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In this work, we put forward an approach of constructing the optimal composite pulse sequence for robust
population transfer in two-level systems. This approach is quite universal and applicable to a variety of systems,
because the modulation parameters of composite pulses are obtained by minimizing the homemade cost function
rather than nullifying the error coefficients of the transition probability. Specifically, we design different forms
of the cost function for implementing optimal robustness with respect to the single or multiple errors. When
slightly adjusting the constraints of the cost function, this approach can be easily extended to achieve arbitrary
population transfer. The numerical results demonstrate that the optimized sequences are immune from various
systematic errors, allowing us to produce a broadening excitation range of the transition probability. Therefore,
this work offers an optimal robust design for controlling quantum states in error-prone environments.
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I. INTRODUCTION

Precise manipulation of quantum states is a topical sub-
ject in quantum information processing [1]. The manipulation
precision is often hardly satisfactory in practice due to the
existence of various systematic errors. Actually, these errors
prevent the system from evolving along the desired path, caus-
ing the quantum state to deviate from the exact one. Hence,
improving the robust performance of the system dynamics
and thus reducing the influence of systematic errors becomes
a very necessary issue.

To tackle this issue, several techniques have been pro-
posed [2–11]. Among them, the adiabatic passage [12–16]
is well established and successfully used for robust quantum
control [17–19]. In the adiabatic passage, one needs to select
an eigenstate of the system Hamiltonian as the evolution path.
Then the initial state would adiabatically evolve along this
selected path without any transitions to other eigenstates. Nev-
ertheless, its effectiveness strictly relies on high-energy and
long-duration fields [16]. In other words, the insensitivity to
systematic errors is obtained at the expense of slow evolution
speed and not very high fidelity. As promising substitutions,
the composite pulse (CP) technique and the optimal control
(OC) approach have attracted much attention due to their
ultrahigh fidelity and robustness against systematic errors.

The concept of CPs was early conceived in polarized
optics [20–24] and further developed in nuclear magnetic
resonance (NMR) [25–27]. The CPs are generally constituted
by a finite train of constant pulses with determined pulse
areas and well-defined phases. A basic rule of this technique
is to exploit the modulation parameters of each pulse to
compensate for the influence caused by tiny errors [28–30],
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or make the system highly sensitive to parameter devia-
tions [28,31]. So far, the CP technique has been very much
in favor in different physical systems [31–43], including
trapped ions [44–53], cold-atom interference [54–56], quan-
tum dots [57–59], etc.

The OC approach is widely applied in various subject
branches [60–70]. Its core idea is to optimize some pre-
defined targets that hinge on the manner of the system
evolution [71–75]. In a nutshell, the control fields are derived
via searching the extremum (the maximization or minimiza-
tion) of the field-dependent cost functional [76]. In particular,
some extra constraints can be contained in the cost functional
as desired if there exist additional limitations or expecta-
tions [75–77]. In recent years, the modern version of OC
is mainly developed from the Pontryagin maximum princi-
ple [72,75], and has offered substantial support for quantum
applications [78–80]. For instance, Van Damme et al. [81]
derived the global robust optimal control strategies for popu-
lation transfer in terms of energy and time minimum. Through
combining with deep reinforcement learning [82,83], the op-
timal pulses can be constructed in a desired manner to achieve
robust quantum state preparation [84–87].

Up to now, many CP works on robust quantum control
have been proposed through modulating a single type of
parameters, such as the phase [28,29,88–91], the coupling
strength [92–95], or the detuning [96], while the remaining
parameters are preset. Actually, all system parameters are
available to be utilized for modulation. From this point of
view, the preceding CP sequences [28–30,88–96] do not reach
the efficiency limit in terms of robustness. In principle, to
achieve optimal robustness against errors, one requires to
make all physical quantities adjustable.

In this work, we propose an approach of constructing the
CP sequence for high-fidelity population transfer with optimal
robustness against systematic errors. This approach depends
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on searching the minimum value of the cost functions, ef-
fectively avoiding the situation in which the error terms of
the transition probability cannot be completely canceled or
the number of pulses is limited. To attain the efficiency
limit in terms of robustness, all physical quantities, includ-
ing the phase, the pulse area, the coupling strength, and
the detuning, are regarded as free modulation parameters.
By properly designing the form of the cost functions, the
optimal CP sequences show outstanding robustness against
multiple kinds of systematic errors. In particular, it is also
accessible to generate the optimal sequence for arbitrary pop-
ulation transfer by flexibly adjusting the constraints of the
cost function. Compared with previous CP sequences [96–98],
the current one provides better robustness against the pulse
area error and the detuning error, and possesses a supe-
rior broad excitation range for the transition probability.
As a by-product, arbitrary population transfer can be ob-
tained in a robust way through merely modulating the phase
difference of two pulses, while other parameters remain
unchanged.

The rest of the paper is organized as followed. In Sec. II,
we introduce the physical model, the construction of the cost
function, and the search algorithm for finding optimal CPs. An
intensive study of the cost function configuration is presented
in Sec. III. Section IV focuses on the design of optimal CPs
robust against various errors derived from the pulse area, the
detuning, and the coupling strength. Then, we popularize the
current optimal CPs when the system exhibits multiple types
of errors. Subsequently, we demonstrate the construction pro-
cess of CPs using arbitrary population transfer. In Sec. V, we
make a brief comparison between the current optimal CPs
and previous works [25,96–100]. A conclusion is given in
Sec. VI.

II. THEORETICAL FRAMEWORK

Let us consider a two-level quantum system coherently
driven by an external control field. The system dynamics is
governed by the Schrödinger equation (h̄ = 1)

i∂t c(t ) = H (t )c(t ), (1)

where c(t ) = [c1(t ), c2(t )]T is the probability amplitude vec-
tor, the superscript T denotes vector transposition, and cn(t )
is the probability amplitude of the state |ψn〉 (n = 1, 2). The
Hamiltonian has the following form:

H (t ) = 1

2

[ −�(t ) �(t )eiθ (t )

�(t )e−iθ (t ) �(t )

]
, (2)

where �(t ) = (ω0 − ω) is the detuning between the Bohr
transition frequency ω0 and the control field frequency ω, �(t )
is the coupling strength of the transition |ψ1〉 ↔ |ψ2〉, and θ (t )
is the phase shift applied to the control field.

The probability amplitude vector at the evolution time t
relates to the initial time t0 via the propagator U (τ ):

c(t ) = U (τ )c(t0), (3)

where τ = (t − t0) is the pulse duration. It is instructive to
present the expression of U (τ ) when the Hamiltonian is time

independent, and the form reads

U (τ ) =
[
U11(τ ) U12(τ )
U21(τ ) U22(τ )

]

=

⎡
⎢⎣cos A

2 + i
χ sin A

2√
χ2+1

−i
sin A

2√
χ2+1

eiθ

−i
sin A

2√
χ2+1

e−iθ cos A
2 − i

χ sin A
2√

χ2+1

⎤
⎥⎦, (4)

with χ = �/� and the pulse area A = �
√

χ2 + 1 τ . Accord-
ing to the expression of χ , it can be seen that two physical
quantities � and � are not independent of each other in the
propagator U (τ ). That is, we cannot simultaneously regard �

and � as the free control parameters. In the following, we set
the coupling strength � of each pulse as unit, and thus χ = �.

Assume that the system is initially in the state |ψ1〉, i.e.,
c(0) = [1, 0]T. The probability amplitude vector at the evo-
lution time t becomes c(τ ) = [U11(τ ),U21(τ )]T. Thus, the
transition probability of the state |ψ2〉 reads

P = |U21(τ )|2 = 1

�2 + 1
sin2 A

2
. (5)

It is readily found that the transition probability P relies on
the parameters � and A. To achieve complete population
inversion, we must demand

� = 0, A = (2k + 1)π, (6)

with an arbitrary integer k. It is the so-called resonant π

pulse [101] when k = 0.
One can see from Eq. (5) that the resonant π pulse strictly

depends on the conditions that the detuning must vanish and
the pulse area must precisely be π . In practice, physical
parameters often suffer from external perturbations such as
inhomogeneous broadening, Doppler broadening, spatial in-
tensity distribution, transit time variation, unwanted chirp, and
shape distortions. As a result, the parameters fail to reach ac-
curate values and thus produce errors. These errors ultimately
affect the effectiveness of population inversion. Therefore, the
resonant π pulse is highly sensitive to errors. To solve this
problem, we can turn to the CP sequence.

Here, we study the most general situation; that is, the CP
sequence consists of N single off-resonant pulses. Without
loss of generality, we set the phase of the first pulse as zero,
i.e., θ1 = 0, because it is the overall phase for the CP se-
quence, and all others are the relative phases with respect to
the first pulse [29]. Under this premise, the CP sequence pos-
sesses (3N − 1) free modulation parameters, i.e., {�n, An, θn}
with n = 1, . . . , N . For brevity of expression, we also inte-
grate θ1 into the modulation parameters hereafter. According
to Eq. (4), we first write down the propagator of the nth pulse,

Un(τn) =

⎡
⎢⎣cos An

2 + i
�n sin An

2√
�2

n+1
−i

sin An
2√

�2
n+1

eiθn

−i
sin An

2√
�2

n+1
e−iθn cos An

2 − i
�n sin An

2√
�2

n+1

⎤
⎥⎦. (7)

Then, the total propagator of the CP sequence with N pulses
is represented by

U (N )(T ) = UN (τN )UN−1(τN−1) · · ·U1(τ1)

=
[

U (N )
11 (T ) U (N )

12 (T )

U (N )
21 (T ) U (N )

22 (T )

]
, (8)
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where T is the total duration, and τn = (tn − tn−1) is the
duration of the nth pulse (t0 = 0 and tN = T ). As a result,
the probability amplitude vector at the evolution time T
reads

c(T ) =
[

U (N )
11 (T )

U (N )
21 (T )

]
. (9)

Provided that the error appears in the system, the parame-
ters become imprecise, leading to the unfavorable influence
on the propagator. As a result, the transition probability of
the target state inevitably deviates from the desired value. For
simplicity, we denote the generalized error as ε, universally
referring to all kinds of parameter errors in the system. On
this occasion, the total propagator of the N-pulse sequence be-
comes U (N )

ε (T ), and the transition probability of the state |ψ2〉
reads P(N )

ε = |U (N )
ε,21(T )|2. To intuitively visualize the influence

of the error on the transition probability, it is feasible to divide
P(N )

ε into multiple error terms by the Taylor expansion, and the
expression can be written as

P(N )
ε = a0 + αe(ε), (10)

where a0 is the accurate transition probability of the state |ψ2〉
in the absence of the error, and αe(ε) denotes all error terms.
Specifically, αe(ε) has the following form:

αe(ε) =
∞∑

m=1

amεm, (11)

where the coefficient of the mth-order error term is

am = 1

m!

∂m

∂εm
P(N )

ε

∣∣∣∣
ε=0

. (12)

It is easily seen from Eq. (11) that if ε �= 0, αe(ε) is always
nonzero and thus adversely influences the transition probabil-
ity of the state |ψ2〉. To achieve population transfer in a robust
manner, the value of αe(ε) needs to be sharply suppressed.
To this end, the modulation parameters {�n, An, θn} in the
N-pulse sequence can be designed by solving the following
equations: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a0 = γ ,

a1 = 0,

a2 = 0,

...

(13)

where γ is the predetermined transition probability of the state
|ψ2〉.

Actually, the above idea of extracting and nullifying er-
ror terms in the Taylor expansion is popularly used for the
construction of CP sequences [28,29]. Various CP sequences
with different modulations have been applied to robust quan-
tum control [88–97]. For example, a typical CP sequence
with the phase modulation [28] was proposed to imple-
ment high-fidelity quantum information processing. Through
the strength modulation, Wang et al. [92,93] exploited CPs
to dramatically suppress the error caused by the Over-
hauser noise [102] and the charge noise [103]. Besides, the
detuning-modulation CP sequence [96] showed great success

in realizing complete light transfer with better insensitivity
to fabrication errors in optical waveguide systems. Recently,
most CP sequences have been available to test on an IBM
quantum computer [104], providing a very efficient tool in
quantum information processing.

Nevertheless, there are still two issues that need to be
addressed during the design of CP sequences. The first one is
that the effectiveness of these CPs [28–31,96–98,105–107] re-
lies on the conditions in Eqs. (13) being completely solvable.
Provided that there is no solution for Eqs. (13), complete nul-
lification of the error terms becomes impossible. As a result,
the CP sequences would fail to be constructed. Another issue
is that different types of errors may simultaneously exist in the
system. Then, more than one error term with the same order
are contained in the Taylor series of the transition probability.
On this occasion, the number of the modulation parameters
may be too small to satisfy Eqs. (13), especially in the short
pulse sequence. What is more, these CPs [28–31,96–98,105–
107] do not focus on the optimum efficiency in terms of
robustness.

Here, we put forward a cost function to tackle these issues.
The cost function is made up of the error coefficients from
Eq. (11), each accompanied by a weighting factor. The ex-
pression is given by

JM =
M∑

m=1

rma2
m, (14)

where r is a positive constant satisfying 0 < r � 1, and the
error coefficients are truncated to the Mth order. Note that
the weighting factor rm exponentially declines as the order of
the error coefficients increases. The purpose of integrating the
weighting factor in the cost function is found as follows. If r is
much less than 1, the cost function is “shortsighted.” That is,
the value of the cost function primarily depends on the value
of the low-order coefficients, and the contribution of high-
order coefficients can be almost ignored. As r approaches
1, the cost function takes more account of the influence
of high-order coefficients. When r = 1, the coefficients of
each order make the same contribution to the cost function.
Therefore, the value of r actually determines the effective
contribution of high-order coefficients to the cost function.
Note that the value of r is expected to be small here, because
the value of the error coefficient am increases as the order
increases.

When the cost function reaches the minimum value, the
low-order coefficients are likewise suppressed to low values,
resulting in the CPs being robust against the errors. Therefore,
the problem of designing the optimal CPs in terms of robust-
ness is now transformed into searching the minimum value of
the cost function under the given constraint, i.e.,

min
�n,An,θn

JM =
M∑

m=1

rma2
m, such that a0 = γ . (15)

The introduction of the constraint in Eq. (15) is to achieve the
predetermined transition probability γ of the state |ψ2〉.

If the errors simultaneously appear in two parameters,
which are labeled as ε1 and ε2, the Taylor series in Eq. (11)
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needs to change into

αe(ε1, ε2) =
M∑

m,l=0

am,l εm
1 εl

2, m + l �= 0, (16)

where am,l is the coefficient of the (m + l )th-order error term,
and m and l represent the orders of errors ε1 and ε2, re-
spectively. In this situation, the cost function is accordingly
modified as

JM =
M∑

m,l=0

rm+l a2
m,l , (17)

where the error coefficients with the same order have the
identical weighting factor. Note that, however many types of
errors there are in the system, we can design a similar form
of the cost function in Eq. (17) using the same construction
method. Upon finding the minimum value of the cost function,
we naturally obtain the modulation parameters {�n, An, θn} of
the CP sequence. As a result, this optimal CP sequence would
be robust against multiple types of errors.

There are numerous methods to seek out the minimum
value of the cost function. Among them, the Lagrangian
multiplier method [75] performs well, especially in the case
where the cost function is restricted by certain constraints.
For instance, in terms of Eq. (15), we establish the Lagrangian
function

L = JM + λ0(a0 − γ ), (18)

where the dimensionless parameter λ0 is called the La-
grangian multiplier. Then, we have to nullify the first partial
derivatives of the Lagrangian function L with respect to �n,
An, θn, and λ0, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂�1

= · · · = ∂L
∂�N

= 0,

∂L
∂A1

= · · · = ∂L
∂AN

= 0,

∂L
∂θ1

= · · · = ∂L
∂θN

= 0,

∂L
∂λ0

= 0.

(19)

It is worth mentioning that Eqs. (19) make up a set of algebraic
equations rather than differential equations, since L is a well-
defined elementary function and the analytical expressions
for the first partial derivative of the Lagrangian function L
are readily acquired. Furthermore, the solution of Eqs. (19)
always exists because the cost function JM is continuous and
nonmonotonic. At this point, we solve the situation in which
Eqs. (13) have no solution.

Note that the solution of Eqs. (19) may or may not be
the minimum value of the cost function. Satisfying Eqs. (19)
is only a necessary condition for the cost function JM to
reach its minimum, but not a sufficient one. In other words,
each solution of Eqs. (19) merely corresponds to an extremum
value of the cost function JM. Therefore, we need to acquire
all solutions of Eqs. (19), and then pick up the minimum one
to regard as the optimal solution. A feasible way of doing
this is to repetitively solve Eqs. (19) with large amounts of

Algorithm 1. Pseudocode of searching the optimal modulation
parameters of CPs.

Initialize:

(1) Randomly select a set of initial parameters

I ′
k = {�′k

n , A′k
n , θ ′k

n , λ′k
0 } and solve Eqs. (19);

(2) The solutions are denoted as Iopt = {�opt
n , Aopt

n , θopt
n , λ

opt
0 }

and the corresponding cost function is denoted as Jmin;

(3) The index of iterations k = 1.

Repeat: (for each iterative process)

(4) Go to step 1;

(5) Obtain the solution Ik = {�k
n, Ak

n, θ
k
n , λk

0}
and the corresponding cost function JM,k ;

(6) If: Jmin > JM,k ;

Then: Jmin ← JM,k , Iopt ← Ik ;

Until: Reach the maximum iteration k = Kmax;

Output: The optimal parameters Iopt = {�opt
n , Aopt

n , θopt
n , λ

opt
0 }

and the minimum cost function Jmin.

random initial parameters, because different initial parameters
may converge to a different solution in numerical calcula-
tions. When the initial parameters are selected enough times,
in principle, we would make a traversal over all extremum
values of the cost function. As a result, the optimal modulation
parameters corresponding to the minimum value of the cost
function can be readily sought out. To make it more intuitive,
we present the detailed workflow for searching the optimal
modulation parameters in Algorithm 1.

So far, we have constructed the optimal CPs in terms of ro-
bustness by searching the minimum value of the cost function.
In this case, the low-order coefficients are usually nonzero,
although they may be extremely small. As demonstrated in
Eq. (11), the low-order coefficients have a larger impact on the
transition probability than the high-order ones. Therefore, the
implementation of population transfer with ultrahigh fidelity
cannot be guaranteed, provided that the low-order coefficients
do not vanish. In fact, this flaw can be overcome by intro-
ducing additional constraints on the cost function JM. The
additional constraints are

a1 = a2 = · · · = aM = 0, (20)

where the subscript M is the highest order of error terms to be
nullified. Alternatively, we can treat the solvable equations in
Eqs. (13) as additional constraints and discard those that are
unsolvable. As a result, the cost function JM in Eq. (14)
becomes

JM =
M∑

m=M+1

rma2
m. (21)

Then, the optimal control problem in Eq. (15) is changed to

min
�n,An,θn

JM =
M∑

m=M+1

rma2
m, (22)

such that a0 = γ , a1 = · · · = aM = 0.
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In this situation, the Lagrangian function becomes

L′ = JM + λ0(a0 − γ ) +
M∑

m=1

λmam. (23)

Similar to Eqs. (19), the extreme values of the cost function
are attained by solving the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L′

∂�1
= · · · = ∂L′

∂�N
= 0,

∂L′

∂A1
= · · · = ∂L′

∂AN
= 0,

∂L′

∂θ1
= · · · = ∂L′

∂θN
= 0,

∂L′

∂λ0
= · · · = ∂L′

∂λM
= 0.

(24)

Through employing Algorithm 1 once again, we would ac-
quire all modulation parameters of the optimal CP sequence.
Note that this CP sequence does have excellent performance
in the ultrahigh-excitation region of the transition probability,
due to complete nullification of the low-order coefficients.

III. CONFIGURATION OF THE COST FUNCTION

The specific form of the cost function JM in Eq. (14) is
associated with two configuration parameters, the weighting
factor r and the truncated highest order M. Different r and
M may cause the modulation parameters {�n, An, θn} to be
different, resulting in various performances of the obtained
optimal CPs. Therefore, it is significant to investigate the
range of r and M in the cost function JM. In the following,
we utilize the two-pulse sequence to exemplify this issue.

Provided that the error appears in the pulse area, the actual
area of the nth pulse becomes An → An(1 + εA). Then, the
form of the propagator of the two-pulse sequence reads

U (2)
εA

(T, 0) = U2(τ2)U1(τ1). (25)

By the Taylor expansion, we rearrange the transition probabil-
ity of the state |ψ2〉 into different error terms,

P(2)
εA

= a0 +
∞∑

m=1

amεm
A . (26)

As a result, the corresponding cost function is designed as

JM =
M∑

m=1

rma2
m. (27)

To estimate the robust performance of different CP sequences,
we quantify the width Wk (k = 0, 1, 2, . . . ) of the high-
excitation range, and its definition is given by

Wk = 1
2 (ε+

A,k − ε−
A,k ), (28)

where ε+
A,k and ε−

A,k are two solutions to the following equa-
tion:

P(2)
εA

= 1 − 10−k . (29)

Namely, we have P(2)
εA

� 1 − 10−k , if εA ∈ [ε−
A,k, ε

+
A,k].

FIG. 1. The width Wk of the high-excitation range vs the weight-
ing factor r, where the modulation parameters of the optimal CP
sequences are obtained by minimizing the cost function J5.

Figure 1 demonstrates the width Wk as a function of the
weighting factor r, where different values of r correspond to
different cost functions. By minimizing these cost functions,
one can obtain various modulation parameters and thus design
different optimized sequences. It can be seen that when r is
large (e.g., r ∈ [10−1, 1] in Fig. 1), the width Wk is relatively
narrow and increases as r decreases. The reason is that a
large r makes high-order coefficients contribute more to the
cost function given by Eq. (27). In this case, the low-order
coefficients cannot be diminished preferentially, so the robust
performance of CPs is not particularly excellent. When r ∈
[10−3, 10−1], the width Wk becomes steady and keeps a high
value, since the contribution of more low-order coefficients is
considered in the cost function. We can also find that the r
suitable for the optimal pulse design is not a specific value,
but a range. Finally, when r is overly small, e.g., r < 10−3,
the width Wk begins to oscillate. Specifically, the oscillations
become more and more pronounced as r further decreases.
This is because the low-order coefficients contribute over-
much in the cost function. In other words, the cost function
is very “shortsighted.” Hence, for an overly small r, we may
not obtain the modulation parameters of CPs for the optimal
robustness against errors.

To understand more about the reason for the oscillation
phenomenon in Fig. 1, by taking r = 0.0001, we plot in Fig. 2
the excitation profiles for different sets of CP sequences ob-
tained through different extreme values of the cost function
J5, where the relevant parameters are given in Table I. It
is clear from Table I that the E2[1]

εA
sequence is the optimal

one since the corresponding cost function is minimal, but its
robust performance in Fig. 2 is not the best. The root cause
of this result is that a small r can reduce the contribution of
high-order coefficients, but an overly small one may produce
the counterproductive effect. To be specific, the smaller r is,
the smaller the contribution of high-order coefficients will be.
Under the limit r → 0, the cost function in Eq. (27) is only
dominated by the first-order coefficient a1. As presented in
Table I, when r = 0.0001, the first three order coefficients a1,
a2, and a3 make the major contributions to the value of the
cost function J5, while the fourth-order coefficient a4 does
not affect J5 very much. Namely, although J5 is minimal
in the E2[1]

εA
sequence, the coefficient a4 is much larger than

those in the other three sequences, leading to a narrower
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FIG. 2. (a) Excitation profiles for the E2[l]
εA

sequence (l =
1, . . . , 5), where r = 0.0001 and the modulation parameters come
from Table I. The E2[1]

εA
sequence is the optimal one, while the other

sequences are obtained by the extreme values of the cost function J5.
(b) Transition probability error 1 − P(2)

εA
vs the pulse area error εA in

a logarithmic scale.

high-excitation range in Fig. 2. Therefore, a moderately small
magnitude of the weighting factor in the cost function is the
wise choice for constructing the optimal CP sequence.

Next, we plot in Fig. 3 the excitation profiles using several
special values of r to further demonstrate the validity of the
cost function. As shown by the purple solid curve, the tran-
sition probability suffers seriously from the tiny error, and
drops rapidly as the error increases. This means that when all
error coefficients am are considered with the same contribution
(r = 1), the solution (i.e., the modulation parameters of the
optimal CP sequence) that minimizes the cost function J4 is
not suitable for constructing CPs that are robust against the
errors. Likewise, for the overly small r, e.g., r = 0.0001, the
matched CPs cannot achieve optimal error compensation (see
the solid red curve). Therefore, Fig. 3 again verifies that the
value of r should be appropriately small in order to obtain
the optimal robustness with respect to the errors. From the
perspectives of the stability and wide excitation profile, we
choose r = 0.01 hereafter.

Figure 4 shows the robust performances of different opti-
mal CPs by choosing different M in the cost function JM,
where the modulation parameters are obtained through Al-
gorithm 1. An inspection of Fig. 4 demonstrates that the
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FIG. 3. (a) Excitation profiles for different optimal CPs by
choosing r = 10−k in the cost function J4, where k = 0, . . . , 4.
(b) Transition probability error 1 − P(2)

εA
vs the error εA in a loga-

rithmic scale.

robustness against the error becomes much stronger with the
increase of M. When M exceeds a certain value (e.g., M � 4
in the two-pulse sequence), the robustness hardly changes, as
shown by the solid blue, solid orange, and dashed pink curves
in Fig. 4. In other words, the solution of the minimum cost
function, i.e., the modulation parameters of the optimal CP
sequence, keeps unchanged when M is sufficiently large. The
reason for these results can be found as follows.

As indicated in Sec. II, in the N-pulse sequence, only
(3N − 2) modulation parameters are available to reduce the
impact of errors on the transition probability, because one of
them must be used for satisfying the constraint a0 = γ . When
M is larger than (3N − 2), cf. M = 5 or 6 in the two-pulse
sequence, the robustness will not be much improved. This
implies that the contribution of high-order coefficients can
be ignored in the cost function. On the other hand, when
M � (3N − 2), cf. M = 1 or 2 in the two-pulse sequence,
the free modulation parameters are surplus. In this situation,
although the minimum value of the cost function can reach
zero, the coefficients above the (M + 1)th order are not in-
volved in the cost function. As a result, the robust performance
is not particularly good; see the solid purple and red curves in
Fig. 4. Therefore, in the N-pulse sequence, the highest order
of the cost function is at least truncated to (3N − 2), i.e.,
M � 3N − 2.

TABLE I. Numerical results for different CP sequences obtained by five sets of extremal solutions to Eq. (19), where we set r = 0.0001.

Cost function Error coefficients Modulation parameters

Sequence J5 a0 a1 a2 a3 a4 a5 �1/�1 �2/�2 A1 A2 θ2

E2[1]
εA

3.6006 ×10−14 1 1.0895 ×10−6 0.0001 0.1347 −13.2992 −0.5626 −1.7312 0.0287 5.7524 2.8836 3.5918

E2[2]
εA

3.9485 ×10−14 1 1.9030 ×10−6 −0.0019 −0.0286 −6.1353 0.0708 −1.0817 0.9151 3.2982 3.0047 −0.2083

E2[3]
εA

2.5835 ×10−13 1 3.8698 ×10−5 −0.0028 −0.1634 −6.2521 0.4091 −1.0510 0.9458 3.2784 3.0520 6.1247

E2[4]
εA

2.3993 ×10−13 1 −3.6801 ×10−5 0.0024 0.1091 −18.2410 −0.5383 0.0014 1.9127 3.1426 6.2853 3.2520

E2[5]
εA

2.7094 ×10−12 1 1.4681 ×10−4 −0.0074 0.0901 −5.9831 −0.2215 −0.9700 1.0245 3.0087 3.2542 0.1761

023103-6



COMPOSITE PULSES FOR OPTIMAL ROBUST CONTROL … PHYSICAL REVIEW A 107, 023103 (2023)

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
(a)

-1 -0.5 0 0.5 1
10
-5

10
0

(b)

FIG. 4. (a) Excitation profiles for different optimal CPs by
choosing M = 1, . . . , 6 in the cost function JM, where r = 0.01.
(b) Transition probability error 1 − P(2)

εA
vs the error εA in a logarith-

mic scale.

IV. OPTIMAL ROBUST PULSE DESIGN

In this section, we illustrate the detailed CP design for
optimizing the robustness with respect to different errors.

First, we explain several typical types of errors that com-
monly appear during quantum operations. One of them is the
pulse duration error. A direct source for this error is the im-
precise duration of the CP sequence, which may be caused by
manual manipulation faults or experimental defects. Unfortu-
nately, we cannot prevent the occurrence of this error in some
cases. For example, when a beam of atoms passes through a
laser field, due to the nonuniformity of the atomic longitudinal
velocity [11], the interaction time between each atom and the
laser field is usually different. In order to quantify the error
caused by the pulse duration, we introduce a small unknown
constant ετ , and write the actual duration as

τn → τn(1 + ετ ). (30)

In fact, the pulse duration error is also equivalent to the pulse
area error, which can be seen from the following relation:

An(1 + εA) = �n

√
χ2

n + 1 τn(1 + ετ ). (31)

Therefore, we substitute the pulse area error εA for the pulse
duration error ετ in the following.

Another significant one is the coupling strength error. Here,
we employ ε� to represent this error, and the actual coupling
strength becomes

�n → �n(1 + ε�). (32)

This type of error is often induced by the inhomogeneity of
control fields. In the singlet-triplet spin qubit, it originates
from the fluctuations of the magnetic field gradient [92,93],
while it comes from the uneven spatial distribution of laser
fields in the atom-laser system. Moreover, the atoms always
slightly oscillate at their equilibrium position, leading to the
generation of the coupling strength error as well.

The third type is the detuning error, produced by the
energy-level shift or the control field frequency drift. One
representative phenomenon is the Stark shift [101], where
the energy level shifts slightly on account of the interaction
with external fields. In doped crystals [30,98,108], the transi-
tion frequency of different ions would be distinct due to the
widened hyperfine levels. To study the impact of the detuning
error on the transition probability, we add an unknown con-
stant ε� to the original detuning,

�n → �n + ε�.

Next, we expand this issue in terms of the single error and
multiple errors, respectively.

A. Single error

1. Population inversion

In this section, we first study how to implement complete
population inversion by setting N = 2, and label the single
error as ε, which represents one of three errors, i.e., εA, ε�,
or ε�. For simplicity of expression, the optimal N-pulse se-
quence compensating for the single error ε is termed as the
ONε sequence henceforth. In the presence of the single error
ε, the Taylor series of the transition probability of the state
|ψ2〉 is given by

P(2)
ε = a0 +

∞∑
m=1

amεm, (33)

where the zero-order coefficient reads

a0 = 1(
1 + �2

1

)(
1 + �2

2

)[
sin2 A1

2
cos2 A2

2
+ cos2 A1

2
sin2 A2

2
+ �2

1 sin2 A2

2
+ �2

2 sin2 A1

2

+ 2 sin
A1

2
sin

A2

2
sin θ2

(
�1

√
1 + �2

2 sin
A1

2
cos

A2

2
+ �2

√
1 + �2

1 cos
A1

2
sin

A2

2

)

+ 2 sin
A1

2
sin

A2

2
cos θ2

(√
1 + �2

1

√
1 + �2

2 cos
A1

2
cos

A2

2
− �1�2 sin

A1

2
sin

A2

2

)]
. (34)

There are five free modulation parameters in the O2ε se-
quence, i.e., {�1,�2, A1, A2, θ2}. To maximize the robustness
of the system against errors, one parameter is required to

make the inerrant transition probability (i.e., the zero-order
coefficient a0) equal to one, while the other four parame-
ters are aimed at completely canceling the first fourth-order
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FIG. 5. (a) Excitation profiles for the single resonant π pulse
(πεA , πε�

, and πε�
) and the two-pulse sequence (O2εA , O2ε�

,
and O2ε�

), where the modulation parameters come from Table II.
(b) Transition probability error 1 − P(2)

ε vs the error ε in a logarithmic
scale.

coefficients in Eq. (10). As a result, the five equations to be
solved read ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0 = 1, (35a)

a1 = 0, (35b)

a2 = 0, (35c)

a3 = 0, (35d)

a4 = 0. (35e)

Unfortunately, there is no feasible solution for these
equations. This problem can be well settled by regarding
Eqs. (35a)–(35d) as the constraints of the cost function given
by Eq. (21). Therefore, the current task becomes

min
�n,An,θn

J6 = r4a2
4 + r5a2

5 + r6a2
6,

such that a0 = 1, a1 = a2 = a3 = 0, (36)

where the coefficients of the cost function are truncated to
sixth order, i.e., M = 6.

Utilizing Algorithm 1, we numerically seek out the op-
timal parameters of the O2ε sequence, which are presented
in Table II. The corresponding excitation profiles are plotted
in Fig. 5. To make a distinct comparison to the single pulse,
we also exhibit the excitation profiles for the single resonant
π pulse, labeled as πεA , πε�

, and πε�
, respectively. Figure 5

TABLE II. Modulation parameters of the two-pulse sequence for
complete population inversion.

Sequence �1/�1 �2/�2 A1 A2 θ2

O2εA 1 −1 3.1416 3.1416 0

O2ε�
0.7515 0.0003 6.2663 3.1284 3.1416

O2ε�
0.4722 −0.4722 4.4884 4.4859 0.0010

O2[1]
ε�εA

0 0 4.7124 1.5708 3.1416

O2[2]
ε�εA

1 −1 3.1415 3.1416 0

TABLE III. Modulation parameters of the two-pulse sequence
for arbitrary population transfer.

γ �1/�1 �2/�2 A1 A2 θ2

0.1 2.1200 −3.5145 3.7681 5.1302 1.7179
0.2 3.9066 −1.8003 5.5580 3.4871 5.2689
0.3 4.2940 −1.5098 6.0143 3.2509 5.9298
0.4 4.7312 −1.2098 6.5928 3.0425 0.3798
0.5 5.2841 −0.8713 7.4985 2.9021 1.3785
0.6 −6.1200 0.5922 9.9876 3.2388 2.6193
0.7 7.4146 −0.6304 11.837 3.2387 5.5245
0.8 9.4021 −0.4284 14.199 3.0210 1.7056
0.9 1.4262 −0.1639 2.1747 3.6409 5.3246
1 1 −1 3.1416 3.1416 0

demonstrates that the obtained O2ε sequences outperform the
single resonant pulse at the robustness with respect to the
errors, reflected in the broader flat top of their excitation
profiles. For the O2ε�

sequence, it can successfully achieve
complete population inversion with ultrahigh fidelity as well
even when a small detuning error appears. It is worth men-
tioning that the numerical solution of the O2εA sequence is the
same as the analytical one in Ref. [96].

2. Arbitrary population transfer

The current optimal approach can also be extended
for arbitrary population transfer via slightly changing the
constraints of the cost function. In the following, we give a
detailed description of it.

Assuming that the system exhibits the pulse area error εA,
on this occasion, the first equation in Eq. (13) changes into
a0 = γ , and then the optimal problem becomes

min
�n,An,θn

J6 = r4a2
4 + r5a2

5 + r6a2
6,

such that a0 = γ , a1 = a2 = a3 = 0, (37)
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FIG. 6. Excitation profiles for the two-pulse sequence by (a) all-
parameter modulation and (b) phase modulation, where the mod-
ulation parameters are given in Table III. The curves represent
the transition probability γ locked at the level 0.1, 0.2, . . ., and 1.
(c) The high-excitation range (i.e., P(2)

εA
� 0.999γ ) for the two types

of modulation.
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where γ is the transition probability of the state
|ψ2〉. Similarly, we can search the optimal parameters
{�1,�2, A1, A2, θ2} of the CP sequence for different popula-
tion transfer through Algorithm 1, and the numerical solutions
are presented in Table III. The corresponding excitation
profiles are plotted in Fig. 6(a), which shows that arbitrary
population transfer is indeed achieved in a robust way.

It is easily found from Table III that all modulation param-
eters are different when implementing different population

transfer. Even though every parameter is feasible to be ad-
justed, modulating all of them may increase the complexity
of practical operations. An intuitive way of simplifying it is
to employ a single modulation parameter (e.g., the phase θ2),
while the remaining parameters keep unchanged. To this end,
we first set the pulse area of two pulses A1 = A2 = π . Then,
the expressions of the first five coefficients in Eq. (33) are
written as

a0 = �2
1 + �2

2 − 2�1�2 cos θ2(
�2

1 + 1
)(

�2
2 + 1

) , (38a)

a1 = −π

(
�2

√
�2

1 + 1 + �1

√
�2

2 + 1
)

sin θ2(
�2

1 + 1
)(

�2
2 + 1

) , (38b)

a2 = −π2

4

�2
2 + (

�2
1 − 2

) − 2
(
2�1�2 +

√
�2

1 + 1
√

�2
2 + 1

)
cos θ2(

�2
1 + 1

)(
�2

2 + 1
) , (38c)

a3 = 5π3

12

(
�2

√
�2

1 + 1 + �1

√
�2

2 + 1
)

sin θ2(
�2

1 + 1
)(

�2
2 + 1

) , (38d)

a4 = π4

48

�2
2 + (

�2
1 − 8

) − 2
(
5�1�2 + 4

√
�2

1 + 1
√

�2
2 + 1

)
cos θ2(

�2
1 + 1

)(
�2

2 + 1
) . (38e)

We need to put the zero-order coefficient aside and prefer-
entially cancel the first-order coefficient in Eq. (38b). For this
purpose, it demands

�2

√
�2

1 + 1 + �1

√
�2

2 + 1 = 0, (39)

since θ2 is variable now. The solution of Eq. (39) reads

�2 = −�1, (40)

which means that the detunings are antisymmetric in two
pulses. Note that the coefficient a3 is automatically nulli-
fied as well because a1 and a3 have the same factor. Next,
we substitute the detuning relation given by Eq. (40) into
Eq. (38c) to further simplify the second-order coefficient, and
the corresponding equation, a2 = 0, becomes

−π2

2

(
�2

1 − 1
)
(1 + cos θ2)(

�2
1 + 1

)2 = 0. (41)

The solution of Eq. (41) is

�1 = ±1. (42)

Therefore, provided that the detunings of two pulses satisfy
Eqs. (40) and (42), the error coefficients up to third order are
completely nullified. On this occasion, the zero- and fourth-
order coefficients read

a0 = cos2 θ2

2
= γ , (43a)

a4 = −π4

32
(1 + cos θ2) = −π4

16
γ . (43b)

From Eqs. (43a) and (43b), we can see that the zero-order
coefficient a0 only depends on the phase θ2, and the fourth-
order coefficient a4 cannot be nullified because it shares the
same factor γ with a0. As a result, the transition probability
of the state |ψ2〉 reads

P(2)
εA

= cos2 θ2

2

(
1 − sin4 πεA

2

)
= γ

[
1 − π4

16
ε4

A + O
(
ε5

A

)]
,

(44)

which is accurate to fourth order. In Fig. 6(b), we plot the
excitation profiles for arbitrary population transfer by only
adjusting θ2. Remarkably, this sequence is also robust against
the pulse area error.

To see the robust performance of these two CP sequences
more clearly, we plot in Fig. 6(c) the high-excitation range
(P(2)

εA
� 0.999γ ) of both excitation profiles. It is obvious that

the optimal CP sequence by the all-parameter modulation
possesses a wider high-excitation range than the sequence by
merely modulating the phase θ2. The occurrence of this phe-
nomenon is owing to the fact that the optimized parameters
can effectively reduce multiple low-order error coefficients.
On the other side, as the transition probability increases, the
robust advantage of the all-parameter modulation approach
gradually loses, especially at high transition probabilities.
Therefore, if allowing a slight sacrifice in robustness for
achieving high transition probabilities, we can adopt the phase
modulation approach instead, because only one parameter,
rather than five parameters, needs to be adjusted.
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TABLE IV. Different forms of the fourth constraint for different
CP sequences.

Sequence Fourth constraint Eliminated error term

O2[1]
ε�εA

a2,0 = 0 O
(
ε2
�

)
O2[2]

ε�εA
a0,2 = 0 O

(
ε2

A

)
O2[2]

ε�εA
a1,1 = 0 O(ε�εA)

O2[2]
ε�εA

B. Multiple errors

We further study the case of multiple types of errors.
Provided that the system exhibits the detuning error ε� and
the pulse area error εA at the same time, then we label the
transition probability of the state |ψ2〉 as P(2)

ε�εA
. The Taylor

series at ε� = 0 and εA = 0 reads

P(2)
ε�εA

= a0 + a1,0ε� + a0,1εA + a2,0ε
2
� + a1,1ε�εA + a0,2ε

2
A

+ O
(
ε3
�, ε2

�εA, ε�ε2
A, ε3

A

)
. (45)

It is clear that there are six error coefficients
{a0, a1,0, a0,1, a2,0, a1,1, a0,2} up to second order. Generally
speaking, five free modulation parameters cannot be used to
completely nullify all second-order coefficients in Eq. (45).
Hence, we turn to minimize the cost function to obtain
the modulation parameters of CPs, where the first-order
and partial second-order coefficients are regarded as the
constraints of the cost function. To be specific, the first three
constraints are served for obtaining the maximum transition
probability of the state |ψ2〉 and nullifying the first-order
coefficients. As a result, the cost function can be of the
following form:

J2 = r2
(
a2

2,0 + a2
1,1 + a2

0,2

)
(46)

with the first three constraints

a0 = 1, a1,0 = a0,1 = 0. (47)

Notice that nullifying different second-order coefficients re-
sults in different robust performances of the CP sequences. In
Table IV, we present different forms of the fourth constraint
to implement different CP sequences.

The O2[1]
ε�εA

sequence is designed for strong robustness
against the detuning error. In this case, the second-order error
term ε2

� needs to be nullified; i.e., the fourth constraint is
a2,0 = 0. The optimal solution is given in Table III, and the
excitation profile for this sequence is depicted in Fig. 7(a).
As expected, this sequence is remarkably robust against the
detuning error around εA = 0; see the transverse region sur-
rounded by the solid green curve in Fig. 7(a).

Similarly, the O2[2]
ε�εA

sequence is built to better compensate
for the pulse area error. Thus, we require to nullify the term
ε2

A, and the fourth constraint in the cost function becomes
a0,2 = 0. We display the excitation profile with respect to the
errors ε� and εA in Fig. 7(b). Clearly, due to the disappearance
of the error term O(ε2

A), the O2[2]
ε�εA

sequence predominantly
improves robustness against the pulse area error around ε� =
0, as shown in the longitudinal region enclosed by the solid
green curve in Fig. 7(b).
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FIG. 7. Transition probability P(2)
ε�εA

vs the errors ε� and εA in
(a) the O2[1]

ε�εA
sequence and (b) the O2[2]

ε�εA
sequence, where the

modulation parameters are given in Table II. The white, black, and
green curves correspond to P(2)

ε�εA
= 0.9, 0.99, and 0.999, respectively

(from outside in).

If aiming at compensating for both errors, one feasible
way is to nullify the term ε�εA in the Taylor series (45). At
this point, the fourth constraint comes into a1,1 = 0. Another
alternative way is to leave out the fourth constraint. Then, we
employ the remaining two modulation parameters to directly
minimize the cost function. Coincidentally, we find that the
modulation parameters by both approaches are the same as
that of the O2[2]

ε�εA
sequence. Therefore, their excitation pro-

files are also the same as in Fig. 7(b).
Actually, the above method of minimizing the cost function

to implement robustness against the errors ε� and εA can be
readily extended to other types of errors, such as the detuning
error ε� and the Rabi frequency error ε�. Through doing a
Taylor expansion of the transition probability at ε� = 0 and
ε� = 0 and then constructing the corresponding cost function,
we would obtain the optimized sequences in a similar way.

V. COMPARISON WITH OTHER COMPOSITE PULSES

In this section, we make a comparison of the acquired opti-
mal CPs with other sequences in terms of robustness. Previous
CP schemes [96–98] mainly use a certain type of modulation
parameters, whereas we modulate all of them in the current
optimized sequences. Here, we take the pulse number N = 3
as an example to demonstrate the robust contrast achieved by
the current approach and the previous ones. In the case of the
single error, we quantify the high-excitation range to assess
the robustness of different CPs against the pulse area error.
When considering the detuning error and the pulse area error,
we measure the high-excitation region to estimate the robust
performance of different CPs.

A. Single error

In the presence of the pulse area error, the propagator of
the three-pulse sequence is given by

U (3)
εA

(T, 0) = U3(τ3)U2(τ2)U1(τ1). (48)

By the Taylor expansion, the transition probability of the state
|ψ2〉 reads

P(3)
εA

= a0 +
∞∑

m=1

amεm
A . (49)
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TABLE V. Modulation parameters of different CP sequences for complete population inversion.

Sequence �1/�1 �2/�2 �3/�3 A1 A2 A3 θ2 θ3

O3εA −0.5498 −0.2176 0.4959 4.2672 2.0959 4.6282 2.0632 −0.1370

D3[1]
εA

√
3 −√

3
√

3 π π π 0 0

D3[2]
εA

2.5425 0 −2.5425 π π π 0 0

T3[1]
εA

0 0 0 π/2 π π/2 π/2 0

T3[2]
εA

0 0 0 π/2 2π π/2 2π/3 0

O3[1]
ε�εA

0.8464 −0.1749 0.0990 3.8424 4.6327 6.2041 5.4341 2.7621

O3[2]
ε�εA

−1.5803 9.1355 −0.1804 7.6803 4.6167 3.8068 0.3477 7.4485

U3[1]
ε�εA

0 0 0 π π π π/2 0

U3[2]
ε�εA

0 0 0 π π π 0 π

Short CORPSE 0 0 0 7π/3 5π/3 π/3 π 0

CORPSE 0 0 0 π/3 5π/3 π/3 π 0

In this situation, we have eight free modulation parameters
{�n, An, θn}, n = 1, 2, 3. Hence, the cost function can be trun-
cated to ninth order (i.e., M = 9), while the first six order
coefficients are used for the constraints. As a result, the opti-
mal problem becomes

min
�n,An,θn

J9 = r7a2
7 + r8a2

8 + r9a2
9,

such that a0 = 1, a1 = a2 = a3 = a4 = a5 = a6 = 0. (50)

In Table V, we present the modulation parameters of this
optimal three-pulse sequence, labeled as the O3εA sequence
hereafter. The excitation profile is plotted in Fig. 8, as shown
by the blue dot-dashed curve.

In Ref. [96], the detuning-modulated CPs are proposed
to achieve high-fidelity population transfer by reasonably
modulating the detunings while the other parameters re-
main unchanged. Here, we label the three-pulse sequences
in Ref. [96] as the D3[1]

εA
and D3[2]

εA
sequences, which are

accurate to fourth and sixth order in the pulse area error εA,
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FIG. 8. (a) Excitation profiles for the O3εA , D3[1]
εA

, D3[2]
εA

, T3[1]
εA

,
T3[2]

εA
, and BB1 sequences, where the modulation parameters of the

first five sequences are given in Table V. (b) Transition probability
error 1 − P(3)

εA
vs the pulse area error εA in a logarithmic scale.

respectively. The corresponding excitation profiles are also
plotted in Fig. 8. We can perceive from Fig. 8 that the O3εA

sequence possesses a broader high-excitation range than the
D3[1]

εA
and D3[2]

εA
sequences. The reason is that we not only

nullify the first six order coefficients but we further reduce
the amplitude of the error coefficients up to ninth order
as well. Therefore, the excitation profile for the O3εA se-
quence outperforms the D3[1]

εA
and D3[2]

εA
sequences in terms of

robustness.
The twin composite π -pulse sequence [97], a combination

of the normal sequence and its inverted version, is a common
phase modulation to efficiently compensate for the pulse area
error. In Fig. 8, we also display the excitation profiles for two
types of three-pulse twin sequences [97], which are labeled as
the T3[1]

εA
and T3[2]

εA
sequences, respectively. Since the T3[1]

εA
and

T3[2]
εA

sequences make the transition probability accurate up
to O(ε4

A) and O(ε6
A), the corresponding excitation profiles are

almost similar to the case of the D3[1]
εA

and D3[2]
εA

sequences. As
shown in Fig. 8, the current O3εA sequence provides the best
robustness with respect to the pulse area error among those
CPs [96,97].

Finally, we compare the O3εA sequence with the BB1 se-
quence, which is composed of four π pulses with an arbitrary
phase χ followed by a θ pulse with zero phase [25]. The form
of this sequence can be expressed as

πχπ3χπ3χπχθ0, (51)

where the subscript represents the phase and χ =
arccos(−θ/4π ). For complete population inversion, we
have θ = π and χ = arccos(−1/4). It is shown in Fig. 8 that
the excitation profile for the BB1 sequence is not as wide as
the O3εA sequence, since the BB1 sequence is only accurate to
O(ε6

A). Therefore, the current O3εA sequence has fewer pulses
and is more robust against the pulse area error than the BB1
sequence.

B. Multiple errors

In the presence of the detuning error and the pulse area er-
ror, the transition probability of the state |ψ2〉 can be expanded
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FIG. 9. Transition probability P(3)
ε�εA

vs the errors ε� and εA in (a) the O3[1]
ε�εA

sequence, (b) the O3[2]
ε�εA

sequence, (c) the D3[1]
εA

sequence,
(d) the D3[2]

εA
sequence, (e) the U3[1]

ε�εA
sequence, (f) the U3[2]

ε�εA
sequence, (g) the short CORPSE sequence, (h) the CORPSE sequence, (i) the

reduced CinBB sequence, and (j) the CinBB sequence, where the modulation parameters of the first eight sequences are given in Table V. The
white, black, green, blue, and red curves correspond to P(3)

ε�εA
= 0.9, 0.99, 0.999, 0.9999, and 0.99999, respectively (from outside in).

as

P(3)
ε�εA

= a0 + a1,0ε� + a0,1εA + a2,0ε
2
� + a1,1ε�εA + a0,2ε

2
A

+ a3,0ε
3
� + a2,1ε

2
�εA + a1,2ε�ε2

A + a0,3ε
3
A

+ O
(
ε4
�, ε3

�εA, ε2
�ε2

A, ε�ε3
A, ε4

A

)
. (52)

In this situation, the form of the cost function is

J3 = r
(
a2

1,0 + a2
0,1

) + r2
(
a2

2,0 + a2
1,1 + a2

0,2

)
+ r3(a2

3,0 + a2
2,1 + a2

1,2 + a2
0,3

)
, (53)

where we set M = 3 in Eq. (17).
To see more clearly the difference in robustness of the CPs

designed by Eq. (15) and Eq. (22), we individually consider
the constraints of the cost function. Specifically, the constraint
for Eq. (15) reads

a0 = 1, (54)

while it becomes

a0 = 1, a1,0 = a0,1 = a2,0 = a1,1 = a0,2 = 0, (55)

with regard to Eq. (22). For the sake of simplicity, the op-
timized sequences based on constraints (54) and (55) are
labeled as the O3[1]

ε�εA
and O3[2]

ε�εA
sequences, respectively.

We plot the excitation profiles for both sequences in
Figs. 9(a) and 9(b), where the corresponding modulation pa-
rameters are listed in Table V. Obviously, the high-excitation
region of Fig. 9(a) is much larger than that of Fig. 9(b) (see the
white or black curves). This means that the constraint given by
Eq. (54) is suitable for the quantum operations with the fidelity
being not particularly high. On the contrary, the ultrahigh-
excitation region of Fig. 9(b) is larger than that of Fig. 9(a)
(see the blue or red curves). The reason is that the low-order
coefficients are completely canceled when employing the con-
straint given by Eq. (55). As a result, the adverse influence
on the transition probability mainly originates from the high-
order error terms, easily leading to an ultrahigh-excitation
region in the presence of tiny errors. In short, both sequences
are very robust against the detuning error and the pulse area
error. The O3[1]

ε�εA
sequence has a larger high-excitation region,

while the O3[2]
ε�εA

sequence is more efficient for generating
ultrahigh excitation.

In Ref. [96], the D3[1]
εA

and D3[2]
εA

sequences can also be
applicable to compensate for the errors ε� and εA, and the
corresponding excitation profiles are plotted in Figs. 9(c)
and 9(d). We can see that both sequences are robust against
the pulse area error, but with only a slight improvement
with respect to the detuning error, as shown by the green
(black) curve with a long and narrow peak shape. Compared
to the O3[1]

ε�εA
and O3[2]

ε�εA
sequences, both sequences have an

observably smaller high-excitation region, especially for the
ultrahigh region [see the blue and red curves in Figs. 9(c)
and 9(d)].

Next, we exemplify two kinds of universal CPs [98],
labeled as the U3[1]

ε�εA
and U3[2]

ε�εA
sequences. The former pos-

sesses better robustness against the pulse area error, while
the latter prefers to compensate for the detuning error. Fig-
ures 9(e) and 9(h) show the excitation profiles for these
two universal CPs. Because the transition probabilities of
these universal CPs are only accurate to second order [98],
the high excitation is limited in an extremely small region,
enclosed by the green curve in Figs. 9(e) and 9(h). For
the ultrahigh-excitation region, they can be almost ignored.
In contrast, the high-excitation (ultrahigh-excitation) region
is greatly enlarged by the current sequences, as shown in
Figs. 9(a) and 9(b). These results firmly verify that the re-
markable robustness against multiple types of errors can be
also implemented by the current approach.

Another kind of well-known CP is the CORPSE se-
quence [99] (which stands for compensation for off-resonance
with a pulse sequence). Here, we consider two types of them:
the CORPSE and the short CORPSE sequences, where the
latter has a shorter length (pulse area) in the first pulse. As
demonstrated in Figs. 9(g) and 9(h), the excitation profile
for the CORPSE sequence performs slightly better than the
short one. Furthermore, we can observe in Figs. 9(g) and 9(h)
that both sequences have great compensation ability for the
detuning error, but are sensitive to the pulse area error [see
the transverse region surrounded by the green (blue) curve].
To obtain a better compensation for both the detuning error
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and the pulse area error, one can adopt the O3[1]
ε�εA

and O3[2]
ε�εA

sequences.
Finally, we turn to the concatenated composite

pulses [109], which concatenate different types of CPs
to resist multiple errors. For example, to compensate for
both the detuning error and the pulse area error, the CORPSE
sequence [99] and the BB1 sequence [25] can be concatenated
to generate the CinBB (CORPSE in BB1) and the reduced
CinBB sequences [100]. Figures 9(i) and 9(j) show the corre-
sponding transition probabilities as a function of the detuning
error and the pulse area error, where the reduced CinBB
sequence consists of 6 pulses and there are 12 pulses in the
CinBB sequence. It can be seen that the robust performance
of these two sequences is similar to the O3[1]

ε�εA
and O3[2]

ε�εA

sequences. However, we should note that the CinBB and the
reduced CinBB sequences have many more pulses than the
current one. In particular, as the number of pulses increases,
more modulation parameters can be involved in the optimized
sequence, leading to a larger area of ultrahigh fidelity.

VI. DISCUSSION AND CONCLUSION

So far, we have placed emphasis on the design of the
optimal CP sequence to achieve arbitrary population transfer
in a robust way. When further considering the phase of quan-
tum states, it is possible to extend the current method to the
implementation of quantum gates. For example, the sequence
used for complete population inversion can be directly ex-
ploited to implement the X gate by appropriately adjusting the
phase of the first pulse. Alternatively, the sequence used for
realizing a maximum superposition state can be well adapted
to achieve the Hadamard gate. In addition, this method is also
available for robust quantum control in multilevel systems. A
feasible way is to reduce the multilevel system to an effective
two-level one, and then the optimized sequences designed by
the current method can be directly applied in the multilevel
system. Sometimes, it is deemed insufficient to merely take
into account the effective two-level system. In this situation,
the pulse design must fully consider the dynamics of all levels
in the system, which is reflected in appropriate changes in the
construction of the cost function.

In conclusion, we have proposed a general approach of
combining the CP technique and the OC theory to achieve op-
timal robust population transfer in two-level systems. Here, all
physical quantities are recognized as modulation parameters
in order to reach the efficiency limit in terms of robustness.

We focus on reducing the impact of various systematic errors,
including the pulse area error, the Rabi frequency error, and
the detuning error, on the transition probability. To this end,
we use the Taylor expansion to arrange the transition probabil-
ity into various error terms, and then establish a cost function
consisting of the error coefficients and the weighting factor.
As a result, the modulation parameters of the CP sequence
are obtained by digging out the minimum value of the cost
function.

The current approach is quite effective in overcoming the
obstacle of incomplete nullification of the error terms of
the transition probability or the limited number of pulses.
Through adjusting the forms or constraints of the cost func-
tion, this approach manifests great flexibility in designing the
optimal CPs for different robust performances. Specifically,
when changing the form of the cost function, the optimized
sequences can be successfully designed for compensating not
only the single error but also multiple errors. When adjusting
the constraints of the cost function, we also obtain arbitrary
population transfer in a robust way. Furthermore, the high-
excitation region of the transition probability is adjustable as
well, even though many types of errors simultaneously exist in
the system. As a by-product, arbitrary robust population trans-
fer can be obtained by only modulating the phase difference
of two pulses, effectively reducing the degree of operative
difficulty.

Compared with previous CP sequences [96–99], under the
same pulse number, the current optimized sequences signif-
icantly improve the robustness to the single error as well
as the multiple errors. They perform very well in terms
of the ultrahigh-excitation region. Furthermore, these opti-
mized sequences also have certain advantages over other
sequences [25,100]. More specifically, with fewer pulses, the
optimized sequences have a better compensation for the pulse
area error than the BB1 sequence [25], and demonstrate a sim-
ilar robust performance to the CinBB sequences [100]. There-
fore, it is believed that this work offers a powerful tool for
robust quantum control in quantum information processing.
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