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Nuclear-spin memories of divalent neutral atoms can allow spin-preserving resolved-sideband cooling in a
strong magnetic field [I. Reichenbach and I. H. Deutsch, Phys. Rev. Lett. 99, 123001 (2007)]. We present a theory
for cooling 87Sr nuclear-spin qubits in a weak magnetic field. The theory depends on laser excitation of 5s5p 3P1

to a nearby state which results in mJ -dependent AC Stark shifts large compared to the hyperfine interaction.
This effectively suppresses the nuclear-spin mixing due to the hyperfine interaction. Sideband cooling via the
clock state quenched by the AC Stark-shifted 3P1 state leads to nuclear-spin-preserving spontaneous emission
back to the ground state. More than being compatible with low magnetic fields, the theory is applicable when
the nuclear-spin qubits are defined by the two lowest Zeeman substates.
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I. INTRODUCTION

Long-lived quantum registers provide a favorable setting
for large-scale quantum computing [1]. Physical systems stud-
ied for this purpose include superconducting circuits and
trapped ions, where the number of qubits can be up to about
50 in one register [2–4], and the number of typical gate oper-
ations (such as Bell-state creation) within the qubit lifetime is
on the order of 103 and 106 for superconducting circuits and
trapped ions, respectively [5].

Recently, quantum registers with over 200 neutral-atom
qubits [6–9] were experimentally realized for coherent quan-
tum control. The long lifetime [10,11] of atomic qubits and
fast entangling operations [12] suggest that neutral atoms are
leading candidates for quantum memories. For the widely
used alkali-metal atoms where qubits are encoded in hyper-
fine states [5], however, heating effects inevitably require
recooling of the atoms. Standard laser cooling methods will
destroy the quantum information stored [13,14], limiting the
total number of quantum gates that can be executed within the
register lifetime. To prolong the memory lifetime effectively,
coherence-preserving cooling of alkali-metal atoms was pro-
posed by resorting to superfluid immersion [15], cavity QED
[16], or coupling qubits to auxiliary atoms [17].

When the qubits are defined by the nuclear-spin states
of alkaline-earth-like (AEL) atoms, including alkaline-earth
metals, some lanthanides [18], and some transition metals,
resolved-sideband cooling may preserve the nuclear-spin co-
herence in the presence of sufficiently strong magnetic fields
[19]. With I and mI the nuclear spin and its projection along
the quantization axis, numerical analyses in Ref. [19] showed
that for qubits defined with ±mI in the ground state of 87Sr
and 117Yb, where 0 < mI � I , spontaneous emission during
cooling can preserve the qubit-state coherence with a fidelity
over 0.99 in a strong magnetic field. The B field is about
10 mT to achieve a fidelity over 0.99 for 87Sr.

In this paper we propose resolved-sideband cooling of
87Sr atoms in a weak magnetic field while preserving the
coherence of nuclear-spin qubits. Following Ref. [18], we

consider a cooling cycle in which the ground state is driven
to the vibrational sideband of the clock state, which is further
driven to the (5s5p) 1P1 state, which decays rapidly back to
ground. In our theory, the hyperfine-interaction-induced mix-
ing of different nuclear-spin states in |[5s5p 1P1]mJ , mI〉 is
effectively suppressed by coupling it to a nearby state which
causes mJ -dependent AC Stark shifts. In particular, the Stark
shift is large compared to the hyperfine interaction, so that the
nuclear-spin mixing due to the hyperfine interaction becomes
negligible. This mechanism is not dependent on the Zeeman
shift, which leads to two features. First, a weak magnetic
field is applicable, which is compatible with recent nuclear-
spin-qubit experiments, where a B field of 11 G [20], 4.11 G
[21], or a value in the range (0, 18] G [22] was used with
87Sr [20] or 171Yb [21,22]. Second, the theory is for qubits
defined with the two lowest nuclear-spin Zeeman substates,
which was commonly used in experiments, such as in the
experiment of Ref. [20]. Numerical simulations with feasible
parameters show that nuclear-spin coherence can be preserved
with a fidelity over 0.999. This theory brings opportuni-
ties for coherent control of nuclear-spin quantum memories
[23–28].

The remainder of this paper is organized as follows. In
Sec. II, we discuss sideband cooling when ignoring the hy-
perfine interaction as a warmup. In Sec. III, we present the
theory of using AC Stark shifts to suppress the hyperfine inter-
action. Section IV shows the detail with a concrete model and
presents numerical results of the cooling. Section V discusses
the influence from fluctuation of laser frequency, intensity,
and polarization on the cooling. Section VI gives a discussion
especially on the possibility to apply the cooling scheme with
other elements, and a brief conclusion is given in Sec. VII.

II. WHEN THERE IS NO HYPERFINE INTERACTION

With 87Sr as an example, the essence of nuclear-spin-
preserving resolved-sideband cooling in a weak magnetic field
is understood by first ignoring the hyperfine interactions in
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FIG. 1. Cooling scheme illustrated with (a) atomic levels and (b) vibrational states; the inset of (b) shows a simplified process about
removing one vibrational quantum number. Altogether five energy levels are involved in the nuclear-spin-preserving sideband cooling of 87Sr
atoms, namely, the ground state, the clock state, 5s5p 1P1, 5s6s 1S0, and 5s15d 1D2. The directions of the arrows do not indicate polarization
of photons. Cooling starts from a narrow-line laser excitation of the clock transition from the ground state to 5s5p 3P0 when the vibrational
quantum number reduces by one. A two-photon transition via an intermediate state (not shown here) transfers the state 5s5p 3P0 to 5s5p 1P1

which decays back to the ground state rapidly. The hyperfine interaction in 5s5p 1P1 mixes nuclear spins by nature; by inducing a transition
between 5s5p 1P1 and 5s6s 1S0 with a strong Rabi frequency which is large compared to the hyperfine interaction, the nuclear-spin mixing is
suppressed, so that polarization resolution is removed in the spontaneous emission to the ground state. A small diagonal-hyperfine-interaction-
induced energy difference between the two nuclear-spin states is compensated by the AC Stark shift via off-resonantly exciting 5s5p 1P1 to
5s15d 1D2, which removes the frequency resolution in the spontaneous emission.

(5s5p) 1P1. The full treatment of hyperfine interaction will be
shown in Sec. III.

The cooling consists of three steps.
First, a narrow-line 698-nm laser field coherently excites

the ground state to the clock state when the vibrational
quantum number reduces by one. See Fig. 1. The electron-
nuclear-spin state and the vibration state of a ground-state 87Sr
atom is denoted by

|[5s2 1S0]mI〉 ⊗ |n + 1〉,
where mI is the nuclear-spin projection along the quantization
axis (specified by an external magnetic field Bz), and |n + 1〉
denotes the vibrational state of the atom in the trap with n + 1
vibrational quantum number. We suppose that the clock state
and the ground state are simultaneously trapped in a trap of
magic wavelength [20,29], so that the vibration states of the
atom in the ground and clock states can be denoted by the
same set of vibrational states |n〉. The linewidth for the atomic
electric dipole transition from 5s2 1S0 to 5s5p 3P0 is about
2π × 0.001 Hz [30], while the (radial) frequency of the trap
can be significantly larger than the transition linewidth; for
example, it was 2π × 95 and 2π × 260 kHz in the experi-
ments of Refs. [20] and [29], respectively. As a result, the
sideband of the vibrational states can be well resolved in the

laser excitation of the clock transition,

|[5s2 1S0]mI〉 ⊗ |n + 1〉 → |[5s5p 3P0]mF = mI〉 ⊗ |n〉, (1)

via a π -polarized laser field. The atomic state |[5s5p 3P0]mF 〉
can be written as |[5s5p 3P0]mI〉 because the hyperfine and
spin-orbit coupling result in a state |[5s5p 3P0]mF = mI〉 ≈
|[5s5p 3P0]mI〉 + η|hyper-so〉, where the value of mF is equal
to that of mI , |η|2 ≈ 4 × 10−8, and |hyper-so〉 is a superpo-
sition of |[5s5p 3P1]mF 〉, |[5s5p 3P2]mF 〉, and |[5s5p 1P1]mF 〉
[30]. The tiny |η| indicates that the hyperfine-interaction-
induced nuclear-spin decoherence in the transition between
the ground state and the clock state can be ignored.

Second, a two-photon Raman transition between
|[5s5p 3P0]mF = mI〉 ⊗ |n〉 and |[5s5p 1P1]mF − 1〉 ⊗ |n〉
via an intermediate state is realized with the total change of
angular momentum projection equal to −1. The intermediate
state should have both singlet and triplet components for
which we have two choices. One choice is a high-lying
5sns Rydberg state in which the hyperfine interaction can
induce mixing between the 3S1 and 1S0 states [31,32].
The other choice is a low-lying 5snd Rydberg state in
which the spin-orbit coupling can induce strong mixing
between the 1D2 and 3D2 states. For the first choice, the
hyperfine interaction in the intermediate state can lead to
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different Rabi frequencies for the two nuclear-spin states,
and it demands efforts to tune the laser frequencies and
detunings for addressing the hyperfine-split intermediate
state or use multiple laser fields to achieve equal excitation
Rabi frequencies for the two nuclear-spin states. For the
second choice, sizable singlet-triplet mixing can occur for
5snd states of principal quantum number from n = 10–25
[33]. For example, the components of 1D2 and 3D2 in the
3D2-dominated wavefunction for n = 11 have a ratio of
about 5.5 (see Fig. 3 of Ref. [33]). The transition from pure
3P0 to 1D2 or 3D2 states is difficult, but the wavefunction
of the clock state has an overlap coefficient −2 × 10−4

with the pure 3P1 state [30], which makes it possible to
couple the clock state to the intermediate 5snd state. The
hyperfine splittings in the 5snd state with n = 11 are small
(see Figs. 6 and 7 of Ref. [33]), so that when we use a Raman
transition with the detuning at the intermediate 5snd state
of the two-photon transition large compared to the hyperfine
interaction, the hyperfine structure of the intermediate state
is indiscernible. This means that by the second choice with
n � 11, the Raman transitions for the two nuclear-spin qubit
states can have the same Rabi frequencies as required by
our theory. The state 5s5p 1P1 has a linewidth 2π × 32 MHz
[34,35] and is not trapped by the optical trap. When there is
no hyperfine interaction for this state (the full theory with
hyperfine interaction is in Sec. III), a two-photon σ− transition
via an intermediate state can lead to

|[5s5p 3P0]mF = mI〉 ⊗ |n〉
→ |[5s5p 1P1]mJ = −1, mI〉 ⊗ |n〉, (2)

where we preserve the vibrational state when the atom is in
5s5p 1P1 following Ref. [19]. To understand this, we note
that the time for the atom to stay in 5s5p 1P1 is about 5 ns,
while the vibration period is over 10 µs for a radial trap
frequency 2π × 95 kHz [20]. Note that the effective motional
temperature of the atom was below 5 µK in recent experiments
with ytterbium [22] or strontium [36–38], and we can assume
that the atomic temperature is on the order of 10 µK at the
beginning of the sideband cooling. At this temperature, the
rms speed of the atom

√
kBT/m is on the order of 0.02 nm/ns,

which means that the atom moves by � 0.1 nm during the 5-ns
transient time staying at 5s5p 1P1. To good approximation, the
vibrational state of the atom remains during the transient at
5s5p 1P1.

Third, the fast spontaneous decay rate of the state 5s5p 1P1

causes an incoherent transition

|[5s5p 1P1]mJ = −1, mI〉 ⊗ |n〉 � 5s2 1S0|mI〉 ⊗ |n〉, (3)

which returns the state back to the ground state. The transi-
tions in Eqs. (1), (2), and (3) involve a state with a common
mI , and similar transitions can happen with a superposition
state of different mI eigenstates. So, the vibrational quantum
number is lowered by one following Eqs. (1), (2), and (3). As
long as the atom is in a state with the vibrational quantum
number n larger than zero, the three-step cooling can proceed
following Eqs. (1), (2), and (3) until the atom reaches the
ground.

III. NUCLEAR-SPIN-PRESERVING COOLING

A. Hyperfine interaction mixes the nuclear spins

The hyperfine interaction in 5s5p 1P1 is not considered
above. In practice, hyperfine interaction causes Eq. (2) to
become

|[5s5p 3P0]mF = mI〉 ⊗ |n〉 → |[5s5p 1P1]mF − 1〉 ⊗ |n〉,
(4)

where |[5s5p 1P1]mF − 1〉 ⊗ |n〉 is a hyperfine eigenstate that
mixes nuclear-spin states with mI , mI ± 1, mI ± 2, where the
mixing coefficients are determined by the detail of the hyper-
fine interaction. To understand this coupling, we note that in
the presence of a magnetic field Bz, the Hamiltonian includ-
ing the hyperfine interaction between the valence electrons
and the nuclear spin is described by

Ĥhf = AÎ · Ĵ + Q
3(Î · Ĵ)2 + 1.5Î · Ĵ − IJ (I + 1)(J + 1)

2IJ (2I − 1)(2J − 1)

+ gJμBĴ · Bz − gIμnÎ · Bz. (5)

Here, A and Q are the nuclear magnetic dipole and electric
quadrupole interaction constants, respectively, Î and Ĵ are the
nuclear-spin and electron orbital angular momentum opera-
tors (divided by the reduced Planck constant), respectively,
gJ and gI are the electron and nuclear g factors, respectively
[39], and μB and μn are the Bohr magneton and the nuclear
magnetic moment, respectively. According to the measure-
ment in Ref. [40], the hyperfine constants are (A, Q)/2π =
(−3.4, 39) MHz for 5s5p 1P1, and the measured value for μn

reported in Ref. [41] is −1.0924μN, where μN is the nuclear
magneton.

The hyperfine interaction in Eq. (5) couples states with
equal mJ + mI , as shown in Appendix A, so that there can
be decoherence in the nuclear-spin state during the cool-
ing if we do not introduce extra schemes. To uncouple the
electron state and the nuclear-spin state, strong magnetic
fields about 10 mT can be used so that the nuclear-spin co-
herence can be preserved with a 99% fidelity when qubits
are defined with nuclear-spin projections ±mI as studied in
Ref. [19].

In our theory, nuclear-spin qubits are defined with mI =
−I and 1 − I , so that the state |[5s5p 1P1] − 1,−I〉 ⊗
|n〉 cannot be coupled to another state by hyperfine in-
teraction, but |[5s5p 1P1] − 1, 1 − I〉 ⊗ |n〉 is coupled with
|[5s5p 1P1]0,−I〉 ⊗ |n〉. To remove the nuclear-spin mixing
by the hyperfine interaction, we propose to use π -polarized
laser excitation of an electric dipole transition between
5s5p 1P1 and a nearby 5sns 1S0 state. An electric dipole tran-
sition directly couples two states with the change of mJ

equal to that of the angular momentum of the photon of
the laser field. As a result, 5sns 1S0 can be coupled with
the state |[5s5p 1P1]0,−I〉, but can be coupled with nei-
ther |[5s5p 1P1] − 1, 1 − I〉 nor |[5s5p 1P1] − 1,−I〉. When
this coupling is strong, a large AC Stark shift can arise in
|[5s5p 1P1]0,−I〉. When the AC Stark shift is large com-
pared to the hyperfine interaction, the hyperfine-interaction-
induced state mixing between |[5s5p 1P1] − 1, 1 − I〉 and
|[5s5p 1P1]0,−I〉 is suppressed. The questions is, is there a
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5sns 1S0 state sufficiently near 5s5p 1P1 so that a large electric
dipole matrix element exists?

B. The method

The suppression of the hyperfine interaction by AC Stark
shifts of laser excitation requires that a state near 5s5p 1P1

should have a large electric dipole transition matrix element,
so that a large Rabi frequency can arise for the transition.
There are several candidates satisfying this condition, among
which 5s4d 1D2 and 5s6s 1S0 are nearest. The reduced dipole
matrix element between 5s5p 1P1 and 5s4d 1D2 is 1.92ea0

[37], where e is the elementary charge and a0 is the Bohr ra-
dius; however, the transition between 5s5p 1P1 and 5s4d 1D2

requires a 6.5-µm [34] laser, which can be challenging since
lasers with such wavelength may not be immediately avail-
able [42,43]. On the other hand, the transition from 5s5p 1P1

to 5s6s 1S0 has a wavelength 1124 nm [44] for which a
laser is readily available. The reduced dipole matrix element
for this transition is about 2.09ea0 (see Appendix B), and
with a laser of field intensity about 17 W/cm2, a Rabi fre-
quency �/2π = 300 MHz can be achieved for the transition
between |[5s5p 1P1]0,−I〉 and |[5s6s 1S0]0,−I〉 as shown
in Appendix B. By the AC Stark shift, the hyperfine cou-
pling between |[5s5p 1P1] − 1, 1 − I〉 and |[5s5p 1P1]0,−I〉 is
suppressed, resulting in the suppression of the polarization
resolution in the spontaneous emission from 5s5p 1P1 to the
ground state.

The spontaneous decay from the states |[5s5p 1P1] −
1, 1 − I〉 and |[5s5p 1P1] − 1,−I〉 back to the ground state
should not be frequency resolved so as to preserve the co-
herence of the nuclear-spin qubit. In a B field of Gauss
scale, the Zeeman shift between the two nuclear-spin states
is negligible. However, there is still a megahertz-scale energy
difference between |[5s5p 1P1] − 1, 1 − I〉 and |[5s5p 1P1] −
1,−I〉 due to the diagonal hyperfine interaction (see
Appendix A). To remove this energy difference, a highly
detuned laser field of wavelength 424 nm for the transition
between 5s5p 1P1 and 5s15d 1D2 can be employed. We choose
the state 5s15d 1D2 because it has a strong hyperfine inter-
action [33], so that when the laser is tuned near one of its
F states, |[5s5p 1P1] − 1, 1 − I〉 and |[5s5p 1P1] − 1,−I〉 can
obtain different AC Stark shifts due to the different coupling
strengths determined by the angular momentum selection
rule. As shown in Appendix C with data from Ref. [33], the
two states with F = I + 2 and F = I + 1 of 5s15d 1D2 are
separated by about 2π × 1.3 GHz, so that when a left-hand
polarized laser field is tuned near, e.g., the F = I + 1 state, the
AC Stark shift for the state |[5s5p 1P1] − 1,−I〉 is negligible
because it can only couple with the F = I + 2 state, while
AC Stark shifts can readily appear for other relevant 5s5p 1P1

states. As a result, the frequency resolution in the spontaneous
emission from 5s5p 1P1 to the ground state can be avoided.

Compared to the theory of Ref. [19] which needs a mag-
netic field over 10 mT, the method of cooling here is with a
B field on the order of 1 G. The sideband cooling with a low
B field is compatible with setups used in recent experiments
with nuclear-spin qubits, where a B field equal to 11 G [20],
4.11 G [21], or a value in the range (0, 18] G [22] was used
with 87Sr [20] or 171Yb [21,22].

IV. MASTER EQUATION ANALYSIS OF COOLING
DYNAMICS

We consider a nuclear-spin qubit defined by the two max-
imal spin projections along the quantization axis, namely,
the two lowest in energy [20], |↑〉 = |mI = 1 − I〉 and |↓〉 =
|mI = −I〉; this type of qubit can be initialized with a bias
magnetic field, while qubits defined with other nuclear-spin
states require extra fields [25]. To simplify the notation, we
label the intrinsic state of, e.g., the ground-state atom by
|[5s2 1S0]0,↑(↓)〉, where 0 denotes the value of mJ for the
state and the arrow denotes the nuclear spin. With π -polarized
laser fields employed for the atomic transitions, a general
qubit state in the ground state,

(α|[5s2 1S0]0,↑〉 + β|[5s2 1S0]0,↓〉) ⊗ |n + 1〉,
is excited to

(α|[5s5p 3P0]0,↑〉 + β|[5s5p 3P0]0,↓〉) ⊗ |n〉, (6)

where |α|2 + |β|2 = 1 and one vibrational quantum is re-
moved in the above transition. In principle, there can be a
change of the relative phase between the two spin components
in the above transition, which can be amended by first exciting
the state from the ground to the clock state, applying a single-
qubit phase gate to nuclear-spin qubits in the clock state, and
then exciting the clock state to the 1P1 state; an alternative is
to design a compensating relative phase in the Rabi frequen-
cies for the two nuclear-spin states in the Raman transition
between the clock and the 1P1 states. Via an intermediate state
with a two-photon σ−-polarized transition, the state in Eq. (6)
is excited to

[α(α0|[5s5p 1P1]0,↓〉 + α−|[5s5p 1P1] − 1,↑〉)

+β|[5s5p 1P1] − 1,↓〉] ⊗ |n〉, (7)

where the coefficients α0, α− are determined by the hyper-
fine interaction that couples states with equal mJ + mI (see
Appendix A). We note that Eq. (7) is shown for illustration;
in practice, Eq. (7) is split into several different states with
different energies in the presence of hyperfine interaction.

To shift away the transitions with the nuclear-spin flip in
Eq. (7), a π -polarized laser field is used to excite 5s5p 1P1 to
5s6s 1S0, where the angular momentum selection rule allows
the transition between |[5s5p 1P1]0,↓〉 and |[5s6s 1S0]0,↓〉,
while the other two state components in Eq. (7) are not ex-
cited. As a result, the state component |[5s5p 1P1]0,↓〉 can
obtain an AC Stark shift large compared to the hyperfine in-
teraction, leading to suppression of the hyperfine interaction,
i.e., α0 → 0 in Eq. (7).

Once the nuclear-spin flip state |[5s5p 1P1]0,↓〉 is sup-
pressed in Eq. (7), polarization resolution in the spontaneous
emission is suppressed. However, there is a megahertz-
scale energy difference between |[5s5p 1P1] − 1,↓〉 and
|[5s5p 1P1] − 1,↑〉 mainly from the diagonal hyperfine in-
teraction, leading to frequency resolution of the spontaneous
emission. To remove this energy difference, one can excite
5s5p 1P1 to a certain hyperfine substate of a 1D2 state. A useful
1D2 state for this purpose will possess a large hyperfine inter-
action, ensuring different F states being well separated. Then,
tuning the frequency of a σ−-polarized laser near, e.g., the
F = I + 1 substate of 1D2, the state |[5s5p 1P1] − 1,↓〉 barely
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acquires any AC Stark shift because it cannot be excited to the
F = I + 1 state with the σ− laser field, while |[5s5p 1P1] −
1,↑〉 can acquire an AC Stark shift to compensate for the
energy difference between it and |[5s5p 1P1] − 1,↓〉. As dis-
cussed in Sec. III, we choose 5s15d 1D2 because it has a large
hyperfine interaction.

In the cooling process, the excitation from the ground to the
clock state can be achieved with high accuracy because of the
long lifetime of the clock state, so that we analyze the cooling
fidelity by starting from a state like Eq. (6). In particular,
we would like to see how precisely we can map the state in
Eq. (6) to

(α|[5s2 1S0]0,↑〉 + β|[5s2 1S0]0,↓〉) ⊗ |n〉,
during which the vibrational quantum number does not
change, so that we can omit it when writing the state vectors
in the analysis. The time dynamics is described by

d ρ̂

dt
= i(ρ̂Ĥ − Ĥ ρ̂) +

8∑
i=0

[2ĉiρ̂ĉ†
i − ĉ†

i ĉiρ̂ − ρ̂ĉ†
i ĉi]/2.

(8)

Here, ρ̂ is the density matrix of the atomic state, and the
Hamiltonian is

Ĥhf +
⎧⎨
⎩

�eff

2

∑
sz∈{↑,↓}

|[5s5p 1P1] − 1, sz〉〈[5s5p 3P0]0, sz|

+ �ps

2
|[5s6s 1S0]0,↓〉〈[5s5p 1P1]0,↓| + �pd

2

×
(∣∣∣∣[5s15d 1D2]F = 13

2
, mF = −13

2

〉
〈[5s5p 1P1] − 1,↓|

+ ξ0

∣∣∣∣[5s15d 1D2]F = 13

2
, mF = −11

2

〉
〈[5s5p 1P1]0,↓|

+ ξ1

∣∣∣∣[5s15d 1D2]F = 13

2
, mF = −11

2

〉
〈[5s5p 1P1] − 1,↑|

+ ξ2

∣∣∣∣[5s15d 1D2]F = 11

2
, mF = −11

2

〉
〈[5s5p 1P1]0,↓|

+ ξ3

∣∣∣∣[5s15d 1D2]F = 11

2
, mF = −11

2

〉

×〈[5s5p 1P1] − 1,↑|
)

+ H.c.

⎫⎬
⎭

+ (
 + 
pd)
2∑

k=0

|Sk〉〈Sk| + 


6∑
k=3

|Sk〉〈Sk|, (9)

where Ĥhf is in a rotating frame derived from Eq. (5), �eff

is the effective two-photon Rabi frequency between 5s5p 1P1

and 5s5p 3P0, �ps is the 1124-nm infrared-laser Rabi fre-
quency between 5s5p 1P1 and 5s6s 1S0, �pd is the 424-nm
UV-laser Rabi frequency between 5s5p 1P1 and 5s15d 1D2,
the factors {ξ j, j = 0 − 3} are angular momentum factors
shown in Appendix C, |Sk〉 with k = 0–2 are the three 5s15d
states in the bracket (· · · ) of Eq. (9), |Sk〉 with k = 3–6 are
the states including |[5s6s 1S0]0,↓〉 and the three 5s5p states

in the bracket (· · · ) of Eq. (9), 
pd is the detuning for the
dipole transition of the UV laser, and 
 is a detuning set
to tune resonance for the transition between |[5s5p 1P1] −
1, sz〉 and |[5s5p 3P0]0, sz〉; this latter detuning is added be-
cause when we use the UV laser field to induce AC Stark
shifts in |[5s5p 1P1] − 1, sz〉, the states |[5s5p 1P1] − 1,↑〉 and
|[5s5p 1P1] − 1,↓〉 can finally acquire a common, nonzero
energy −
 in the rotating frame. To simplify the numerical
simulation, the hyperfine interaction in 5s15d 1D2 is included
with hyperfine eigenstates [when laser detuning is accounted
for, see Eq. (C4)]. As analyzed in Appendix C, one can esti-
mate by the measured hyperfine constants in Ref. [33] that the
F = 13

2 state of 5s15d 1D2 is lower by about 2π × 1.3 GHz
than the F = 11

2 state.
In Eq. (9), we ignore the coupling between |[5s5p 1P1]1,↓〉

and 5s15d 1D2 because |[5s5p 1P1]1,↓〉 is populated nei-
ther directly nor indirectly (via hyperfine interaction) from
5s5p 3P0, though it can be populated via spontaneous emis-
sion from 5s6s 1S0. However, 5s6s 1S0 only has a negligible
population when it is coupled to |[5s5p 1P1]0,↓〉. In the
present cooling scheme, |[5s5p 1P1]0,↓〉 is barely populated,
least to say how negligible the population in |[5s5p 1P1]1,↓〉
is via the higher-order process. This is why we can ignore the
energy shift of 5s15d 1D2 induced by the coupling between
|[5s5p 1P1]1,↓〉 and 5s15d 1D2.

In Eq. (5), the collapse operators for 5s5p 1P1 are

ĉ0 = √
�p/3{|[5s2 1S0]0,↑〉〈[5s5p 1P1] − 1,↑|

+ |[5s2 1S0]0,↓〉〈[5s5p 1P1] − 1,↓|},
ĉ1 = −√

�p/3|[5s2 1S0]0,↓〉〈[5s5p 1P1]0,↓|,
ĉ2 = √

�p/3|[5s2 1S0]0,↓〉〈[5s5p 1P1]1,↓|, (10)

those for 5s6s 1S0 are

ĉ3 =
√

�s|[5s5p 1P1]0,↓〉〈[5s6s 1S0]0,↓|,
ĉ4 =

√
�s|[5s5p 1P1]1,↓〉〈[5s6s 1S0]0,↓|,

ĉ5 =
√

�s|[5s5p 1P1] − 1,↓〉〈[5s6s 1S0]0,↓|, (11)

and those for the 5s15d 1D2 states are

ĉk =
√

�d|A 〉〈Sk|, (12)

where k = 6–8 and |Sk〉 runs through the three
|[5s15d 1D2]F, mF 〉 states in Eq. (9) and |A 〉 is a virtual
reservoir state that does not respond to the laser excitation.
Here, �p/2π = 32 MHz [34,35], �s/2π = 3.0 MHz [45],
and �d/2π = 0.47 MHz [46]. Note that in principle the decay
rates in ĉk with k ∈ [6, 8] should be smaller than the linewidth
of the state 5s15d 1D2 due to angular momentum selection
rules, but a larger decay rate is employed so as to give a lower
bound for the cooling fidelity.

The laser parameters are chosen with the following
considerations. First, the effective Rabi frequency �eff for the
transition between the clock state and 5s5p 1P1 is via a highly
off-resonant intermediate state, so that it is in general small
and we use �eff/2π = 1 MHz in the numerical example.
Second, the π -polarized laser for the transition between
5s5p 1P1 and 5s6s 1S0 is relevant for |[5s5p 1P1]0,↓〉.
|[5s5p 1P1]0,↓〉 can be populated via hyperfine interaction,
and our purpose is to suppress its population via the AC stark
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effect. To induce a large shift, the laser is tuned resonant for
the transition between |[5s5p 1P1]0,↓〉 and |[5s6s 1S0]0,↓〉,
and the laser Rabi frequency �ps will be much larger than
the hyperfine interaction. Therefore, we can set, as an
example, �ps/2π = 300 MHz, for which |[5s5p 1P1]0,↓〉 can
exhibit a shift �ps/2 that is much larger than the hyperfine
interaction strength. Larger �ps can work for the theory
but requires stronger laser power. Third, the excitation of
5s15d 1D2 is for balancing the energies of |[5s5p 1P1] − 1,↑〉
and |[5s5p 1P1] − 1,↓〉, which have frequencies
2π × (−10.05,−6.95) MHz mainly from the diagonal
hyperfine interaction 2π × (−8.65,−5.55) MHz in a B field
of 1 G. Because the AC Stark shift in a highly off-resonant
dressing is − 1

4 (Rabi2/detuning) [47], one can tune the
σ−-polarized laser to the blue side of the transition
|[5s5p 1P1] − 1,↓〉 → |[5s15d 1D2]F = 13/2, mF =
−13/2〉 with 
pd < 0. Because the F = 11/2 state is higher
than the F = 13/2 state by about Ehf = 2π × 1.3 GHz,
the transition |[5s5p 1P1] − 1,↑〉 → |[5s15d 1D2]F =
11/2, mF = −11/2〉 has a dressing detuning 
pd + Ehf. For

pd + Ehf < 0, the AC Stark shift of |[5s5p 1P1] − 1,↑〉
is also positive. The detuning of |[5s5p 1P1] − 1,↑〉
is smaller and it can obtain a larger shift compared
to |[5s5p 1P1] − 1,↓〉, so that the energy difference
between |[5s5p 1P1] − 1,↓〉 and |[5s5p 1P1] − 1,↑〉 can
be compensated. In order to have negligible population
in 5s15d , the dressing detuning will be much larger than
the dressing Rabi frequency. As an example, we choose

pd/2π = −1.7 GHz, i.e., about 400 MHz over the F = 11/2
state. The value of �pd can be searched for achieving the
same energies for |[5s5p 1P1] − 1,↓〉 and |[5s5p 1P1] − 1,↑〉,
which we numerically found �pd/2π = 144.27 MHz;
note that different 
pd will lead to different �pd. With
these parameters, the final, common frequency ν for
|[5s5p 1P1] − 1,↓〉 and |[5s5p 1P1] − 1,↑〉 is in general
nonzero. We have ν = 2π × (−3.8826) MHz with the above
parameters, which means that we will have a detuning −ν in
the two-photon transition between the clock and the 5s5p 1P1

states so as to recover the resonant condition.
By using Eq. (8) with (�eff,�pd,�ps,
pd,
)/2π =

(1, 144.27, 300,−1700, 3.8826) MHz and the decay rates
shown around Eq. (12), we numerically simulated the time
evolution of the system by QUTIP [48,49]. We found that two
eigenstates |e↑〉 and |e↓〉 of the Hamiltonian driven by the
hyperfine interaction and laser excitation highly overlap with
two pure spin states, namely, we found

〈[5s5p 1P1] − 1,↑|e↑〉 = 0.99409,

〈[5s5p 1P1] − 1,↓|e↓〉 = 0.99910. (13)

The states |e↑〉 and |e↓〉 have a common eigenenergy 2π ×
(−3.8826) MHz, which is why we set 
/2π = 3.8826 MHz.
Though |e↑〉 and |e↓〉 have populations in other state compo-
nents, their decay rates are much smaller than that of 5s5p 1P1,
so that when the cooling starts, the spontaneous emission
takes the atom back to the ground state with a high fidelity.

As discussed previously, the excitation from the ground
state to the clock state can proceed with a high fidelity, so that
we start from the initial state in the clock-state space, |ψ0〉 =
|[5s5p 3P0]0,↑〉 + |[5s5p 3P0]0,↓〉) ⊗ |n〉/√2, from which a

FIG. 2. State dynamics in the cooling simulated by the master
equation in Eq. (8) with (�eff, �pd, �ps, 
pd,
, �p, �s, �d)/2π =
(1, 144.27, 300, −1700, 3.8826, 32, 3, 0.47) MHz, B = 1 G,
and initial state |ψ0〉. The hyperfine constants (A, Q)/2π

are (−3.4, 39) MHz for 5s5p 1P1 and (−194, −75) MHz for
5s15d 1D2. (a) The solid, long-dashed, dash-dotted, short-dashed,
and dotted curves show the populations of log10 scale in the
states |⊥〉 = (|[5s2 1S0]0, ↑〉 − |[5s2 1S0]0, ↓〉) ⊗ |n〉/√2, |A 〉,
5s5P 1P1, 5s15d 1D2, and 5s6s 1S0, respectively. |⊥〉 is the state
perpendicular to the final target state |ψf〉 = (|[5s2 1S0]0, ↑〉 +
|[5s2 1S0]0,↓〉) ⊗ |n〉/√2. The final populations in |⊥〉 and |A 〉
are 1.0 × 10−4 and 2.9 × 10−4, respectively. (b) Evolution
of the population of the states |ψ0〉 = (|[5s5p 3P0]0, ↑〉 +
|[5s5p 3P0]0,↓〉) ⊗ |n〉/√2 and |ψf〉. The populations in |ψ0〉
and |ψf〉 at 20 µs are 7 × 10−6 and 0.9996, respectively, and the main
population loss is in the reservoir state and the state perpendicular to
|ψf〉 as shown in (a).

two-photon transition via an intermediate state can excite it to
the 5s5p 1P1 state which rapidly decays back to the ground
state. The desired final state is |ψf〉 = (|[5s2 1S0]0,↑〉 +
|[5s2 1S0]0,↓〉) ⊗ |n〉/√2. As shown in the numerical result
in Fig. 2, the fidelity to cool the initial state (|[5s2 1S0]0,↑〉 +
|[5s2 1S0]0,↓〉) ⊗ |n + 1〉/√2 to the desired final state |ψf〉
is about 99.96%. The final population loss is mainly in the
reservoir state |A 〉, and in the state |⊥〉 = (|[5s2 1S0]0,↑〉 −
|[5s2 1S0]0,↓〉) ⊗ |n〉/√2. The cooling fidelity shows a weak
dependence on the value of |α/β| in Eq. (6). However,
Table I shows that the fidelity decreases slowly when |α/β|

TABLE I. Fidelity of the cooling, 〈ψf|ρ(t )|ψf〉, at t=20 µs
starting from the initial state |ψ0〉 = (α|[5s5p 3P0]0, ↑〉 +
β|[5s5p 3P0]0, ↓〉) ⊗ |n〉, where |ψf〉 = (α|[5s2 1S0]0, ↑〉 +
β|[5s2 1S0]0, ↓〉) ⊗ |n〉. The parameters used in the simulation are
the same as those in Fig. 2.

α/β 1/10 1/3 1/2 2 3 10

Fidelity 99.99% 99.99% 99.98% 99.93% 99.92% 99.91%
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increases. This decrease is due to that the state |e↑〉 has a
smaller overlap with the correct state component shown in
Eq. (13). However, we found that the fidelity is 99.909% even
with |α/β| = 100. This means that the theory can easily have
a coherence-preserving cooling fidelity over 99.9% in a weak
magnetic field, and much higher fidelity can be achieved with
stronger laser fields for suppressing the hyperfine interaction.

V. INFLUENCE FROM LASER PARAMETERS

A. Fluctuation of Rabi frequency and detuning

The fluctuation of the power and frequency of the lasers
has a minor influence on the cooling. We do not discuss
the transition from the ground to the clock state because it
does not involve change of angular momentum and it can be
realized with a high fidelity. Besides this laser, there are three
sets of lasers, one for the transition 5s5p 3P0 → 5s5p 1P1, one
for 5s5p 1P1 → 5s6s 1S0, and one for 5s5p 1P1 → 5s15d 1D2.
Below, we discuss the influence on the cooling from the
fluctuation of Rabi frequency and detuning of the lasers. For
brevity, here the detuning is defined as the dipole transition
frequency deducted by the laser frequency.

(i) The fluctuation of the Rabi frequency �eff and detuning

 for 5s5p 3P0 → 5s5p 1P1 can slow down the cooling but
barely impacts the fidelity. The cooling can proceed when
the population is transferred from 5s5p 3P0 to 5s5p 1P1. So,
larger �eff and the resonant condition 
 + ν = 0 can facilitate
the population transfer, while smaller �eff or off-resonant
conditions can lead to slower cooling. For example, with
�eff/2π = 2 MHz while other parameters are the same as in
Fig. 2, simulation shows that the cooling can reach the final
fidelity of Fig. 2 at a much earlier time, 5 µs. But with 
 = 0,
i.e., off resonant with a detuning ν, while other parameters
are the same as in Fig. 2, simulation shows that the cooling
reaches a fidelity 0.9991 at 20 µs, and the fidelity 0.9996 is
achieved at a later time, 26 µs. However, the above discussion
is based on that the ratio of the Rabi frequencies for the two
nuclear spin states does not change.

(ii) The cooling is not sensitive to small fluctuation of
power and frequency of the laser for the transition 5s5p 1P1 →
5s6s 1S0. Because of the π polarization of the laser, only the
state |[5s5p 1P1]0,↓〉 is excited while the other two states
|[5s5p 1P1] − 1,↑〉 and |[5s5p 1P1] − 1,↓〉 are not. The nu-
merical example of Fig. 2 and Table I assumed �ps/2π = 300
MHz; a little deviation from this value alters the AC Stark
shift, but as long as the shift is large compared to the hyper-
fine interaction, the hyperfine-interaction-induced spin mixing
is suppressed. For example, with �ps/2π = 250 MHz, i.e.,
smaller by 1/6, while other parameters are the same as in
Fig. 2, we numerically found that a cooling fidelity 0.9996
can still be achieved at 20 µs. Likewise, by adding a detuning,
e.g., 2π × 10 MHz, to this laser while preserving all the
parameters as in Fig. 2, a fidelity 0.9996 is still achieved at
20 µs.

(iii) The fluctuation of the laser parameters for the transi-
tion 5s5p 1P1 → 5s15d 1D2 can influence the cooling fidelity.
This is because when the Rabi frequency or detuning is not set
so as to have the same frequency for the two states in Eq. (13),
decoherence will occur due to the frequency resolution. For

one example, with �pd/2π = 140 MHz while other parame-
ters are kept the same as used in Fig. 2, the cooling fidelity
is 0.99946 at 20 µs, and it can only reach 0.99947 even at
30 µs due to a relatively large population 2.6 × 10−4 in |⊥〉;
the final population in |⊥〉 is 1.0 × 10−4 for the case simulated
in Fig. 2. For another example, with 
pd/2π = −1.75 GHz
while other parameters are the same as in Fig. 2, the cooling
fidelity is 0.9988 at or beyond 20 µs. This small cooling
fidelity is due to that the two states in Eq. (13) have a relatively
large energy separation 2π × 0.42 MHz which leads to a large
final population 9.2 × 10−4 in |⊥〉.

B. Influence from laser polarization impurity

The cooling depends on high purity in laser polarization.
We follow Ref. [27] and use polarization intensity impurity χ

for this discussion, where χ = 0 denotes perfect polarization.
We discuss the laser polarization impurity of the three sets of
laser fields discussed in Sec. V A about their influence on the
cooling.

(i) The transition 5s5p 3P0 → 5s5p 1P1 is a two-photon
process via a highly detuned intermediate state. If each of
the two lasers in the two-photon process has a polarization
intensity impurity χ , the effective Rabi frequency becomes
(1 − χ )�eff for the desired transitions |[5s5p 3P0]0,↑(↓)〉 →
|[5s5p 1P1] − 1,↑(↓)〉. That the effective Rabi frequency
decreases can slow down the cooling as discussed in
the last paragraph. But the wrong polarization can excite
|[5s5p 3P0]0,↑(↓)〉 to |[5s5p 1P1]mJ , mI〉 where mJ �= −1 or
mI is not equal to the correct value even when mJ = −1. There
is some chance to accidentally lead to the correct state tran-
sition. For example, if the polarization should be σ− + π in
the transition 5s5p 3P0 →intermediate→ 5s5p 1P1, a wrong
polarization π + σ+ in the two corresponding lasers can result
in the correct state transfer. To estimate the worst case, we
assume all polarization errors result in wrong state transfer,
which means that there is a Rabi frequency χ�eff to cre-
ate population loss to the correct ground state. The data in
Fig. 2 show that |ψf〉 has a population over 0.5 beyond the
time 2.4π/�eff, and we can estimate that the total chance
to have incorrect spontaneous emission due to wrong pop-
ulation in 5s5p 1P1 is around or below sin2(2.4πχ ) when
χ 
 1. For χ = 0.01, it means that the cooling fidelity de-
creases by about 0.6% due to the polarization impurity for this
transition.

(ii) The laser for 5s5p 1P1 → 5s6s 1S0 is assumed π po-
larized. A wrong polarization with a small χ barely alters
the AC Stark shift for shifting |[5s5p 1P1]0,↓〉, but can
excite |[5s5p 1P1] − 1,↑(↓)〉 to |[5s6s 1S0]0,↑(↓)〉. In the
worst case when the wrong polarization is fully σ+, the
Rabi frequency is −√

χ�ps for the transition |[5s5p 1P1] −
1, mI〉 → |[5s6s 1S0]0, mI〉 where the minus sign is from the
Clebsch-Gordan coefficient. This will result in common en-
ergy shifts to |[5s5p 1P1] − 1,↑(↓)〉 which does not hamper
the cooling fidelity directly though it adds detuning to the two-
photon excitation 5s5p 3P0 → 5s5p 1P1 that will slow down
the cooling as discussed above. However, when −√

χ�ps is
much larger than �eff, the transition |[5s5p 1P1] − 1, mI〉 →
|[5s6s 1S0]0, mI〉 can lead to half the population in 5s5p 1P1

while the other half is in 5s6s 1S0, and 5s6s 1S0 decays with
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a rate �s that is about a tenth of the decay rate of 5s5p 1P1.
This means that the condition |√χ�ps/�eff| � 1 can reduce
the cooling fidelity by about 0.1, which is significant. The
condition χ < |�eff/�ps|2 can resolve this issue but it is diffi-
cult to realize since the parameters used in Sec. IV require
χ < 10−5. A solution to this problem is to add a detun-
ing to the laser field so that incorrect polarization in the
field can only drive the transition |[5s5p 1P1] − 1, mI〉 →
|[5s6s 1S0]0, mI〉 with a detuning large compared to |√χ�ps|.
In this case, the state |[5s6s 1S0]0, mI〉 is barely populated
from |[5s5p 1P1] − 1, mI〉 and population loss from it can be
avoided.

(iii) The transition 5s5p 1P1 → 5s15d 1D2 is for balanc-
ing the energies of |[5s5p 1P1] − 1,↑(↓)〉. The detuning
is 
pd when addressing |[5s15d 1D2]F = 13/2, mF 〉 and

pd + Ehf when addressing |[5s15d 1D2]F = 11/2, mF 〉. The
numerical example in Sec. IV assumed (�pd,
pd)/2π =
(144.27, −1700) MHz where Ehf/2π = 1.3 GHz. The laser
is assumed σ− polarized, and polarization impurity can lead to
dressing of the hyperfine state F = 9/2 which is an extra state
not included in the discussion of Sec. IV. The F = 9/2 state
is above the F = 11/2 state by about 2π × 1.1 GHz shown
in Appendix C, which means that it is unlikely to induce an
extra AC Stark shift to hamper the cooling when

√
χξ4�pd

is much smaller than these detunings, where ξ4 is a factor
smaller than 1 defined similar to those in Eq. (C2). However,
laser polarization impurity can reduce the Rabi frequency
from ξk�pd to (1 − √

χ )ξk�pd for any of the desired dressings
where ξk with k = 0, 1, 2, and 3 are shown above Eq. (C2).
The reduced Rabi frequencies can result in unbalanced en-
ergies of |[5s5p 1P1] − 1,↑(↓)〉, which will lead to reduced
cooling fidelity as discussed in Sec. V A. Assuming χ = 0.01,
the Rabi frequencies for dressing the target hyperfine states
of 5s15d 1D2 will decrease by 10%, and numerical simula-
tion shows that the cooling fidelity is 0.9981 at or beyond
20 µs. With a worse polarization condition when χ = 0.1
which corresponds to a deduction of Rabi frequencies by 32%,
the final cooling fidelity is about 0.9878.

VI. DISCUSSIONS

A. Comparison with Reference [19]

There are two differences between the present theory and
that in Ref. [19]. First, the hyperfine-interaction-induced spin
mixing is suppressed by large Zeeman energy in Ref. [19],
while here it is suppressed by AC Stark shift of laser fields.
Second, the theory of Ref. [19] depends on defining qubits
with ±mI , while the present theory depends on defining qubits
with mI = 1 − I,−I , namely, the two lowest nuclear-spin
states in the ground state.

B. Cooling nuclear-spin qubits in other atoms

It is useful to discuss the application of the present theory
with other alkaline-earth elements like calcium and barium,
and some alkaline-earth-like transition-metal elements that
have similar relevant level structures. The theory hinges on
suppression of the hyperfine-interaction-induced spin flip via
exciting the lowest 1P1 state to a nearby state with a large Rabi
frequency �ps which may not be available for all elements.

1. Ytterbium, calcium, and barium

Another widely studied candidate for nuclear-spin quan-
tum memories with neutral atoms is 171Yb. There is a
relatively large hyperfine interaction in 6s6p 1P1 of 171Yb,
with A/2π = −213 MHz [50] (the quadrupole interaction
is zero for I = 1/2 with 171Yb). To use the present theory
with 171Yb, a large AC Stark shift is required to suppress the
hyperfine interaction, so it is not practical to use the present
theory for cooling 171Yb. For example, Eq. (13) shows that
for 87Sr, a Rabi frequency �ps/2π of about 300 MHz can
result in an overlap over 0.99 between the state used in the
cooling and the correct state; for 171Yb, we find that to reach
a similar overlap over 0.99, a corresponding Rabi frequency
over 2π × 2.15 GHz should be available, which may be chal-
lenging. For 173Yb that has I = 5/2, the hyperfine splitting in
the lowest 1P1 state is stronger than that of 171Yb [51] and is
characterized with (A, Q)/2π ≈ (60, 600) MHz [50]. To real-
ize an overlap over 0.99 between the state used in the cooling
and the correct state as in Eq. (13), we find that the strong
hyperfine interaction in 173Yb requires �ps > 2π × 5.4 GHz
which is unlikely to be realizable. For this reason, we conclude
that the present theory is applicable for AEL isotopes where
the lowest 1P1 state has a small enough hyperfine interaction.

The present cooling scheme can work for 41Ca and 43Ca
which have I = 7/2 and a level structure that is compatible
with the cooling theory. The ground state of calcium is 4s2 1S0

and the lowest 1P1 state is 4s4p 1P1. The stable calcium iso-
tope 43Ca has a relatively weak hyperfine interaction with
(A, Q)/2π = −(15.46, 9.7) MHz [52]. For the radionuclide
odd calcium isotope that can be assumed stable in quantum
optics (its half-life is about 105 years), 41Ca, the 4s4p 1P1

state has (A, Q)/2π = −(18.84, 9.2) MHz [52]. The transi-
tion from 4s4p 1P1 to 4s5s 1S0 has a wavelength 1034.66 nm
[53] which is close to that in the case of 171Yb as shown in
Fig. 1, and this transition has a rate 2.435 × 107 s−1 [53] that
is larger than the corresponding value shown in Eq. (B2) used
in the numerical example studied in this paper. This means
that it should be easier to realize a large �ps for calcium, and it
is possible to suppress the hyperfine-interaction-induced spin
mixing in calcium which is crucial for the theory to work. We
find that the minimal �ps/2π to realize an overlap over 0.99
between the state used in the cooling and the correct state as
in Eq. (13) will be at least 490 and 580 MHz for 43Ca and
41Ca, respectively. 41Ca and 43Ca were not as well studied as
87Sr [54], but according to the discussion in Appendix B, the
numerical example shown in Fig. 1 can in principle be realized
with �ps up to 2π × 1 GHz, which means that the present
theory can work with 41Ca and 43Ca since they possess an
even larger transition rate in the infrared-laser transition for
suppressing nuclear-spin mixing.

The two stable odd barium isotopes 135Ba and 137Ba have
I = 3/2 and the electronic ground and optical clock states
have similar configurations to those of 171Yb [55,56]. The
spectra reported in Ref. [56] show that the hyperfine inter-
action in 6s6p 1P1 leads to frequency separations of 400.5
and 457.2 MHz between the F = 5/2 and F = 1/2 levels for
135Ba and 137Ba, respectively. Comparing to 5s5p 1P1 in 87Sr,
the frequency separations of two nearby F levels in 6s6p 1P1

of 135Ba and 137Ba are roughly four times larger. We suppose
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that the value of �ps for achieving suppression of nuclear-spin
mixing as in Eq. (13) should be at least four times larger
than that used in the example shown in Sec. IV. However, the
condition in Eq. (13) is for a cooling fidelity over 0.999 with
87Sr shown in Table I. For a rough estimate, we find that if
the values of A and Q used in Sec. IV are increased by four
times while other parameters are the same, the two numbers
on the right sides of the two lines of Eq. (13) become about
0.984 and 0.999, respectively, which suggests that even with
an infrared laser field of similar strength as used in Sec. IV,
a cooling fidelity of around 0.99 should be achievable with
135Ba and 137Ba.

2. Zinc, cadmium, and mercury

There are some alkaline-earth-like transition-metal ele-
ments with nuclear spins and low-lying states similar to the
elements discussed above. For example, the ground-clock
transition has a wavelength 309, 332, and 266 nm for zinc,
cadmium, and mercury, respectively [57], and it is possible to
achieve high-power UV laser fields for driving these transi-
tions [58].

For zinc, the stable odd isotope 67Zn has I = 5/2, and its
lowest 1P1 state, 4s4p 1P1, has both a fast decay rate with a
lifetime around 1.3 ns [59–61] and a relatively weak hyperfine
interaction with (A, Q)/2π ≈ (17.7, 20.0) MHz [62]. We note
that Eq. (13) in the case of 87Sr shows that a Rabi frequency
�pd/2π of about 300 MHz is quite useful; here, we find that to
reach a wavefunction overlap over 0.99 in an equation similar
to Eq. (13) for the case of 67Zn, a Rabi frequency about
2π × 535 MHz is sufficient. Though we did not find data for
a strong transition between 4s4p 1P1 and a higher state, the
data in Ref. [61] for the triplet states 4s4p3Px with x = 0, 1, 2
indirectly suggest that it is possible to have a strong transition
for the singlet state as well. This suggests that the cooling
theory can in principle be applied with 67Zn due to the weak
hyperfine interaction.

Both of the two stable odd cadmium isotopes 111Cd and
113Cd have a simple nuclear spin state with I = 1/2 and they
are recognized as useful candidates for optical lattice clocks
[63]. However, the hyperfine interaction in 5s5p 1P1 of 111Cd
and 113Cd is strong [64], with |A|/2π equal to about 150 and
240 MHz, respectively [65], which is comparable to that of
6s6p 1P1 in 171Yb. We did not find data about dipole matrix
elements between 5s5p 1P1 and a nearby state for suppressing
the hyperfine-interaction-induced spin mixing, but the decay
rate of 5s5p 1P1 in 111Cd and 113Cd [63] being more than three
times that in 171Yb suggests that the dipole matrix element
between 5s5p 1P1 and a nearby state in Cd is likely to be much
larger. So, it is possible to achieve a much larger �ps with
reasonable laser powers for cooling 111Cd and 113Cd and we
think that it might be possible to use the present theory with
cadmium.

Mercury is among the heaviest elements that were opti-
cally trapped for precision physics [66–68]. The stable odd
isotopes 199Hg and 201Hg have I = 1/2 and 3/2, respectively.
However, the hyperfine interaction in the lowest 1P1 state,
6s6p 1P1, is so strong that the frequency separation between
the F = 1/2 and F = 3/2 (5/2) states is about 5 GHz for
199Hg (201Hg) [69,70] which suggests that it is challenging

to apply the present cooling theory for mercury. Nonetheless,
the lifetime of the 6s6p 1P1 state in mercury is 1.31 ns [71]
which is a quarter of that of the 6s6p 1P1 state in 171Yb. This
suggests that the dipole matrix element between 6s6p 1P1 and
a nearby state in 199Hg and 201Hg can be much larger than
that in 171Yb, and it is difficult to say that the present cooling
theory cannot be used with mercury.

The above discussions show that the theory shown with
strontium as an example in this paper can be used with zinc
and calcium with a high cooling fidelity. It may also be used
with barium and cadmium but the cooling fidelity may not be
high unless strong laser fields are available for suppressing
the hyperfine interactions. We only studied AEL atoms in this
paper and it is a question whether the theory can be extended
to quantum control over nuclear spins of noble gas [72–74].

VII. CONCLUSION

We present a theory to cool 87Sr atoms with resolved-
sideband excitation from the ground state to the clock
state quenched by two-photon excitation between the clock
state and the fast-decaying 5s5p 1P1 state. The nuclear-spin-
changing process induced by the hyperfine interaction in
5s5p 1P1 is suppressed by using laser excitation between
5s5p 1P1 and nearby states. The suppression is achieved via
the mJ -dependent AC Stark shift that is large compared to the
hyperfine interaction. Numerical simulations with reasonable
parameters indicate that a cooling fidelity over 99.9% can
be easily achieved with 87Sr. The cooling is not sensitive to
fluctuation of intensities and frequencies of the lasers, but
depends on high polarization purity in the laser fields. The
theory can be used with some other alkaline-earth-like species
like calcium, zinc, and barium.

ACKNOWLEDGMENTS

The author thanks T. A. B. Kennedy for valuable in-
puts during the initial stage of this work, and thanks Yan
Lu for helpful discussions. This work is supported by the
National Natural Science Foundation of China under Grants
No. 12074300 and No. 11805146, the Innovation Program
for Quantum Science and Technology under Grant No.
2021ZD0302100, and the Fundamental Research Funds for
the Central Universities.

APPENDIX A: SPIN MIXING BY HYPERFINE
INTERACTION

Hyperfine interaction can mix nuclear spin states with
mI , mI ± 1, mI ± 2. To understand this, we note that
in Eq. (5),

Î · Ĵ = Îx Ĵx + ÎyĴy + ÎzĴz

= 1
2 [(Îx + iÎy)(Ĵx − iĴy) + (Îx − iÎy)(Ĵx + iĴy)] + ÎzĴz

≡ 1
2 (Î+Ĵ− + Î−Ĵ+) + ÎzĴz, (A1)

where

Î+Ĵ−|mJ , mI〉 =
√

(I − mI )(I + mI + 1)

×
√

(J + mJ )(J − mJ + 1)|mJ − 1, mI + 1〉
≡ a(mJmI )|mJ − 1, mI + 1〉,
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Î−Ĵ+|mJ , mI〉 =
√

(I + mI )(I − mI + 1)

×
√

(J − mJ )(J + mJ + 1)|mJ + 1, mI − 1〉
≡ b(mJmI )|mJ + 1, mI − 1〉,

ÎzĴz|mJ , mI〉 = mJmI |mJ , mI〉.
In the three equations above, mJ � −J + 1, mI � I − 1 in the
first equation, and mJ � J − 1, mI � −I + 1 in the second
equation. The term (Î · Ĵ)2 in Eq. (5) can be expanded as

(Î · Ĵ)2 = Î2
z Ĵ2

z + 1
2 [(Î+Ĵ− + Î−Ĵ+)ÎzĴz + ÎzĴz(Î+Ĵ− + Î−Ĵ+)]

+ 1
4 (Î2

+Ĵ2
− + Î2

−Ĵ2
+ + Î+Î−Ĵ−Ĵ+ + Î− Î+Ĵ+Ĵ−),

(A2)
where

Î+ Î−Ĵ−Ĵ+ = (I + mI )(I − mI + 1)(J − mJ )(J + mJ + 1)

(A3)

when mJ < J and mI > −I , and

Î− Î+Ĵ+Ĵ− = (I − mI )(I + mI + 1)(J + mJ )(J − mJ + 1)

(A4)

when mJ > −J and mI < I .

APPENDIX B: RABI FREQUENCIES

In this Appendix, we list the dipole matrix elements found
in the literature for the atomic transitions involved in the
model studied here, and discuss the achievable Rabi frequen-
cies for the transitions used in the cooling of the nuclear-spin
qubits.

The spontaneous emission from (5s5p) 1P1 to (5s2) 1S0

has a decay rate � = 2.0 × 108 s−1 [34,35], which is re-
lated with the dipole-transition matrix element in the context
of the Weisskopf-Wigner approximation (see Eq. (11.33) of
Ref. [39]),

�p = ω3
0

9πε0h̄c3
|〈[5s2] 1S0 ||d||[5s5p] 1P1〉|2, (B1)

where d is the atomic dipole operator, ε0 is the free-
space dielectric permittivity, c is the light speed in vac-
uum, h̄ is the reduced Planck constant, and ω0/2π ≈
6.51 × 1014 Hz is the transition frequency, which lead to
|〈[5s5p] 1P1 ||d||[5s2] 1S0〉| = 5.38ea0. This estimate should
have overestimated the value of 〈[5s5p] 1P1 ||d||[5s2] 1S0〉 be-
cause the decay rate of (5s5p) 1P1 is not only from the coupling
between it and the ground state, but also from the coupling
between it and (5s4d ) 1D2. Indeed, a value of about 5.25ea0

was suggested in Refs. [37,75]. The above analyses show that
Eq. (11.33) of Ref. [39] is useful for the estimation of dipole
matrix elements.

The transition from (5s5p) 1P1 to (5s6s) 1S0 is with a wave-
length of 1124.232 nm [44]. As in Eq. (B1), we have

�s = ω3
0

πε0h̄c3
|〈[5s5p] 1P1 ||d||[5s6s] 1S0〉|2. (B2)

With �s = 1.86 × 107 s−1 [45], we estimate
|〈[5s5p] 1P1 ||d||[5s6s] 1S0〉| = 2.09ea0. With this value
and π -polarized laser for the transition, a Rabi frequency
�ps = E |〈[5s6s] 1S0 ||d||[5s5p] 1P1〉| = 2π × 300 MHz

would require an electric field E = 1.12 × 104 V/m, which
corresponds to a beam intensity 16.7 W/cm2, or a laser power
of 0.21 mW if the radius of the laser spot at the atom is 20 µm.
This estimate shows that in principle a gigahertz-scale �ps is
realizable with a laser power over 2 mW.

We did not find data about the transition probability from
(5s15d ) 1D2 to (5s5p) 1P1 in the literature. One can estimate
the dipole matrix element by using Coulomb wavefunc-
tions as done in Refs. [76,77]. By the angular momentum
coupling rules one can find 〈[5s5p] 1P1 ||d||[5s15d] 1D2〉 =
〈5p||d||15d〉, where [76]

|〈5p||d||15d〉| ≈
√

2
∫

rP5p(r)P15d(r)dr, (B3)

which is about 0.092ea0 by using the effective principal quan-
tum numbers for the 5p and 15d states suggested in Ref. [46].
With this estimate, a Rabi frequency of 2π × 144.27 MHz
would require an electric field E = 1.23 × 105 V/m, which
corresponds to a laser power of 25.1 mW if the radius of the
laser spot at the atom is 20 µm (this should be experimentally
feasible for the UV laser, because a power about 30 mW with
a 316.6-nm UV laser was achieved for exciting Rydberg states
of 88Sr in Ref. [12]). Note that the method via Eq. (B3) can be
not as accurate in the two-electron atoms as in the alkali-metal
atoms such as rubidium or cesium. Let us examine if this
estimate is acceptable when we would like to argue that the
Rabi frequency for the 424-nm laser field can be around 2π ×
140 MHz as in this paper. Note that the highest (5snd ) 1D2

state with transition probability to (5s5p) 1P1 studied is with
n = 9 [45]. The dipole matrix element |〈5p||d||nd〉| extracted
by using Eq. (11.33) of Ref. [39] via the data from Ref. [45]
is 0.21ea0 for n = 9, while the method as in Eq. (B3) leads to
0.094ea0 for n = 9 by using the effective principal quantum
numbers suggested in Ref. [46]. This means that the estimate
by Eq. (B3) is likely to be smaller than the actual value, which
further means that the above estimate about the required value
of �pd is within experimental feasibility.

APPENDIX C: HAMILTONIAN MATRIX FOR
NUMERICAL SIMULATION

The theory depends on different AC Stark shifts for
different mJ states. To numerically investigate them, we detail
the Hamiltonian for the states. The state |[5s5p 1P1] − 1,↑〉
is optically excited from the state |[5s5p 3P0]0,↑〉 via an
intermediate state with an effective Rabi frequency �eff, but
is further coupled by hyperfine interaction to |[5s5p 1P1]0,↓〉.
The state |[5s5p 1P1] − 1,↓〉 is optically excited from
the state |[5s5p 3P0]0,↓〉, and is not coupled with other
|[5s5p 1P1], mJ , mI〉 states because |[5s5p 1P1] − 1,↓〉 has the
maximal mJ + mI . To suppress the hyperfine-induced spin
mixing, namely, the coupling between |[5s5p 1P1] − 1,↑〉
and |[5s5p 1P1]0,↓〉, a strong π -polarized laser field
is used to couple |[5s5p 1P1]0,↓〉 and |[5s6s 1S0]0,↓〉
with a Rabi frequency �ps (for brevity, we assume all
laser Rabi frequencies real in this paper). There is a
differential energy shift between [5s5p 1P1] − 1,↓〉 and
|[5s5p 1P1] − 1,↑〉. To effectively remove it so as to
remove frequency resolution in the spontaneous emission,
a highly detuned laser field can couple the 5s5p 1P1 state
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with |[5s15d 1D2]F, mF 〉 via a 424.2399-nm [44] laser.
The hyperfine interaction constants are (A, Q)/2π =
(−194,−75) MHz for 5s15d 1D2 as determined exper-
imentally [33], from which we find that the energies
(/h̄) are about 2π × (−1765,−463, 604, 1453, 2100) for
F = (13/2, 11/2, 9/2, 7/2, 5/2). When we use left-hand
polarized laser field to couple [5s5p 1P1]0,↓〉, |[5s5p 1P1] −
1,↓〉, |[5s5p 1P1] − 1,↑〉 with 5s15d 1D2, only the states
[5s15d 1D2]F, mF 〉 with F = 13/2, 11/2 are coupled. We
label the Rabi frequency for coupling |[5s15d 1D2]F =
13/2, mF = −13/2〉 and |[5s5p 1P1] − 1,↓〉 by �pd, then
the Rabi frequencies for {|[5s15d 1D2]F = 13/2, mF =
−11/2〉 ↔ |[5s5p 1P1]0,↓〉, |[5s15d 1D2]F = 13/2, mF =
− 11/2〉 ↔ |[5s5p 1P1] − 1,↑〉, |[5s15d 1D2]F = 11/2,

mF = −11/2〉 ↔ |[5s5p 1P1]0,↓〉, |[5s15d 1D2]F =
11/2, mF = −11/2〉 ↔ |[5s5p 1P1] − 1,↑〉} are {ξ0, ξ1, ξ2,

ξ3}�pd, where ξ j , j = 0–3 are angular momentum factors.
With a σ−-polarized laser, we have

〈[5s15d 1D2]F, mF |d|[5s5p 1P1]mJ , mI〉
∝

∑
m′

J

C11J ′
mJ (−1)m′

J
CJ ′IF

m′
J mI mF

, (C1)

where J ′ = 2 and m′
J ∈ {−J ′,−J ′ + 1, . . . , J ′} are the to-

tal electron angular momentum and its z projection of the
5s15d 1D2 state, from which we find

{ξ0, ξ1, ξ2, ξ3} = {
√

2/13, 3/
√

13, 3/
√

26, −2/
√

13}.
(C2)

The state 5s6s 1S0 can be populated via the excitation
of |[5s5p 1P1]0,↓〉 in the cooling scheme, and 5s6s 1S0

decays to the state 5s5p 1P1 at a rate 18.6 × 106 s−1

[45], which means that when excited from |[5s5p 1P1]0,↓〉,
the state |[5s6s 1S0]0,↓〉 can decay to |[5s5p 1P1]0,↓〉,
|[5s5p 1P1]1,↓〉, or |[5s5p 1P1] − 1,↓〉 via emission of π -,
σ−-, or σ+-polarized photons. However, because there is a
large AC Stark shift for |[5s5p 1P1]0,↓〉, it is barely popu-
lated, leading to negligible population in 5s6s 1S0. As a result,
the population in |[5s5p 1P1]1,↓〉 is negligible. For this rea-
son, we do not consider the laser excitation of |[5s5p 1P1]1,↓〉
when we analyze the AC Stark shift for suppressing the hy-
perfine interaction. However, we include this state because it
is involved in the decay of the 5s6s 1S0 state.

In the basis of

{|[5s15d 1D2]F = 13/2, mF = −13/2〉, |[5s15d 1D2]F = 13/2, mF = −11/2〉, |[5s15d 1D2]F = 11/2, mF = −11/2〉,
|[5s6s 1S0]0,↓〉, |[5s5p 1P1]0,↓〉, |[5s5p 1P1] − 1,↑〉 |[5s5p 1P1] − 1,↓〉, |[5s5p 3P0]0,↑〉, |[5s5p 3P0]0,↓〉,
|[5s2 1S0]0,↑〉, |[5s2 1S0]0,↓〉, |A 〉, |[5s5p 1P1]1,↓〉}, (C3)

the Hamiltonian consists of the atom-laser interaction Ĥa-l,

Ĥa-l = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(
pd + 
) 0 0 0 0 0 �pd 0 0 0 0 0 0
0 2(
pd + 
) 0 0 ξ0�pd ξ1�pd 0 0 0 0 0 0 0
0 0 2(
pd + Ehf + 
) 0 ξ2�pd ξ3�pd 0 0 0 0 0 0 0
0 0 0 2
 �ps 0 0 0 0 0 0 0 0
0 ξ0�pd ξ2�pd �ps 2
 0 0 0 0 0 0 0 0
0 ξ1�pd ξ3�pd 0 0 2
 0 �eff 0 0 0 0 0

�pd 0 0 0 0 0 2
 0 �eff 0 0 0 0
0 0 0 0 0 �eff 0 0 0 0 0 0 0
0 0 0 0 0 0 �eff 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C4)

the Zeeman shift ĤZee = gJμBJzB − gIμnIzB (we ignore the Zeeman shift for the three 5s15d 1D2 states and |A 〉), and the
hyperfine interaction ĥ which couples |[5s5p 1P1] − 1,↑〉 and |[5s5p 1P1]0,↓〉, where Ehf = 2π × 1.3 GHz as shown above
Eq. (C1); here the detuning is defined as the dipole transition frequency deducted by the laser frequency. The matrix element of
the hyperfine interaction is

〈m′
J , m′

I |ĥ|mJ , mI〉 = 〈m′
J , m′

I |AÎ · Ĵ + Q
3(Î · Ĵ)2 + 1.5Î · Ĵ − IJ (I + 1)(J + 1)

2IJ (2I − 1)(2J − 1)
|mJ , mI〉

= δmJ m′
J
δmI m′

I

[
AmI mJ + Q

3m2
I m2

J + 1.5mI mJ − IJ (I + 1)(J + 1)

2IJ (2I − 1)(2J − 1)

+ Q
3(I + mI )(I − mI + 1)(J − mJ )(J + mJ + 1)�(J − mJ )�(mI + I )

8IJ (2I − 1)(2J − 1)

+ Q
3(I − mI )(I + mI + 1)(J + mJ )(J − mJ + 1)�(J + mJ )�(I − mI )

8IJ (2I − 1)(2J − 1)

]
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+ δm′
J (mJ −1)δm′

I (mI +1)

[
1

2
Aa(mI mJ ) + Q

1.5(mI mJ + (mI + 1)(mJ − 1))a(mI mJ ) + 0.75a(mI mJ )

2IJ (2I − 1)(2J − 1)

]

+ δm′
J (mJ +1)δm′

I (mI −1)

[
1

2
Ab(mI mJ ) + Q

1.5(mI mJ + (mI − 1)(mJ + 1))b(mI mJ ) + 0.75b(mI mJ )

2IJ (2I − 1)(2J − 1)

]

+ δm′
J (mJ −2)δm′

I (mI +2)

[
Q

3a(mI mJ )a
(
(mI + 1)(mJ − 1)

)
8IJ (2I − 1)(2J − 1)

]

+ δm′
J (mJ +2)δm′

I (mI −2)

[
Q

3b(mI mJ )b
(
(mI − 1)(mJ + 1)

)
8IJ (2I − 1)(2J − 1)

]
, (C5)

where �(x) = 1 if x > 0 and �(x) = 0 if x � 0, and

a(mJmI ) =
√

(I − mI )(I + mI + 1)
√

(J + mJ )(J − mJ + 1),

b(mJmI ) =
√

(I + mI )(I − mI + 1)
√

(J − mJ )(J + mJ + 1).

The hyperfine constants are (A, Q)/2π = (−3.4, 39) MHz [40] for (5s5p) 1P1.
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