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Real-space inversion and super-resolution of ultrafast scattering
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Ultrafast scattering using x-rays or electrons is an emerging method to obtain structure dynamics at the atomic
lengthscales and timescales. However, directly resolving in real-space atomic motions is inherently limited by the
finite detector range and the probe energy. As a result, the time-resolved signal interpretation is mostly done in
reciprocal space and relies on modeling and simulations of specific structures and processes. Here, we introduce
a model-free approach to directly resolve scattering signals in real space, surpassing the diffraction limit, using
scattering kernels and signal priors that naturally arise from the measurement constraints. We demonstrate the
approach on simulated and experimental data, recover multiple atomic motions at sub-angstrom resolutions, and
discuss the recovery accuracy and resolution limits versus signal fidelity. The approach offers a robust path to
obtain high-resolution real-space information of atomic-scale structure dynamics using current time-resolved
x-ray or electron scattering sources.
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I. INTRODUCTION

Probing the structure and dynamics of systems of in-
creased complexity with atomic resolution, ranging from
small molecules in the gas phase to solute-solvent systems
and disordered materials, is at the forefront of experimen-
tal research. Ultrafast scattering (unlike diffraction) usually
refers to the diffuse scattering from atomic-size charge den-
sities or angstrom-range structural correlations, using x-rays
or electron pulses whose durations are below a picosecond.
X-ray free-electron lasers (XFELs) and relativistic or high-
energy electrons are sources of such pulses and have become
powerful tools to study ultrafast atomic and molecular dynam-
ics in chemical and solid-state systems at the angstrom and
femtosecond scales.

In typical experiments that employ ultrafast scattering, an
ultrashort optical “pump” pulse is used to photoexcite the sys-
tem under study, and the probing is done at some time delay
via an ultrashort x-ray or electron pulse that scatters from the
sample. The time-delayed signal is usually subtracted from
the signal of the unexcited sample to allow tracing changes in
signal positions and infer structural dynamics. For example,
this method was recently applied to probe molecules in the
gas phase following single- and multiphoton excitations and
chemical reactions [1–9], as well as structural changes of
molecules in solution environments [10–16].

Directly obtaining real-space time-resolved information by
inversion of the scattering pattern is often not possible in these
studies because of the limited available range of the scattering
vector, severely restricting the spatial resolution. To address
this issue, the methods that were developed to interpret the
scattering signals were system-dependent, and they relied on
calculating and attaining trajectory statistics. These methods
were mostly restricted to the reciprocal q-space [2,17], and
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they were often limited to a particular reaction pathway. Com-
plex atomic motions of general polyatomic systems that take
place simultaneously and involve multiple pathways at sub-
angstrom distances are theoretically challenging to model and
were not directly resolved in experiments.

Here we demonstrate a robust and model-free deconvolu-
tion approach to overcome the limitations that are imposed
by a typical inversion procedure, extending super-resolution
methods that have recently transformed optical microscopy
and biological imaging [18–22] to applications where only
restricted scattering information is present, with no access to
high spatial frequencies, multiple scattering, or single emit-
ters. Our approach does not require a pool of calculated
structures, or assume any structure at all, making it attractive
for capturing general motions that may contain density distri-
butions beyond atomic positions, such as wave-packet motion,
as well as differential signals where an undetermined subset of
the system contributes to the measured motion.

We show how real-space recovery of multiple and complex
motions of general polyatomic systems can be obtained by
leveraging the information and constraints that naturally arise
from the measurement configuration and analysis procedure.
We derive a formalism to express the way a set of scattering
kernels, which are effectively position-dependent point spread
functions in ultrafast scattering experiments, can be used to
capture general distortions in the inversion procedure. We
then use regularization and convex optimization to recover
and super-resolve real-space atomic motions as a sparse or
smooth solution of a dictionary of scattering kernels. While
the approach is applicable for x-ray, electron, and neutron
scattering, for brevity we will discuss mostly the case of x-ray
scattering.

II. METHOD

To describe angstrom and femtosecond scale dynamics of
general molecular systems, it is not valid to assume sample
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periodicity. As a result, the scattering patterns are often broad
and diffuse, capturing short-range spatial correlations. Diffuse
x-ray scattering of time-evolving charge densities is gener-
ally inelastic, but under typical experimental conditions the
general electronic scattering operator can be replaced with
its elastic expression [23,24]. In experiments, the signal is
usually integrated over an angle for improved fidelity, and
the isotropic signal was shown to contain all the nuclear and
electronic structural evolution of the charge density [25]. For
simplicity, we will introduce the approach using the isotropic
scattering signal given by the Debye equation [26,27]:

S0(q, τ ) =
∑

a

fa(q)2 +
∑

a

∑
b�=a

f ∗
a (q) fb(q)

× 4π

∫ ∞

0
dR R2ρab(R, τ ) j0(qR), (1)

where S0(q, τ ) is the isotropic diffuse scattering signal at time
delay τ , q = 4π sin(θq/2)/λ is the scattering vector mag-
nitude, with the scattering angle θq and wavelength λ, the
double sum is over all atom pairs, fi(q) is the atomic form
factor of the ith atom, ρab(R, τ ) is the pair charge density,
and j0(qR) = sin(qR)/qR is the zeroth-order spherical Bessel
function of the first kind.

For the case of ultrafast scattering, the scattering signal
difference �S0(q, τ ) = S0(q, τ ) − S0(q, 0) is often analyzed,
and as a result, the stationary atomic form-factor term∑

a fa(q)2 in Eq. (1) cancels. Without loss of generality,
we will therefore consider the scattering difference signal to
demonstrate the approach to recover the isotropic real-space
difference pair density �ρab. The Debye equation is related
to the real-space pair correlation function through a Fourier
transform [28]. For isotropic signals, direct real-space inver-
sion of Eq. (1) can be done for the case of a single pair density
contribution:

�ρab(R, τ ) =
∫ ∞

0
dq q2 �S0(q, τ ) j0(qR)

fa(q) fb(q)
. (2)

The integrand here is often scaled with an exponential
function e−kq2

[11,29] that serves as an effective experimental
integration bound; however, this formalism does not capture
various aspects of the measurement, such as the experimen-
tal configuration, sample thickness, detector truncation, and
discretization. As a result, applying Eq. (2) to experimental
ultrafast scattering signals will yield inversion artifacts in ad-
dition to the diffraction-limited resolution, especially around
the few angstrom lengthscale that is relevant for structural
dynamics of atomic and molecular systems.

To illustrate this, in Fig. 1 we show the inversion of a
Dirac δ charge density of a single-atom pair at 3 Å. We as-
sume typical experimental conditions for gas phase scattering
similar to [3], e.g., 9 keV photon energy, a sample thickness
of 8 mm, located 60 mm from a finite detector, a limited
q-range 0.5 < q < 4 Å−1, resulting in a diffraction-limited
spatial resolution given by 2π/qmax � 1.57Å. The inverted
waveform in Fig. 1(c) fails to accurately recover the original
δ-function position as it is distorted by the scattering inte-
grated over the sample thickness and q-range truncation. This
example provides us with a path to define a natural scattering
kernel (NSK), or the function that describes the distortion that

FIG. 1. Top: A sketch of a typical optical pump x-ray scattering
probe experimental configuration, with sample thickness 2d located
z0 away from a finite detector. We illustrate how the scattering on
the detector at a radius rd is the sum of different parts of the sample
(depicted as yellow, blue, and red lines) as explained below. (a) A
Dirac δ at 3 Å is used as the initial pair density. We model the
scattering assuming sample thickness and distance from a detector
similar to that in Ref. [3]. (b) The isotropic scattering curves S0(q)
from the sample center at z0 (blue) vs the sample edges at z0±d (red
and yellow) added to the same spot in the detector, creating a signal
distortion. The scattering is also truncated due to the finite detector
dimensions and q-dependent absorption, modeled by the window
function h(q). (c) The inversion of scattering, including measurement
constraints, describes how the distortion propagates to real space,
where the retrieved pair density fails to accurately describe the initial
density.

a δ-function charge density naturally undergoes in terms of
measurement in q-space and inversion analysis in real space.
Because we can express any pair density as a weighted sum
of δ functions in real space, we would like to explain the
distorted inversion of experimental signals as a weighted sum
of NSKs. We will describe the considerations to obtain these
kernels, and the way they can be used to recover and super-
resolve real-space motions.

A. Distortions in q-space

The experimental configuration and finite detector may
introduce signal distortions to the measured scattering pattern,
as seen in Fig. 1. We can express the relation between the
scattering vector magnitude q, the distance of the sample
from the detector z, and the radial position on the detector
rd =

√
x2 + y2 by

q(z) = 4π√
2λ

√√√√1 − z√
r2

d + z2
, (3)

where the origin of the coordinates is located at the center of
the detector, and we assume that the dimensions of the optical-
x-ray pump-probe interaction area are much smaller than the
sample thickness (typically microns versus millimeters). A
general distortion of the scattering signal in q-space can be
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expressed by

S̃0(q, τ ) =
∫ z0+d

z0−d
dz h(q(z)) S0(q(z), τ ) + b(q(z)), (4)

where S̃0(q, τ ) is the scattering signal measured on the de-
tector, which is distorted by the measurement constraints, S0

was defined in Eq. (1), and we assume a sample thickness of
2d at a distance of z0 from the detector. We define q = q(z0)
at the sample center, b(q) is a possible additive background,
and h(q) is a window function that represents the detector’s
finite q-range as well as q-dependent signal absorption. In
experiments, the shape of h(q) may also be affected by the
sample density profile, propagation-related absorption, and
detector-dependent attenuation related to the experimental
setup design. These can be accounted for in calibration mea-
surements, for example in [30].

In this context, it is assumed that the measured signal has
been adjusted for factors such as x-ray polarization, detector
geometry, and nonlinear response, as described in [31]. In
the analysis stage, a smooth modification function, such as
the Slepian or Lorch function [32], is often applied to reduce
the signal cutoff at the edges of the detected q-range. The
function h(q) takes into account these modification functions,
as well as any other relevant contributions mentioned.

B. Discretization

Because the measured scattering signal is discretized by
the detector at some resolution, but the inversion in Eq. (2)
is a continuous transform, we would like to use a resam-
pling and discretization scheme that maintains the transform’s
orthogonality and operational rules, such as discrete shift,
multiplication, and convolution, between the R and q domains.
Using the Bessel-Fourier expansion [33] and the standard
Shannon sampling theorem [34], we define

{qi}N
1 = j0i

j0N
N�q, {Rm}M

1 = j0m

M�q
, (5)

where we assume detector discretization �q, with an ex-
perimental upper bound qmax = N�q, and we resample the
scattering signal at qi, given by j0i, the ith root of the spherical
Bessel function j0. The ratio M/N is an effective super-
resolution factor [35] that can be used to determine the final
recovery resolution of noisy signals for a given signal-to-noise
ratio (SNR).

C. Inversion

The distorted difference scattering signal is discretized
�S̃0(qi, τ ) and inverted using the resampling scheme we in-
troduced in Eq. (5) by

�PD0(R, τ ) = [(M−1)�q]2

j0M

M−1∑
i=1

Gmi
�S̃0(qi, τ )qi

fe(qi )
, (6)

where �PD0 is the discretized pair density difference,
fe(qi ) = ∑

b�=a fa(qi ) fb(qi ) is an effective form factor, and the
transformation kernel is given by

[G]mi = 2
j0

( j0m j0i

j0M

)
j0M j2

1 ( j0i )
, (7)

where j1( j0i) is the first-order spherical Bessel function eval-
uated on the ith root of j0. The derivation of G is obtained in a
similar fashion to the derivation done for the discrete Hankel
transform [33], adapted here for the case of spherical Bessel
functions. We note that fe is an approximation needed in cases
in which the scattering signal is composed of several atom pair
types with different form factors that are not separable in the
analysis process, as only the total signal S0(q, τ ) is measured.
The approximation is justified because each fa(q) fb(q) term is
a featureless monotonic function in the truncated q-range, and
so its real-space inversion will mainly contribute to the ampli-
tude at 0 < R < π/qmax. As a result, any inaccuracy using fe

will be limited to an amplitude artifact in that range, because
it is in the sub-angstrom range, which is smaller than typical
bond lengths for typical ultrafast scattering experiments.

To invert the total scattering signal S0(qi, τ ), we can re-
place �S̃0(qi, τ ) in Eq. (6) with S̃0(qi, τ )− ∑

fa(qi )2.
To clarify the steps above, we will consider the fol-

lowing example: We solved a time-dependent Schrödinger
equation (TDSE) for diatomic iodine with parameters sim-
ilar to [3], 30 fs pulses at 520 nm, with an 8% excitation
fraction. At a delay of τ = 150 fs, the calculated density dif-
ference �ρ(R, τ ) features a depleted ground state at 2.67 Å,
with bound and dissociative excited states at 3.9 and 4.7 Å
[Fig. 2(a)]. We simulated the scattering signal difference from
this delay assuming the experimental conditions mentioned
earlier (8 mm sample width, 60 mm from a detector), with
�q = 0.1 Å−1, and a q-range of 0.5 < q < 4 Å−1 that is mod-
eled as h(q) by a Slepian window function (N = 40 sampling
points in q). The choice of �q magnitude was to capture
details in real space limited by Rmax = π/�q�31.4 Å.

We applied the inversion step using real-space discretiza-
tion at a resolution of �R � 0.157 Å (1/10 the diffraction
limit for the q-range considered). The value of �R is attained
by choosing M = ceil(π/(�R�q)) + 1 sampling points, re-
sulting with a super-resolution factor M/N � 5. The inverted
pair density difference �PD0(R, τ ) in Fig. 2(a) cannot resolve
the two excited states, as their separation ∼0.8 Å is below the
diffraction limit (∼1.57 Å). Additionally, the measurement
constraints cause �PD0(R, τ ) to be distorted, creating a struc-
ture that bears little resemblance to the initial charge density,
as demonstrated by the positive peak at 1 Å and the negative
peak around 5.5 Å.

D. Dictionary formation

We will implement the steps above: the q-space distortion,
discretization, and inversion, for a Dirac δ pair density, by sub-
stituting ρab(R) = δ(R − Rm) in Eq. (1), as seen in Fig. 1(c)
for the case Rm = 3 Å. The result will be the real-space dis-
torted inversion of the δ function for position Rm, expressed
by

NSK(Rm) = [(M−1)�q]2

j0M

M−1∑
i=1

Gmi j̃0(qiRm)qi, (8)

where

j̃0(qRm) =
∫ z0+d

z0−d
dz h(q(z)) j0(q(z)Rm). (9)
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FIG. 2. (a) The simulated pair density difference �ρ(R, τ ) of
excited diatomic iodine at a pump-probe delay of τ = 150 fs is
used to obtain the inverted pair density difference �PD0 [Eq. (6)],
distorted by the truncated q range 0.5 < q < 4 Å-1, and the experi-
mental conditions in [3]. (b) Using the measurement constraints, we
form the NSK dictionary D and apply convex optimization for the
	1 regularization case [Eq. (11)]. (c) We obtain the weights vector w
solution (red stem) that is in excellent agreement with the theoretical
pair density, resolving peak positions and amplitudes separated by
0.8 Å, below the diffraction limit (�1.57 Å). (d) To obtain the
optimal value of the regularization parameter ε in Eq. (11), we use
the L-curve method, plotting the solution norm vs the residual norm
for a logarithmic range in ε, and using the value of ε found at the
corner of the L-shaped region (see the text).

For very thin samples where we can take d → 0 such as
in the case of micron width liquid jets, we can approximate
j̃0(qRm) � j0(qRm)h(q).

The NSKs are system-agnostic as the effective form factor
fe that was used for the inversion of a general measured signal
cancels for the case of the kernels, and the expression in
Eq. (8) simplifies to contain only the distorted j̃0(qRm). We
can now create a set of NSKs along the real-space sampling
given by Eq. (5) to assemble a dictionary of the following
form:

D=
⎡
⎣NSK(R1) · · · NSK(Rm) · · · NSK(RM )

⎤
⎦.

In Fig. 2(b) we describe an NSK dictionary assuming the
experimental conditions used in the example, similar to [3].
The observed position-dependent point spread function shape
of the kernels is dominated by the shape of h(q), which serves
as a band-pass filter in q-space.

E. Deconvolution

We would like to use the NSKs dictionary we derived to ex-
plain the inversion signal that is distorted by the measurement
constraints, assuming the linear model:

�PD0 = Dw, (10)

where we seek to estimate the weights vector w to recover the
pair density described by �ρ(R) = ∑

m wmδ(R−Rm).
Naively, one would attempt to solve this model using least-

squares minimization: minw ‖�PD0 − Dw‖2
, however this

approach is highly sensitive to noise and is generally unsta-
ble numerically when the problem is ill-posed. A standard
approach for solving ill-posed inverse problems is to use a
regularization framework of the form

min
w

‖�PD0 − Dw‖2 + εR(w), (11)

where the regularizer R(w) is chosen according to some prior
information of the measurement to promote solutions with
preferable features such as sparsity or smoothness, and ε con-
trols the magnitude of the regularization and can be estimated
via the L-curve method or by cross-validation [36,37]. For
the examples discussed here, we will implement the L-curve
method.

Briefly, this curve is obtained when plotting the penalty
term of the regularized solution norm R(w) versus the resid-
ual norm ‖�PD0 − Dw‖2

2 for a logarithmic range of ε values,
creating a characteristic L-shape, where ‖ · ‖2 is the Eu-
clidean norm. The ε value that corresponds to the corner of
the L-curve, where the curvature is maximal, captures the
best tradeoff between minimizing the residual norm and the
penalty term that captures the nature of the solution. An im-
plementation of the L-curve method is shown in Fig. 2(d) for
the example we discuss.

For the regularizer R(w), we will discuss two approaches,
promoting smooth or sparse solutions. A widely used ap-
proach that addresses the numerical instabilities and produces
low variance solutions is the Tikhonov or 	2 regularization
[38], for which R(w) = ∑

m |wm|2. Using this regular-
izer provides the closed-form linear solution w = (DTD +
ε1)−1DT �PD0 that can be solved using singular value de-
composition. This approach promotes stable and smooth
solutions and increases the ability to predict their nature.
However, it also often results in most of the w elements having
nonzero values, which may reduce the ability to resolve or
explain weaker signals.

For the case in which we assume that the solution for
w is sparse, such that the number of sampling points in R
that can explain the distorted �PD0 is much smaller than M,
we can use the 	1 regularized least-squares model [39,40],
where R(w) = ∑

m |wm|. While this case does not have a
closed-form solution, it can be solved using convex optimiza-
tion, and can lead to super-resolution. In recent years, several
algorithmic approaches have evolved to solve this model,
determine the optimal parameters [41–43], and provide ap-
plications that transformed areas of research such as statistics,
machine learning, and signal processing [35,44–54].
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In Fig. 2(c) we applied convex optimization for the 	1

regularization case [Eq. (11)] for the pair density difference
and the NSK dictionary shown in Figs. 2(a) and 2(b) using
CVX, a package for specifying and solving convex programs
[55].

We find the optimal regularization parameter ε using the
L-curve method [Fig. 2(d)]. We note that the solution obtained
is robust for a wide range of ε values around the corner of the
L-curve. The solution given by the weights vector w is in ex-
cellent agreement with the theoretical pair density difference,
super-resolving the excited states pair-density positions and
amplitudes while eliminating the distortions in �PD0.

We note that the case presented here differs from some of
the approaches referenced above that also used 	1 regularized
least-squares. This is because the NSK dictionary is highly
correlated, each kernel is similar to its adjacent neighbors,
and so the restricted isometry property that is needed in com-
pressed sensing schemes [35] is not satisfied here. As a result,
an additional restriction is introduced in the form of a min-
imum separation distance between adjacent NSKs to avoid
solution ambiguity below some δR < ν/qmax that depends on
the signal’s properties and fidelity [56–58]. In the next section,
we will discuss the conditions for super-resolution and find the
minimum separation distance for noisy signals.

III. RECOVERY ACCURACY FOR NOISY SIGNALS AND
SUPER-RESOLUTION

Super-resolution in the context of scattering means to re-
solve at least two pair distances below the diffraction limit
given by 2π/qmax. The accuracy of the recovery method
presented and the ability to achieve super-resolution depend
both on the SNR and the super-resolution factor. To robustly
super-resolve using NSKs and 	1 regularization, an additional
minimum separation distance is introduced [56]. To obtain its
value and characterize the recovery accuracy, we consider the
case when two pair distances approach each other, and we
focus on the recovery accuracy as a function of SNR.

We use a three-atom model system, similar to CO2 (Fig. 3),
where we fix the positions of the outer atoms (A,C) to x =
±2 Å while changing the position of (B) the central atom
(−1 < x < 1 Å). When atom B is at x = 0, the pair dis-
tance RAB will merge with RBC at 2 Å. We applied the same
experimental configuration used in [3] and in the previous
example, q-range 0.5 < q < 4 Å−1 with the discretization
�q = 0.1 Å−1, and we simulated the scattering signal for each
of the distances. To test the recovery accuracy, we added to the
total scattering signal q-dependent additive white Gaussian
noise, where each qi bin has sampling statistics proportional
to the number of detector pixels contributing to it, assuming
the array detector in [31].

We applied the NSK approach with sampling �R �
0.05 Å, and we tested the recovery for a range of single
detector pixel SNRs (−15 to 30 dB), with 20 realizations to
each noise level to obtain recovery statistics. We find that
the recovery accuracy for the 	1 regularization is propor-
tional to the noise level, demonstrating the stability of the
approach, and in agreement with theory [56]. For the fixed
RAC distance, the recovery error is <0.1 Å across the SNRs
[Fig. 3(d)], demonstrating the accuracy of the approach for

FIG. 3. Recovery accuracy under noise is tested for a three-
atom system (top), where two pair-distances (RAB, RBC) approach
each other below the diffraction limit. The scattering is simulated
for each atom B position, truncated by 0.5 < q < 4 Å−1, and in-
verted using NSKs (	1 regularization). The diffraction limit for
this case is 2π/qmax � 1.57. The inversions for (a) 15, (b) 0, and
(c) −15 dB SNRs are shown vs exact distances (dotted red), and
PD is normalized by the total charge density. The recovery error
is proportional to the SNR, validating the stability of the approach.
(d) For RAC distance, the average recovery error (solid) and standard
deviation (shaded) are <0.1 Å across SNRs. The conditions for
super-resolution and minimal separation emerge when the RAB, RBC

distances approach each other. (e) The average recovery error (Err)
is plotted as a function of pair separation |RAB − RBC | and SNR, and
used to define the minimal separation at which both distances are
resolved (solid red). (f) The recovery in the super-resolution regime
for different separations compared with the exact distances (dotted
red) is limited by both SNR and the pair coalescence effect (see the
text). We obtain that the diffraction limit is surpassed by a factor
3.1–7.8 for the range of −15 to 30 db.

the case of well-separated pair distances [Fig. 3(c)]. For the
case in which the two pair distances RAB and RBC approach
each other, we obtain a separation of δR � 0.35 ± 0.15 Å that
allows robust recovery below the diffraction limit (�1.57 Å)
for the SNR range used [Fig. 3(e)]. The minimal separation
distance is derived from the recovery error statistics, where
we observe that the recovery error is due to both noise and a
coalescence effect where both distances drift toward the joint
center of mass [Fig. 3(f)]. The coalescence effect is unique to
the super-resolution case. It has quadratic dependence in the
super-resolution factor M/N [56], and it takes place when two
adjacent NSKs explain effectively the same noisy distorted
measurement. As a result, the 	1 regularization that acts as
a sparsity prior to the recovery will instead promote a single
NSK solution at the midpoint to explain the same measure-
ment.

The minimum separation is defined as the distance where
the average recovery error due to the coalescence effect is
equal to half the distance between each pair and their joint
center of mass, at a given SNR and M/N . Inaccuracy in the
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recovery due to this limitation can be addressed by adjusting
M/N given by the real-space resampling, to be compatible
with the estimated measured SNR. The minimal separation
distance acts as the de facto resolution limit for an unknown
sparse charge density distribution for the case of super-
resolution in noisy conditions. Applying to the recovered
density an additional real-space blur of the same width can be
done to ensure the objectivity of the result for cases in which
the sparse density might contain features below the minimum
separation. The implementation of the NSK approach for gen-
eral anisotropic signals of arbitrary order can be found in the
Appendix.

IV. RESULTS

A. Numerical demonstration: Wave-packet dynamics in iodine

We revisit the numerical example shown in Fig. 2 and
consider a broader range of time delays, 0 < τ < 1.8 ps, cap-
turing the evolving coherent nuclear wave-packet dynamics
that undergo multiple motions such as dissociation and an-
harmonic vibrations. We simulated the scattering signal with
the same measurement constraints of the previous example
(0.5 < q < 4 Å-1), and we assumed an SNR of 20 dB per
detector pixel on the scattering difference signal �S̃0(q, τ ).
We inverted the truncated signal to obtain �PD0(R, τ ) and
used the dictionary of NSKs with the same measurement
constraints to deconvolve the distorted �PD0(R, τ ) using the
	2 regularization, as seen in Fig. 4(c). While this approach
handles some of the inversion artifacts, the nature of the
smooth solutions it promotes reduces the ability to resolve
weaker signals and does not achieve super-resolution.

In Fig. 4(d), we applied convex optimization for the 	1

regularization case [Eq. (11)], the minimal separation found
in the previous section, and we managed to accurately cap-
ture real-space information and to super-resolve details below
0.4 Å. For example, we were able to resolve the wave-
packet positions and dispersion surpassing the diffraction-
limited recovery that was obtained for the case of 	2

regularization.

B. Experimental demonstration: Ring-opening
dynamics in CHD

In Fig. 5, we applied the NSK inversion approach using
the 	1 regularization to data collected by an ultrafast electron
scattering experiment that captured the photoinduced ring-
opening of 1,3-cyclohexadiene (CHD) [7]. This well-studied
polyatomic molecule has 14 atoms and a total of 91 atom
pairs in three groups (C-C, C-H, H-H). We used the effective
form-factor approximation to invert the experimental signal at
0.55 ps delay, as the structural opening of the ring takes place
and 1,3,5-hexatriene (HT) isomers are formed. We analyzed
the scattering signal with the same binning as in the inver-
sion of [7], �q = 0.0974 Å−1, q-range truncation 1.3 < q <

10.2 Å−1, and we used an NSK spatial resolution of �R �
0.1 Å, which corresponds to a super-resolution factor M/N �
3.1. We estimated −16 db SNR per pixel of the measured dif-
ference data by comparing it with simulated scattering signals
derived from the ab initio multiple spawning (AIMS) simula-
tions, done at the α-CASSCF(6,4)/6-31G∗ level of theory [7].

FIG. 4. (a) TDSE calculation of the time-dependent charge den-
sity difference (PD normalized to the total charge) for diatomic
iodine resulting in coherent vibration and dissociation wave-packet
motions. Simulating its difference scattering signal assuming typi-
cal experimental conditions similar to [3] and adding noise (20 db
SNR), we (c) inverted the truncated signal difference and obtained
the pair-density difference signal. The limited q-range hinders the
ability to recover the positions and motions of the calculated charge
density. The NSK dictionary formed by the measurement constraints
was used to deconvolve the distorted pair density using (c) 	2 and
(d) 	1 regularization. For the 	1 case, we obtain super-resolution
in the recovery, resolving multiple motions and wave-packet shape
dispersion.

We inferred a minimum separation distance of δR � 0.15 Å
by performing a noise analysis procedure similar to the one
discussed in the previous section using the q-range reported
in the experiment. The minimal separation distance was then
used to blur the 	1 regularization solution seen in Fig. 5(a).

We are able to resolve <0.3 Å features, including details of
several individual pair distances that were not resolved by the
inversion done in [7]. Our results are in excellent agreement
with the AIMS trajectories without further processing the tra-
jectories in the same way as the experimental inversion done
in [7]. We observe the depletion of the initial steady-state C-C
distances at 1.4, 2.5, and 2.85 Å, and C-H distance at 1.05 and
2.1 Å as new distances >3 Å form due to the ring opening.
The new distances correspond to C-C and C-H pairs of the
HT isomers. We find that the C-H pair distances significantly
contribute and are better markers for the structural dynamics
of the ring opening process due to the relative rigidity of the
C-H bond. The details of the inversion we perform facilitate
a quantitative understanding of the different contributions of
the different HT isomers and help elucidate structure beyond
3 Å that cannot be attributed to a combination of the isomer
structures.
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FIG. 5. (a) Ab initio multiple spawning trajectories simulation
(gray) and experimental pair density difference (black) of photoin-
duced ring-opening of CHD at 0.55 ps from [7] vs the inversion and
super-resolution of the experimental data using the NSKs method
presented here (red). The NSKs solution uses 	1 regularization
(red circles), following the minimal separation assumption given
the estimated measurement noise (solid red). Individual peaks, re-
solved at <0.3 Å resolution, correspond to atom pair distances that
significantly change during the ring-opening: positive peaks point
to new distances that are formed as the ring opens, while nega-
tive peaks point to depletion of steady-state distances. The details
resolved surpass the diffraction limit (�0.62 Å) for the measure-
ment by a factor of >2. (b) The pair composition of the simulated
charge density difference highlights the depletion of the C-C (pink)
and C-H (yellow) distances that are resolved by the NSK method.
These distances are illustrated in the CHD steady-state geometry
(inset).

V. CONCLUSION

In summary, we have developed a model-free ap-
proach to directly resolve scattering signals in real space,
beyond the diffraction limit. We validate the approach
using simulated and experimental scattering data. We
demonstrate super-resolution of simultaneous motions de
novo and discuss the resolution limits as a function of
fidelity.

This approach opens the way to directly trace the spa-
tiotemporal shape of coherent wave-packet motions and
energy redistribution of different atom-pairs that take place
simultaneously, without bias toward the Franck-Condon ac-
tive modes or the constraints of normal mode analysis.
This approach can be further extended considering different
regularization schemes such as the elastic net [59], off-
the-grid type methods [60], and the addition of temporal
dependence of the regularizer to further constrain the dy-
namics. The approach also allows the inclusion of other
aspects of the scattering process, such as resonant scatter-
ing, inelastic and coherent scattering cross-terms, or self-
scattering as in the case of laser-induced electron diffraction
[24,61–67].

The approach is especially beneficial for high-fidelity scat-
tering signals that are expected from high-repetition rate
instruments that are becoming available, and it may help
to bridge the established pair-distribution function analy-
sis that requires much higher q ranges (>30 Å−1) with
time-resolved high-energy (15–25 keV) x-ray scattering
and electron scattering experiments, which have just begun
recording high-fidelity transient signals in the q ∼ 10 Å−1

range.
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APPENDIX: SCATTERING AND INVERSION FOR
ANISOTROPIC CHARGE DENSITIES

In ultrafast scattering studies, the dynamics of a pho-
toexcited ensemble of molecules are usually captured in a
pump-probe scheme, where the excitation pump pulse is usu-
ally a linearly polarized ultrafast optical pulse with a duration
shorter than the typical timescales of motion of interest. Inte-
grating the angle information of the scattering signal is well
justified as it captures all types of motions that take place in
the photoexcited system; however, often there is an inherent
anisotropy in the scattering signal when a sample is excited by
linearly polarized light due to an optically induced dipole mo-
ment transition. The photoabsorption process creates charge
density anisotropy in the ensemble, which can be used to filter
and enhance the specific processes under study, such as in the
case of a single-photon absorption process [3,15,68], as well
as excitation of a higher number of photons [5,69].

We will consider the real-space general anisotropy infor-
mation of photoexcited molecular systems and derive the
corresponding anisotropic scattering curves Sn(q, τ ) using
results that have been derived elsewhere [5,23,25,68]. We
assume that both the x-ray pulse and the optical laser pulse
are copropagating along k0 and that the angle between the
incident x-ray beam and the laser polarization is π/2, which
allows us to employ a Legendre decomposition in angle space.
The expression for the differential cross-section difference
scattering is

�
dσ

d�
= σT

∫
dR�ρ(R, τ )|F (q, R)|2,

F (q, R) =
∑
b�=a

f ∗
a (q) fb(q)eıqR, (A1)

where σT is the Thomson cross-section, �ρ is the charge den-
sity difference, and the squared molecular form factor |F |2 is
invariant under space inversion R 
→ −R, with the scattering
vector q = ks − k0 and the (double) sum is over all atom
pairs. We can expand the scattering exponential term using
the plane-wave expansion:

eıqR =
∑

n=0,2,...

(2n + 1)(−1)n/2Pn(cos θqR) jn(qR), (A2)

where Pn are Legendre polynomials, jn are spherical Bessel
functions, and θqR is the angle between q and R. We sum
only over even orders as odd polynomial components are
antisymmetric under space inversion and will cancel for the
differential cross-section. Using the spherical harmonics addi-
tion theorem, we expand the Legendre polynomials to express
θqR in terms of the experimentally measured scattering angles
(θq, φq), and (θ, φ), the angle between the laser polarization
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and dipole transition axis and its corresponding azimuth:

Pn(cos θqR) = 4π

2n + 1

k∑
j=−k

Y ∗
jk (θq, φq)Yjk (θ, φ). (A3)

We integrate over φq using scattering symmetry and use the
above expressions to arrive at

�
dσ

d�
= 2(2π )2σT

∑
n=0,2,...

(−1)n/2Pn(cos θq)�Sn(q),

(A4)

�Sn(q, τ ) =
∑
b�=a

f ∗
a (q) fb(q)

∫ 1

−1
d cos(θ )

×
∫ ∞

0
dRR2�ρab(R, cos(θ ), τ )

× Pn( cos(θ )) jn(qR), (A5)

where �ρab(R, cos(θ ), τ ) is the time-dependent and angle-
dependent pair density difference at time-delay τ . Scattering
from a general anisotropic real-space charge will be mani-
fested both by the intensity distribution on the detector via
the scattering angle θq and via the anisotropy curves �Sn(q).
To recover the anisotropic charge density of order n, we need
to obtain �Sn(q) from the scattering pattern on the detector.
This can be done by applying a Legendre decomposition over
the detector angle θd described in Fig. 1. We decompose the
2D measured detector signal at delay time τ in each [q, θd ] bin
to an even-order Legendre basis up to the relevant significant
order:

I (q, θd , τ ) = β0(q, τ )
∑

n=0,2,...

β̃n(q, τ )Pn(cos θd ), (A6)

where β0(q, τ ) is the radial detector intensity at delay τ ,
and β̃n(q, τ ) = βn(q, τ )/β0(q, τ ) are the normalized detec-
tor anisotropy terms. The relation between the nth-order
anisotropy curve �Sn in Eq. (A5) and the corresponding
βn(q, τ ) term was derived in a previous study [5], and is given
by

�Sn(q, τ ) = β0(q, τ )̃βn(q, τ )

cosn(θq)
= βn(q, τ )(

1 − q2

4|k0|2
)n/2 , (A7)

where |k0| is the length of the wave vector of the incoming
x-ray beam, β0(q, τ ) has units of intensity or the average
number of scattered photons per q on the detector, whereas
the anisotropic β̃n(q, τ ) terms are dimensionless and represent
ratios between intensities and different angles that govern the
degree of anisotropy.

Direct real-space inversion and formation of NSKs will
be applied to the measured �Sn in a similar way to that
used for the isotropic case, where we need to generalize the
expressions for distortions, discretization, and inversion to the
anisotropic case.

1. NSK formalism for anisotropic scattering

The measurement constraints will create distortions on the
retrieved anisotropic curves Sn that can be expressed as

S̃n(q, τ )=
∫ z0+d

z0−d
dz hn(q(z)) Sn(q(z), τ ) + b(q(z)), (A8)

where hn(q) is a window function that contains angle depen-
dence per anisotropy order n representing the detector’s finite
q-range as well as the q-dependent signal absorption. The
discretization scheme for each anisotropy order n is given by

{
q(n)

i

}N

1 = jni

jnN
N�q,

{
R(n)

m

}M

1 = jnm

M�q
. (A9)

We note that each anisotropy of order n is sampled at the
corresponding spherical Bessel order jn roots. As a result, dif-
ferent anisotropy orders will have slightly different sampling
positions in q and R.

The distorted anisotropic difference scattering signal is
discretized �S̃n(q(n)

i , τ ), and the transformation back to real-
space for the nth-order anisotropy is

�PDn(R(n), τ ) = [(M−1)�q]2

jnM

M−1∑
i=1

G(n)
mi

�S̃n
(
q(n)

i , τ
)
q(n)

i

fe
(
q(n)

i

) ,

(A10)
with the nth-order anisotropy transformation kernel:

[G]n
mi = 2

jn
( jnm jni

jnM

)
jnM j2

n+1( jni )
. (A11)

The NSK for anisotropy order n for position R(n)
m is

NSKn
(
R(n)

m

) = [(M−1)�q]2

jnM

M−1∑
i=1

G(n)
mi j̃n

(
q(n)

i R(n)
m

)
q(n)

i ,

(A12)
where

j̃n
(
q, R(n)

m

)= ∫ z0+d

z0−d
dz hn(q(z)) jn

(
q(z)R(n)

m

)
. (A13)

We can generate a group of dictionaries D(n), each contain-
ing a set of NSKs specific to a certain anisotropy order. These
dictionaries will be used to approximate the charge density
distributions for each anisotropy order. Inversion and decon-
volution for each anisotropy order will then be performed
using the previously mentioned regularization framework:

min
w(n)

‖�PDn − D(n)w(n)‖2 + εR(w(n) ). (A14)

To obtain the angle-resolved pair density from each
anisotropic pair density solution w(n), we need to resample
w(n) to the same real-space grid. We can then express the total
pair density solution:

w(R, cos θ ) =
∑

n=0,2,...

�Pn(cos θ )w̃(n)(R), (A15)

where w̃(n)(R) is the resampled w(n) onto the isotropic real-
space grid given by R(0)

m .

2. Numerical example

Consider an ensemble of linear triatomic molecules that
was photoexcited via absorbing a single photon, with a dipole
transition parallel to the molecular axis creating a cos2(θ )
angular distribution in the ensemble. This angular distribution
is expressed by P0 and P2 Legendre polynomials in Eq. (A4).
The scattering signal from the ensemble is the incoherent sum
of scattering from single molecules, as we can neglect the
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FIG. 6. Inversion and super-resolution of anisotropic charge density: (a) three pair-densities with cos2(θ ) angular distribution at 1.7, 2.3,
and 4 Å are obtained modeling an ensemble of triatomic molecules that was photoexcited (see the text). (b) The total simulated scattering is
truncated and analyzed to obtain the scattering curves S̃n. (c) The inversion of S̃n fails to retrieve the positions of the pair densities. We apply
the NSK inversion and deconvolution using 	1 regularization for each anisotropy order, and then we apply Eq. (A15) to obtain the angle- and
space-resolved pair densities for SNR values of (d) 15, (e) 0, and (f) −15 dB. We super-resolve distances and angular distribution and observe
that the pair coalescence effect takes place for the −15 dB case. At this SNR, the coalescence effect limits both the spatial and angle resolution
for anisotropic scattering.

two-molecule scattering signal contribution because of their
random positions. Thus, we can describe the charge density
signal using the ensemble-averaged molecule picture. Bor-
rowing from the example used for the isotropic case in Fig. 3,
we set the atom positions versus the center of mass of each
molecule to be at x = −2 Å for atom A, x = 0.3 Å for atom
B, and x = 2 Å for atom C. The corresponding pair distances
are RAB = 1.7 Å, RBC = 2.3 Å, and RAC = 4 Å, each with a
cos2(θ ) angular distribution [Fig. 6(a)].

We simulated the scattering signal on a realistic detector,
assuming detector pixel signal-to-noise (SNR) ratios of −15,
0, and 15 dB. We apply detector truncation restricting the
range of measured signal to 0.5 < q < 4 Å-1. We note that
using these parameters, the two pair distances RAB and RBC

are 0.6 Å apart, below the diffraction limit of �1.57 Å.

We retrieve the S̃n(q) curves using Eq. (A7) [Fig. 6(b)],
and we invert to obtain PDn [Fig. 6(c)]. We form NSKn

dictionaries for the zeroth- and second-order anisotropy, and
we deconvolve PDn using Eq. (A14), with 	1 regularization.
The recoveries for each SNR are shown in Figs. 6(d)–6(f),
capturing both positions and angular distributions of the pair
densities. We obtain similar recovery accuracy and super-
resolution conditions, limited by signal fidelity and pair
coalescence. For the −15 db case, the coalescence effect
for the angle-resolved pair density distances also obscures
the angle information content related to their anisotropy, as
seen as density broadening for | cos(θ )| > 0.7 and loss of
anisotropy in the coalescence distance. This effect reflects
the angular resolution limit in real-space recoveries of noisy
signals.
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