], we indicate only its main steps. One usually
employs the multipole expansion of the plane wave,

ekλ eikr =
√

2π
∑
LM

∑
p=0,1

iL[L]1/2 (iλ)p

× DL
Mλ(φk, θk, 0) a(p)

LM (r), (35)

for arbitrary propagation direction k̂ = k/k = (θk, φk ). Here
[L] = 2L + 1, DL

Mλ(φk, θk, 0) = e−iMφk dL
Mλ(θk ) stands for the

Wigner D function, and a(p)
LM (r) refers to magnetic (p = 0) and

electric (p = 1) multipole components [67]. The important
feature of a(p)

LM (r) is that they are constructed as irreducible
tensors of rank L. Inserting the expansion (35) into Eq. (34)
and making use of the Wigner-Eckart theorem, we obtain

M(pl)
MeMg

(θk, φk )

= ec
√

2π
∑
Lp

iL [L]1/2

[Je]1/2
(iλ)p DL

Me−Mg, λ
(φk, θk, 0)

× 〈JgMg LMe − Mg|JeMe〉 〈αeJe||Hγ (pL)||αgJg〉, (36)

where the reduced matrix element 〈αeJe||Hγ (pL)||αgJg〉 re-
flects the electronic structure of an atom and is independent
of the projections of its angular momentum.

The multipole expansion of the electronic matrix element
allows one to further simplify M(tw)

MeMg
. Indeed, if we substitute
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Eq. (36) into Eq. (33) and integrate over φk , we find that

M(tw)
MeMg

(R⊥) = ei(m+λ+Mg−Me )� M(tw)
MeMg

(R⊥). (37)

In this expression � is the azimuthal angle of R⊥ and

M(tw)
MeMg

(R⊥) = ecA0

√
2π

∑
Lp

iL [L]1/2

[Je]1/2
(iλ)p

× im+λ+Mg−Me 〈JgMg LMe − Mg|JeMe〉

× 〈αeJe||Hγ (pL)||αgJg〉
∫ ∞

0
am(k⊥)

× dL
Me−Mg, λ

(θk ) Jm+λ+Mg−Me (k⊥R⊥) k⊥ dk⊥.

(38)

With the help of Eqs. (37) and (38), we finally obtain the
transition matrix element:

Veg = 2π δm+λ+Mg+lg, Me+le

×
∫ ∞

0
u∗

nele (R⊥)M(tw)
MeMg

(R⊥) unglg (R⊥) R⊥ dR⊥, (39)

where we have performed the integration over � and used the
first line of Eq. (5). The Kronecker symbol in Eq. (39) reflects
the selection rule:

m + λ + Mg + lg = Me + le, (40)

which connects the angular momentum projections of an atom
with those of photons [45]. This selection rule is valid for
the case when the quantization axis is parallel to the light
propagation direction and the beam center coincides with the
equilibrium point of the trap. If this condition is not satisfied,
Eq. (40) breaks down and twisted light may potentially couple
all possible angular momentum states of atomic motion.

III. RESULTS AND DISCUSSION

After inserting the transition matrix element (39) into
a system of coupled differential equations (30), we can
calculate the time evolution of the atomic density matrix.
As an example, we consider the excitation of a single
trapped 40Ca+ ion that is initially prepared in the Mg = −1/2
magnetic sublevel of the 4s 2S1/2 ground electronic state.
Moreover, the ion’s motion is initially cooled to the low-
est vibrational state of the trap, which is characterized by
the quantum numbers ng = lg = 0. The trapping frequency
is chosen to be ωr = 2π × 10 kHz, which is much smaller
than the frequency of a typical atomic transition. In what
follows we examine the transition 4s 2S1/2 → 3d 2D5/2 with
frequency ω0 = 2π × 411 THz induced by a LG0m laser
mode with helicity λ = +1 and OAM m = +1. Of particu-
lar interest here are | 2S1/2 Mg = −1/2〉 + γ → | 2D5/2 Me =
+1/2〉 and | 2S1/2 Mg = −1/2〉 + γ → | 2D5/2 Me = +3/2〉
electronic transitions, which can be excited separately due to
the Zeeman effect in an applied magnetic field. These transi-
tions, which proceed predominantly via the E2 channel, have
already been employed to demonstrate the transfer of optical
OAM to a bound atomic electron [30]. The beam waist is
taken to be w0 = 2.7 μm. For comparison, the characteristic
width of the harmonic-oscillator ground-state wave function
for 40Ca+ is b = 159 nm.

As seen from Eqs. (38) and (39), one needs to know
the reduced matrix element for the chosen transition,
〈3d 2D5/2 ||Hγ (E2)||4s 2S1/2〉, in order to solve the system of
Eqs. (30). In our work, this matrix element is obtained from
the relation

〈
3d 2D5/2||Hγ (E2)||4s 2S1/2

〉 =
√

6

8παω0τ
(41)

for the natural lifetime τ = 1.163 s of the 3d 2D5/2 excited
state [74–76], and where α is the fine-structure constant. Apart
from the reduced matrix element, one must determine the size
of the basis |nl, αJM〉 to be used in computations. In addition
to two atom’s internal levels coupled by an optical field, we
take into account all its vibrational levels with 2n + |l| � 6.
This results in the 28 harmonic oscillator states for both the
ground and the excited electronic states. A set of 3136 cou-
pled differential equations must then be solved numerically to
obtain the time evolution of the density matrix. The size of
the basis has been determined based on convergence analysis.
The validity of this approach is confirmed by the agreement
with the results obtained by solving numerically the two-
dimensional Schrödinger equation.

A. Rabi oscillations between the internal states

One of the most common observables in light-atom interac-
tion experiments is the probability pe(t ) for finding an atom in
an upper electronic state. In our density matrix approach, this
probability is found by summing over the vibrational levels:

pe(t ) =
∑
ne,le

ρ̃ee(t ). (42)

The upper panels of Fig. 3 show the time evolution of the
population (42) for the case of the Mg=−1/2 → Me = +3/2
transition and for two light powers, P = 1 µW and 20 µW.
Moreover, pe(t ) is calculated for different frequencies of in-
cident light, characterized by the detuning δ = ω − ω0. This
parameter is defined as the difference between the radiation
frequency ω and the transition frequency ω0 for a free atom.
The results are presented in Fig. 3 for δ = 0 (red solid lines)
and δ = ωr (blue dashed lines). As expected, the excited-state
population pe(t ) shows a clear oscillatory behavior, referred
to as Rabi flopping [7]. For nonzero detuning δ �= 0, as is
well known, the amplitude of Rabi oscillations is reduced but
their frequency is enhanced. The latter can be seen from the
frequency spectrum of pe(t ) presented in the bottom panels
of Fig. 3. It is also apparent that the Rabi flopping frequency
increases with light intensity.

Compared to the Mg = −1/2 → Me = +3/2 case, pe(t )
for the Mg = −1/2 → Me = +1/2 transition exhibits qual-
itatively different behavior (see Fig. 4). In particular, the
amplitude of Rabi oscillations increases as the light is tuned
away from δ = 0. For low-intensity P = 1 µW, complete
population transfer, max (pe) = 1, is achieved when δ = ωr.
Moreover, a remarkable anharmonicity of Rabi flopping is
observed at higher light power, P = 20 µW. The origin of
such complex population dynamics lies in the excitation of the
atomic center-of-mass motion accompanied by the transfer of
angular momentum. This aspect is discussed in detail below.
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FIG. 3. Top: Population (42) of the Me = +3/2 excited magnetic
sublevel of 40Ca+ as a function of time. Calculations have been
performed for the Mg = −1/2 → Me = +3/2 transition induced by
a LG0m beam with helicity λ = +1 and OAM m = +1. Here, the
beam waist is w0 = 2.7 μm, and the total power is P = 1 µW or
20 µW. Rabi oscillations for the light frequency detuning δ = 0
(red solid lines) are compared with those for δ = ωr (blue dashed
lines), while the trapping frequency is ωr = 2π × 10 kHz. Bottom:
Corresponding Fourier spectrum of the Rabi oscillations.

B. Excitation of the center-of-mass motion

To better understand how the Rabi oscillations are affected
by the atomic motion in the trap, we employed two different
models to calculate the population pe(t ). In the first model,
which was already used above, all vibrational states with
2n + |l| � 6 are taken into account. The corresponding results
are displayed by red solid lines in the upper panels of Figs. 5
and 6. In the second model, whose predictions are depicted

FIG. 4. Same as Fig. 3, but for the Me = +1/2 magnetic sublevel
of 40Ca+ in the case of the Mg = −1/2 → Me = +1/2 transition.
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FIG. 5. Top: Probability (42) for finding 40Ca+ in the Me =
+3/2 upper magnetic sublevel as a function of time. Results are
presented for the Mg = −1/2 → Me = +3/2 transition by including
(red solid line) or neglecting (black dash-dotted line) excited vibra-
tional states. The total power of the beam is P = 20 µW, and its
frequency detuning is δ = 0. All other beam and trap parameters are
the same as those in Fig. 3. Bottom: Corresponding center-of-mass
probability distribution pcm (arb. units) for the ion in the Me = +3/2
excited sublevel at two different times.

FIG. 6. Same as Fig. 5, but for the Me = +1/2 magnetic sublevel
of 40Ca+ in the case of the Mg = −1/2 → Me = +1/2 transition.
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by black dash-dotted lines, we “forbid” excitations of the
center-of-mass motion by restricting the basis of harmonic
oscillator states to the ground one |ng = lg = 0〉. For the case
of the Mg = −1/2 → Me = +3/2 transition, shown in Fig. 5,
both models predict the same behavior of pe(t ), thus clearly
indicating that the atom remains in the lowest vibrational state
of the trap at any instant of time. The latter is also illustrated
in the bottom panel of Fig. 5, which shows the center-of-mass
probability distribution for the ion in the Me =+3/2 excited
sublevel. Indeed, the excited atom stays localized at the trap’s
center according to the ground-state (Gaussian) distribution.

The absence of vibrational excitations observed in Fig. 5
can be explained by the conservation of the total angular mo-
mentum (TAM) projection. Namely, for the Mg = −1/2 →
Me = +3/2 transition, the TAM projection of light m + λ =
1 + 1 is completely transferred to the bound atomic electron,
i.e., Me − Mg = m + λ. The selection rule (40) then dictates
that le = lg and, hence, no transfer of angular momentum to
the atomic motion occurs. Moreover, the transitions with ne �=
ng are strongly suppressed for paraxial light beams and for the
ion localized near the beam’s center. Under these conditions
k⊥R⊥ → 0, and the Bessel function J0(k⊥R⊥) in Eq. (38)
can be approximated by unity. This implies that M(tw)

MeMg
is a

constant, and the integral over R⊥ in the matrix element (31)
reduces to the orthogonality relation 〈nele|nglg〉 = δneng δlelg . It
clearly indicates that the Mg = −1/2 → Me = +3/2 transi-
tion proceeds without excitation of the center-of-mass motion,
and therefore a resonance in the Rabi oscillations is achieved
when δ = ω − ω0 = 0.

In the case when Me − Mg < m + λ, only a part of the
TAM projection is transferred to internal degrees of freedom,
and the excitation of atomic motion is no longer negligi-
ble. This effect can be seen from Rabi oscillations between
the Mg = −1/2 and Me = +1/2 magnetic sublevels. As dis-
played by the black dash-dotted line in Fig. 6, the exclusion
of high-lying vibrational states results in the complete ab-
sence of population of the Me = +1/2 excited electronic
sublevel. In contrast, the “rigorous” calculations (red solid
line) demonstrate the presence of Rabi oscillations, which,
however, deviate significantly from an ideal sinusoidal pat-
tern. The observed oscillations are essentially a manifestation
of transitions accompanied by the transfer of one unit of
angular momentum projection to the center-of-mass motion,
le = lg + 1 [45,46]. The necessity of this transfer follows from
the general selection rule (40) and has two important con-
sequences. First, the center-of-mass probability distribution
for the atom in the Me = +1/2 sublevel exhibits an annular
shape, which is typical for the le = 1 state (see the bottom
panels of Fig. 6). Second, the condition le = lg + 1 implies a
gain or loss of energy in the transition between vibrational
levels. This means that the resonance in Rabi flopping is
achieved when the frequency of radiation does not precisely
coincide with the atomic transition frequency. Indeed, as seen
from Fig. 4, the amplitude of Rabi oscillations reaches its
maximum at δ = ωr.

C. Anharmonic Rabi oscillations

Although angular momentum conservation (40) explains
why Rabi oscillations for the Mg = −1/2 → Me = +1/2

transition become amplified in the detuned regime δ = ωr,
it does not provide clear insight into the observed anhar-
monic population dynamics (see Fig. 4). This anharmonicity
can be attributed to the excitation of vibrational states with
different quantum numbers ng and ne during the interaction
with twisted light. In order to determine which states ng and
ne are coupled to each other, we must revisit the matrix el-
ement (31). It consists of two important “ingredients”: the
electronic matrix element M(tw)

MeMg
and the harmonic oscillator

wave functions (5). We start with M(tw)
MeMg

and use the iden-
tity le = lg + 1, together with the fact that the center-of-mass
wave function is localized close to the beam center. In this
case, J1(k⊥R⊥) ≈ k⊥R⊥/2 and the matrix element (37) can be
simplified to

M(tw)
MeMg

(R⊥) ≈ NR⊥ei�, (43)

where the constant N is determined by the atomic properties
and the light intensity. For the harmonic oscillator wave func-
tions, in turn, we can establish the three-point rules

R⊥ei�Un,l (R⊥) = b[
√

n + l + 1Un,l+1(R⊥)

−√
nUn−1,l+1(R⊥)],

R⊥e−i�Un,l (R⊥) = b[
√

n + l Un,l−1(R⊥)

−√
n + 1Un+1,l−1(R⊥)], (44)

based on the recurrence relations for associated Laguerre
polynomials [77] and assuming positive values of angular mo-
mentum quantum numbers lg and le. By combining Eqs. (43)
and (44) we obtain a simple expression for the matrix element
(31) for the case of the Me − Mg =+1 excitation:

Veg ≈ N
∫

U ∗
nele (R⊥)R⊥ei�Unglg (R⊥) d2R⊥

= Nb
[√

ng + lg + 1 δne,ng − √
ng δne,ng−1

]
δle,lg+1. (45)

From the above formula one sees that transitions proceed not
only between vibrational levels with ne = ng but also between
ne = ng − 1. This suggests that even though the system is
initially in the ground state ng = 0, the interaction between an
atom and twisted light leads to the population of high-lying
vibrational states with ne and le greater than zero, an effect
which can be seen as heating. Such a redistribution of vibra-
tional levels, and corresponding |nglg〉 + γ → |nele〉 sideband
transitions, results in the anharmonicity of the internal-state
population dynamics. It is reasonable to expect [61] that the
Rabi frequencies for these transitions are given by

� =
√

�2
R + [δ + ω0 − ωeg]2

=
√

�2
R + [δ − (2ne + |le| − 2ng − |lg|) ωr]2, (46)

where the resonant Rabi frequency is defined according to

�R = |Veg|
h̄

= 1

h̄
|〈nele, αeJeMe|V̂ |nglg, αgJgMg〉|. (47)

To assess the validity of the formula (46), we compare its
predictions with the results of Fourier analysis of the excited-
state population oscillations pe(t ). The spectra obtained
within these two—analytical and numerical—approaches are
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FIG. 7. Fourier spectrum of Rabi oscillations, calculated with
different values of frequency detuning δ, for the transition Mg =
−1/2 → Me = +3/2 and the total beam power P = 20 µW. The
background color represents the calculated spectral density [low in
dark green (dark gray), high in light yellow (light gray)], while the
red (black) dashed line displays the analytical prediction (46) for
vibrational quantum numbers lg = le = 0 and ng = ne = 0. All other
parameters are the same as those in Fig. 3.

presented as a function of the detuning parameter δ for the two
electronic transitions Mg = −1/2 → Me = +3/2 and Mg =
−1/2 → Me = +1/2 in Figs. 7 and 8, respectively. It is
apparent from Fig. 7 that the numerically obtained single-
frequency spectrum for the excitation of the Me = +3/2
sublevel is accurately reproduced by Eq. (46) with lg = le = 0
and ng = ne = 0. In particular, as mentioned above, the lowest
frequency � is achieved at zero detuning δ = 0 and no side-
band lines appear. In contrast to this textbook example, the
spectrum of Rabi oscillations between Mg = −1/2 and Me =
+1/2 sublevels contains several peaks at any detuning param-
eter δ (see Fig. 8). For low-intensity P = 1 µW, the formula
(46) allows us to attribute these peaks to transitions between
vibrational states with le = lg + 1 = 1 and ng = ne = 0 [red
(black) lines], ng = 1 and ne = 0 (white lines), and ng = 0 and
ne = 1 [blue (gray) lines], which make the main contribution
to the atomic dynamics. Moreover, the high brightness of the
numerical result associated with the red dashed line indicates
that the ng = ne = 0 carrier transition is dominant in the low-
intensity limit. Herewith the sideband transitions are so weak
that they are not even visible in Fig. 4.

With increasing light intensity, the spectrum of Rabi oscil-
lations departs more and more from the behavior predicted by
Eq. (46). This effect is shown in the lower panels of Fig. 8
and can be attributed to the “heating” of the system, which
begins at about 0.02 ms for our set of parameters. Indeed,
the redistribution of an atom over many high-lying vibrational
states makes the identification of a specific sideband (or car-
rier) transition unattainable and leads to the breakdown of the
approximation (46). In order to determine the range of inten-
sities for which the formula (46) is still valid, we display in
Fig. 9 the Fourier spectrum of pe(t ) for the Me = +1/2 state
as a function of (the square root of) the total beam power P. In
the particular case of a detuning δ = ωr, light is resonant with
the |Mg = −1/2, ng = 0, lg = 0〉 + γ → |Me = +1/2, ne =
0, le = 1〉 transition for which a single major peak in the
spectrum of Rabi oscillations at the frequency � = �R should

-1 0 1 2 3 4 5 6
0

1

2

3

4

-1 0 1 2 3 4 5 6
0

1

2

3

4

-1 0 1 2 3 4 5 6
0

1

2

3

4

FIG. 8. Same as Fig. 7, but for the Mg = −1/2 → Me = +1/2
transition. The spectral densities were computed for three different
total beam powers: P = 1 µW (upper panel), 5 µW (middle panel),
and 20 µW (bottom panel). The dashed lines display analytical
predictions (46) for vibrational quantum numbers ng = ne = 0 [red
(black)], ng = 1, ne = 0 (white), and ng = 0, ne = 1 [blue (gray)]. In
all cases, lg = 0 and le = 1.

appear according to Eq. (46). Since the resonant Rabi fre-
quency is proportional to the transition matrix element, and
hence to the electric field [cf. Eq. (19)], one can expect that
� ∝ √

P. As seen from the figure, this dependence (red solid
line) holds well up to the critical power P ≈ 12 µW. For
higher intensities, it breaks down and, moreover, additional
lines appear in the spectrum. It should be noted that at the
critical power P ≈ 12 µW the Rabi frequency �R becomes
comparable to the trapping frequency ωr, which is depicted by
the blue horizontal line in Fig. 9. In this regime the coupling of
an atom to twisted light leads to a transfer not only of angular
momentum but also of energy to the atom’s center-of-mass
motion. This effect is different from sideband laser cooling (or
heating) [61] in that no dissipation in the form of spontaneous
photon emission is taking place.

IV. SUMMARY AND OUTLOOK

In summary, we have presented a theoretical investigation
of the excitation of a single trapped atom by twisted light.
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FIG. 9. Fourier spectrum of the Rabi oscillations (42) between
states Mg = −1/2 and Me = +1/2 versus (the square root of) the
total beam power P for the radiation’s frequency detuning δ = ωr.
The red solid line corresponds to the resonant Rabi frequency (47)
for vibrational quantum numbers lg = 0, le = 1, and ng = ne = 0,
whereas the blue dashed line marks the trapping frequency ωr for
comparison. All other parameters are the same as those in Fig. 3.

Emphasis has been placed on the interplay of the atom’s
internal-state population dynamics and the center-of-mass
motion. In order to explore the evolution of such a complex
system with many degrees of freedom, we have employed
the density matrix formalism based on the Liouville–von
Neumann equation. Although the approach developed here
is universal and can be used to describe the photoexcita-
tion of any atom, calculations have been performed for the
4s 2S1/2 → 3d 2D5/2 transition in the 40Ca+ ion. We have
shown that the angular momentum transfer from twisted
light to the atomic center-of-mass motion can lead to un-

conventional behavior of Rabi oscillations. In particular, the
anharmonic time evolution of the internal-state population has
been observed and attributed to the redistribution of an atom
over many vibrational states. This anharmonicity was found
to be most pronounced when the Rabi oscillation frequency
�R was comparable to or larger than the trapping frequency
ωr. In the opposite case �R � ωr, we have observed the
conventional harmonic Rabi flopping, for which the com-
plete population transfer is achieved if the light frequency is
shifted by an integer number of trapping frequencies. These
findings reveal the importance of quantum motion effects in
experiments on the interaction of atoms with twisted-light
modes. In particular, we conclude that the use of twisted light
in atomic spectroscopy based on controllable measurements
of the Rabi flopping frequency is feasible only if �R � ωr.
While we present results for a selected trapping frequency
ωr = 2π × 10 kHz, our calculations, as well as Eq. (45), in-
dicate that similar predictions can be obtained for a trapping
frequency of χ · ωr and an adjusted beam power of χ3 · P.

The present study was restricted to an atom which is
initially prepared in the lowest vibrational state of the trap.
Future experiments, however, are likely to be performed with
some initial distribution of vibrational state population. This
circumstance, together with the spontaneous emission mech-
anism, may result in additional anharmonicity phenomena in
Rabi oscillations and affect sideband cooling protocols. An
analysis of these effects based on the developed theory is
currently under way and will be presented in a forthcoming
publication.
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