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QED radiative corrections to electric dipole amplitudes in heavy atoms
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We use the radiative potential method to perform a detailed study of quantum electrodynamics (QED) radiative
corrections to electric dipole (E1) transition amplitudes in heavy alkali-metal atoms Rb, Cs, Fr, and alkali-metal-
like ions Sr+, Ba+, and Ra+. The validity of the method is checked by comparing with the results of rigorous
QED in simple atomic potentials. We study the effects of core relaxation, polarization of the core by the E1
field, and valence-core correlations on QED, which are shown to be important in some cases. We identify several
transitions for which the QED contribution exceeds the deviation between atomic theory and experiment.
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I. INTRODUCTION

In recent years, increasing attention has been given to
the role of quantum electrodynamics (QED) radiative cor-
rections in high-precision studies of heavy and superheavy
many-electron atoms and ions. They have been considered for
binding and excitation energies [1–5] (see, also, calculations
in multiply charged ions [6]), electric dipole (E1) amplitudes
[2,7–9], and the hyperfine structure [1,10–13]. Taking account
of QED radiative corrections was critical in the interpretation
of the atomic parity violation measurement in cesium [14–16]
(see, also, Refs. [2,9,17–20]) and was important for resolving
discrepancies between theory and experiment for the ioniza-
tion potential and electron affinity for gold [21]. See Ref. [22]
for a review of QED corrections to superheavy elements.

The interplay between QED and many-body effects in
heavy many-electron systems has been explored for the bind-
ing and excitation energies [1–5]. No such detailed study of
combined QED and many-body effects has been published
for the E1 amplitudes to date, while it is known [2,7,8] that
such corrections are significant at the level of accuracy of
state-of-the-art calculations (several 0.1%). While an approx-
imate “radiative potential” has been used to evaluate QED
corrections to E1 amplitudes (see, e.g., Refs. [2,8,20,23]), the
validity of such an approach must be carefully checked against
rigorous quantum electrodynamics. The ability to theoreti-
cally describe E1 amplitudes with high precision is important
in a number of different areas, both fundamental and applied,
including in studies of violations of fundamental symmetries
and in the search for new physics [24–26], and atomic polar-
izabilities and application to atomic clocks [27–29] (see, also,
Ref. [30]).

The goals of the current paper are as follows: first, to check
the validity of the radiative potential approach for evaluating
QED radiative corrections to E1 amplitudes in heavy atoms
by comparing with the results of rigorous QED using simple
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atomic potentials. Second, to study in detail the combined
QED and many-body effects to better understand the mech-
anisms and identify which effects are most important and
should be taken into account in accurate studies. Third, to
identify those amplitudes where the relative QED corrections
are particularly large. And, finally, to assess the importance of
the account of QED corrections at the level of atomic theory
precision. We find that in several cases, the QED contribution
exceeds the deviation between atomic theory and experiment.
That is, atomic theory has reached the level of precision where
the QED radiative corrections to E1 amplitudes may be ob-
served in experiments with heavy atoms.

The paper is organized as follows. In Sec. II, we de-
scribe the radiative potential method and use it to find QED
corrections to E1 amplitudes for alkali-metal atoms, and we
compare the results with those of rigorous QED. In Sec. III,
we describe the many-body methods we use in our calcula-
tions. Our results of combined QED and many-body theory
are given in Sec. IV for the atoms and ions Rb, Sr+, Cs, Ba+,
Fr, Ra+, and in Sec. V, we present our results of total E1
amplitudes and compare these with measured values.

II. THE RADIATIVE POTENTIAL METHOD
AND COMPARISON WITH RIGOROUS QED

The radiative potential approach [2,4,5] is used widely in
calculations of QED radiative corrections to energies in many-
electron atoms, ions, and molecules; see, e.g., Refs. [5,8,30–
35]. In essence, this approach is based on the use of a ra-
diative potential which may be added in a simple manner to
atomic many-body methods and computer codes. The radia-
tive potential is comprised of a self-energy (SE) and vacuum
polarization (VP) contribution [2],

Vrad(r) = VSE(r) + VVP(r). (1)

The vacuum polarization correction is well approximated by
the Uehling potential, and the self-energy correction is ap-
proximated by a local potential,

VSE(r) = Vmag(r) + Vhigh(r) + Vlow(r), (2)
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consisting of three parts: magnetic, Vmag, and high-frequency
and low-frequency electric, Vhigh and Vlow. The self-energy
part of the radiative potential is defined such that its expec-
tation value for hydrogenlike ions is equal to the one-loop
self-energy radiative corrections to the energies for these ions.
The electric parts of the potential contain fitting factors to
ensure that the results of rigorous QED are reproduced. We
refer the reader to Refs. [2,4,5] for details and the explicit
expressions. We use the finite-nuclear-size formulas presented
in Refs. [4,5]. Note that in this work, we do not consider
the Wichmann-Kroll contribution to the vacuum polarization,
which gives higher-order binding corrections. Its correction
to the energies is significantly smaller than that from Uehling,
increasing to only a few percent the size of Uehling for the
heavier systems for s states [2,36] and we anticipate a similar
relative contribution for the E1 amplitudes. The size of this
contribution is well within the accuracy of our approach (see
more detail below).

The atoms and ions considered in this work have one
valence electron above closed shells. We consider a number
of different approximation schemes for taking account of the
electron-electron interactions. All calculations begin by solv-
ing the Dirac equation, hDϕ = εϕ, where

hD = cα · p + (β − 1)c2 + Vnuc + Vel (3)

is the single-particle Hamiltonian, c is the speed of light, β

is a 4 × 4 Dirac matrix, α is a vector of Dirac matrices, p
is the momentum operator, ε is the electron binding energy,
and Vnuc and Vel are the nuclear and electronic potentials,
respectively. Atomic units h̄ = me = |e| = cα = 1 are used
throughout, unless otherwise specified. The nuclear potential
Vnuc is found by modeling the nuclear charge with a Fermi
distribution with the usual parameters, 2.3 fm for the 90% to
10% fall-off thickness and the root-mean-square charge radii
from the compilation [37].

A relativistic single-electron orbital with principal quan-
tum number n and relativistic angular momentum quantum
number κ = (l − j)(2 j + 1), where j is the total angular
momentum and m its projection, and l is the orbital angular
momentum, may be written as

ϕnκm(r) = 1

r

(
f (r) �κm

iαg(r) �−κm

)
, (4)

where f (r) and g(r) are upper and lower radial components of
the wave function, and �κm is a spherical spinor. The electric
dipole operator in the length gauge is given by

d = −r, (5)

where r is the position operator. The E1 matrix element (z
component) for a transition between states a and b may be
expressed, via the Wigner-Eckart theorem, as

〈ξa|dz|ξb〉 = (−1) ja−ma

(
ja 1 jb

−ma 0 mb

)
〈naκa‖d‖nbκb〉,

(6)

where ξ contains the quantum numbers n, κ , and m, and
〈nbκb‖d‖naκa〉 is a reduced matrix element, which does
not depend on projections. Throughout this work, we will

FIG. 1. Feynman diagrams for QED corrections to E1 am-
plitudes. Top row: self-energy corrections; bottom row: vacuum
polarization corrections. Wavy lines with triangles represent the E1
field, wavy lines the photon propagator, and double line the bound
electron wave function and propagator. Diagrams on the right corre-
spond to vertex corrections.

simplify the E1 reduced matrix element notation to

zab = 〈naκa‖d‖nbκb〉. (7)

The reduced E1 matrix element is composed of an angular
part Cab, and a radial part rab,

zab = −Cabrab = −Cab

∫ ∞

0
dr ( fa fb + α2gagb)r. (8)

This expression corresponds to the lowest-order E1 amplitude.
By adding the radiative potential to the atomic Hamilto-

nian, Eq. (3), QED radiative corrections to the energies and
to the wave functions are obtained. These wave functions,
perturbed by the QED interactions, may then be used in
the matrix elements to yield the QED corrections to the E1
amplitudes in the radiative potential approach. Throughout
this work, the radiative corrections are found by performing
the calculations with and without the radiative potential, and
taking the difference in the results,

δQED = 〈ñaκa||d‖ñbκb〉 − 〈naκa‖d‖nbκb〉, (9)

where the wave functions perturbed by the radiative potential
are indicated by the tilde. This is how the QED corrections are
found at any considered level of many-body theory.

In Fig. 1, the one-loop self-energy and vacuum polar-
ization corrections to the E1 amplitude are illustrated. The
left and middle diagrams give the SE and VP contributions
that correspond to corrections to the electron wave functions.
The diagrams on the right are the vertex corrections and
cannot be included through corrections to wave functions.
From the “low-energy theorem,” the vertex corrections are
expected to be small compared to the “perturbed orbital”
corrections (see, e.g., Ref. [2] for discussion). Indeed, in
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TABLE I. Self-energy corrections to E1 matrix elements be-
tween lowest s and p1/2 states of alkali-metal atoms in the
Kohn-Sham potential, expressed as relative corrections Rab; see
Eq. (12). Lowest-order radial integral rab is given in the first column
of results. Radiative potential results are separated into s-wave and
p-wave perturbed-orbital contributions, PO(s) and PO(p). Results of
rigorous QED calculations [7] are presented for comparison in the
final three columns.

This work Sapirstein and Cheng [7]

Atom |rab| PO(s) PO(p) PO(s) PO(p) Vertexa

Na 4.588 0.032 0.000 0.031 0.001 −0.015
K 5.681 0.069 0.000 0.067 0.000 −0.003
Rb 6.009 0.190 0.000 0.182 0.000 0.028
Cs 6.585 0.334 −0.001 0.326 0.000 −0.065
Fr 6.511 0.777 −0.014 0.787 0.202 −0.060

aVertex and other corrections. A full breakdown of these contribu-
tions is given in Table II of Ref. [7].

this case, the electric dipole operator, which acts at large
distances, is essentially “locked” inside the photon loop lo-
cated at small distances from the nucleus. Therefore, it is the
perturbed-orbital corrections—those that may be found using
a radiative potential—that are anticipated to give the largest
contributions.

To gauge the accuracy of the radiative potential approach
for evaluation of QED radiative corrections to E1 amplitudes,
we calculate the corrections in the same atomic potential used
in rigorous QED calculations and compare the results. The
only such rigorous QED calculations for many-electron atoms
were performed by Sapirstein and Cheng [7]; the calculations
were performed for alkali-metal atoms in the Kohn-Sham
atomic potential. In the Kohn-Sham approximation, the elec-
tronic potential Vel in Eq. (3) is approximated by

Vel(r) =
∫ ∞

0
dr′ ρt (r′)

r>

− 2

3r

[
81

32π2
rρt (r)

]1/3

, (10)

where

ρt (r) =
N∑

i=1

[
f 2
i (r) + α2g2

i (r)
]

(11)

is the charge density formed from all N electrons in the atom,
and r> = max (r, r′). In this approximation, all electrons are
included in the self-consistent solution for the atomic poten-
tial. At large distances, the valence electron should “see” the
potential of a single positive charge. Since Eq. (11) includes
the valence electron, the Latter correction [38] is included
explicitly to force the potential to decay as 1/r.

In Table I, we present our results for the self-energy correc-
tions to E1 amplitudes obtained using the radiative potential
alongside the rigorous QED results of Sapirstein and Cheng
[7]. Results from sodium to francium are shown. Following
Ref. [7], the values are expressed as a relative correction Rab,

rab + δrab = rab

(
1 + α

π
Rab

)
. (12)

It is seen from both works that for the considered systems,
the perturbed-orbital contribution is given in its entirety by

the QED-perturbed s orbitals, except for the case of francium.
For the s-perturbed contributions, the results of our work are
in excellent agreement with those of Ref. [7], differing by
only ∼1%. For Fr, the p-perturbed contribution is different
in magnitude and sign and, according to Ref. [7], contributes
as much as 20% to the total SE correction, while in our
evaluation, it is much smaller; the reason for this difference
is not clear. It is seen from the results of Ref. [7] that tak-
ing account of the vertex contribution is important for Na,
though less so for the heavier elements, where it contributes
from just a few percent of the total SE correction for some
elements and up to 25% for Cs. From this comparison, we
then estimate that the uncertainty associated with the use
of the radiative potential for evaluation of QED corrections
to E1 amplitudes for atoms from potassium and heavier is
about 25%. Since the QED corrections are overwhelmingly
determined by perturbed-orbital contributions to the s states,
including for p − d transitions where it is the QED contribu-
tions to core s states that determine the effect (as we see below
in Sec. IV), we use the uncertainty estimate of 25% for all
considered transitions. In the following sections, we consider
the influence of many-body effects on the QED correction.

III. MANY-BODY METHODS

For heavy atoms, the QED contribution to E1 matrix el-
ements comes mostly from perturbed-orbital corrections to s
states, which the radiative potential method accurately mod-
els; see Table I. As we show in this section, the combination of
many-body effects with QED is often more important than the
missed effects. The most important is the so-called relaxation
effect, which is dominated by perturbed-orbital corrections to
s states in the core. Such effects would be cumbersome to
evaluate in rigorous QED, though straightforward using the
radiative potential approach.

In this section, we outline the many-body effects that are
taken into account alongside the QED corrections in this
work. In Secs. III A, III B, and III C we describe the effects
which are included with (and without) the radiative potential
to yield a QED radiative correction in the considered ap-
proximation [see Eq. (9)]—core relaxation, core polarization,
and (fitted) second-order correlations. In Secs. III C and III D,
we describe higher-order and other many-body corrections—
all-orders correlation corrections, structural radiation and
normalization of states, and Breit—that are included for a
high-precision evaluation of the full E1 matrix element, the
results of which we present in Sec. V.

A. RHF and core relaxation

For alkali-metal atoms and alkali-metal-like ions, the start-
ing approximation for the many-body consideration is the
relativistic Hartree-Fock (RHF) approximation in the potential
formed from the N − 1 core electrons, with

Vel = V N−1
HF (13)

in Eq. (3); see, e.g., Ref. [39] for explicit expressions. In
the previous section, QED radiative corrections were consid-
ered to arise due to interactions involving just the valence
states. However, radiative corrections are also produced due to

022813-3



FAIRHALL, ROBERTS, AND GINGES PHYSICAL REVIEW A 107, 022813 (2023)

interactions taking place in the electron core. This is readily
taken into account by adding the radiative potential to the
Hartree-Fock Hamiltonian for the core,

(hD + Vrad)ϕ′
c = ε′

cϕ
′
c, (14)

and finding new core states (ϕ′
c), energies (ε′

c), and a new
RHF potential Ṽ N−1

HF from the self-consistent solutions. New
valence electron states ϕ′ and energies ε′ may then be found
in this new potential. These corrections are referred to as core
relaxation radiative corrections (see Refs. [4,5,40] for more
detail).

B. Core polarization

When subjected to an external field of frequency ω, e.g.,
an electric dipole field, the core electrons in an atom become
perturbed,

ϕ + δϕ = ϕ + Xe−iωt + Yeiωt , (15)

and a correction to the Hartree-Fock potential is produced, in
a similar manner to the core relaxation mechanism described
in the previous section. The perturbation is included in calcu-
lations via the time-dependent Hartree-Fock (TDHF) method,
which is equivalent to the random phase approximation with
exchange (RPA) [41–43]. The TDHF equations,

(hD − εc − ω)Xc = −(dz + δVE1)ϕc, (16)

(hD − εc + ω)Yc = −(dz + δV †
E1)ϕc, (17)

are solved self-consistently for all core states; δVE1 is the
correction to the RHF potential arising from E1 corrections
to core orbitals. The perturbation of the electron core by the
external field is called core polarization and is an important
many-body effect. Taking account of core polarization leads
effectively to an addition to the electric dipole operator,

〈a|dz|b〉 → 〈a|dz + δVE1|b〉. (18)

To account for the QED radiative corrections, Vrad is added to
hD in the RHF and TDHF equations.

C. Valence-core electron correlations

We take into account valence-core electron correlations
using the correlation potential method [44]. In this method,
a nonlocal, energy-dependent correlation potential �(r, r′, ε)
is added to the RHF equations, yielding Brueckner orbitals
ϕ(Br) and energies ε(Br) for the valence electron,

(hD + �)ϕ(Br) = ε(Br)ϕ(Br). (19)

The calculation of E1 matrix elements with valence-core cor-
relations and core polarization included corresponds to the
evaluation of 〈

ϕ(Br)
a

∣∣dz + δVE1

∣∣ϕ(Br)
b

〉
. (20)

A simple and effective way to account for missed higher-
order many-body corrections in the correlation potential may
be implemented through the introduction of a fitting factor
f , � → f �, which is found from Eq. (19) by varying f
until the experimental binding energies are reproduced. For
evaluation of QED radiative corrections with core polarization

and valence-core correlations included, we consider the cor-
relation potential in the (lowest) second order in the Coulomb
interaction, which we denote by �(2), with fitting included.

For the full E1 matrix element evaluation, which we per-
form in Sec. V, the all-orders correlation potential �(∞) is
used and fitting is also included. The QED corrections do
not change in any significant way, whether the core-valence
correlation potential is taken to be �(2) or �(∞). However,
inclusion of the all-orders correlation potential for the full
E1 matrix elements significantly improves the theory re-
sult; with fitting included in both approaches, however, the
difference between the results is very much reduced. For
evaluation of the all-orders correlation potential, we use the
Feynman diagram approach. Three classes of diagrams are
included to all-orders in the Coulomb interaction: screening
of the Coulomb interaction by the core electrons [45], the
hole-particle interaction inside hole-particle loops [46], and
chaining of the correlation potential [44,47]. For more detail
about the all-orders correlation potential method, we refer the
reader to the references above or to the review [24].

D. Other many-body corrections to E1 amplitudes

In our high-precision calculations of the full E1 ampli-
tudes, we include several other many-body corrections that
enter at the level of a fraction of a percent. One of these is the
Breit correction, which accounts for magnetic and retardation
corrections to the electron-electron Coulomb interaction. The
Breit interaction between electrons i and j is given by

hB
i j = − 1

2ri j

(
αi · α j + (αi · ri j )(α j · ri j )

r2
i j

)
, (21)

where ri j = ri − r j . The Breit interaction is included in the
RHF and TDHF equations, and the self-consistent solutions
are used to form the second-order correlation potential; see,
e.g., Ref. [48].

A further many-body correction arises from diagrams cor-
responding to an external field (E1 field) acting on internal
lines of the second-order correlation potential, termed struc-
tural radiation. At the same (third-order) level of perturbation
theory, there is another correction that arises due to the change
in the normalization of states. We include both structural
radiation and normalization of states corrections in our cal-
culations of all-orders E1 amplitudes; we refer the reader to
Refs. [49,50] for more details.

IV. QED RESULTS

We present our results for QED corrections to E1 am-
plitudes in three tables, highlighting the contributions of
different many-body effects: first, we show the effect of taking
account of core relaxation, which is demonstrated for s − p
and p − d transitions for francium (Table II); then we show
a detailed account of the many-body contributions to QED—
core relaxation, core polarization, second-order valence-core
correlations, and fitted second-order correlations—for cesium
(Table III); and, finally, we present our final QED results for
the other systems considered in this work, Rb, Sr+, Ba+, Fr,
and Ra+ (Table IV).

022813-4



QED RADIATIVE CORRECTIONS TO ELECTRIC DIPOLE … PHYSICAL REVIEW A 107, 022813 (2023)

TABLE II. Vacuum polarization (δVP), self-energy (δSE), and to-
tal QED (δQED) corrections to E1 matrix elements in Fr. Results in
the frozen RHF potential (RHF0) and with core relaxation included
(RHF) are given. Corrections are to the absolute values of the lowest-
order E1 reduced matrix elements, |zab|, in the RHF approximation.
Units: |e|a0.

RHF0 (10−3) RHF (10−3)

a b |zab| δVP δSE δQED δVP δSE δQED

7s1/2 7p1/2 5.144 −2.07 9.04 7.00 −2.28 9.06 6.82
7p3/2 7.090 −3.40 14.38 11.04 −3.82 14.70 10.94

6d3/2 7p1/2 9.222 −0.19 0.67 0.48 0.40 −3.54 −3.14
7p3/2 4.283 0.00 0.22 0.22 0.35 −2.06 −1.72

6d5/2 7p3/2 12.804 −0.01 1.27 1.26 0.77 −5.09 −4.32

In Table II, we show the effect of core relaxation for s − p
and p − d transitions of Fr. The calculations are performed
at the RHF level of approximation. In the first instance, no
QED corrections are included in the core; this is denoted
by RHF0 in the table. In the second case, the radiative po-
tential is added to the Hamiltonian from the beginning, that
is, including for the core states; we denote this by RHF in
the table. We present the results for vacuum polarization and
self-energy separately and together. As is to be expected from
consideration of the QED radiative corrections to the energies

TABLE III. Absolute QED radiative corrections δQED to E1 am-
plitudes for Cs in different approximations. Relativistic Hartree-Fock
in the frozen potential “RHF0”, with core relaxation included “RHF”,
with core polarization “+δVE1”, with second-order correlation po-
tential “+� (2)”, and with fitted second-order correlation potential
“+λ� (2)”. The absolute values of the E1 reduced matrix elements
|zab| are included for reference, in both RHF and λ�(2) approxima-
tions. Units: |e|a0.

|zab| δQED (10−3)

a b RHF λ� (2) RHF0 RHF +δVE1 +� (2) +λ� (2)

6s1/2 6p1/2 5.28 4.50 3.12 3.26 3.34 3.51 3.49
7p1/2 0.37 0.27 −2.12 −2.50 −2.41 −2.29 −2.35
6p3/2 7.43 6.33 4.59 4.80 4.93 5.20 5.17
7p3/2 0.69 0.56 −2.51 −2.94 −2.82 −2.55 −2.65

7s1/2 6p1/2 4.41 4.27 −3.76 −4.59 −4.44 −4.45 −4.48
7p1/2 11.01 10.30 6.40 6.91 6.88 7.19 7.14
6p3/2 6.67 6.52 −4.75 −5.77 −5.56 −5.42 −5.49
7p3/2 15.34 14.31 9.19 9.90 9.86 10.29 10.23

6p1/2 5d3/2 8.98 7.04 −0.04 −1.90 −1.83 −2.89 −2.81
6d3/2 2.62 4.25 0.38 3.16 3.06 3.11 3.27

6p3/2 5d3/2 4.06 3.17 0.04 −0.83 −0.78 −1.33 −1.29
6d3/2 1.34 2.10 0.39 1.72 1.67 1.77 1.83
5d5/2 12.19 9.69 0.40 −2.23 −2.10 −3.32 −3.20
6d5/2 4.02 6.15 0.54 4.63 4.48 4.54 4.70

7p1/2 5d3/2 4.04 2.07 −0.34 −3.32 −3.31 −3.33 −3.49
6d3/2 19.62 18.01 0.03 −1.85 −1.81 −3.11 −3.03

7p3/2 5d3/2 1.69 0.82 −0.30 −1.64 −1.64 −1.59 −1.68
6d3/2 8.86 8.08 0.10 −0.83 −0.80 −1.53 −1.48
5d5/2 5.02 2.64 −0.31 −4.49 −4.49 −4.20 −4.45
6d5/2 26.61 24.38 0.60 −2.18 −2.11 −3.76 −3.67

[2,4,5], the self-energy corrections dominate and the vacuum
polarization corrections are significantly smaller and of oppo-
site sign. The effect of core relaxation on the s − p transitions
is relatively small. However, the core relaxation correction is
very important for the p − d transitions, changing the sign
of the QED correction and increasing its size by up to an
order of magnitude. It is worth noting that the core relaxation
effect is seen in most cases to be larger for the (δ-function-
like) Uehling potential (vacuum polarization) than for the
longer-range self-energy. The importance of accounting for
core relaxation in the QED corrections to the energies is well
established; see, e.g., Refs. [2,4,5,40]. The core relaxation cor-
rections arise mostly due to QED perturbation of the s states
within the atomic core, influencing the non-s states through
the Coulomb interaction. The radiative potential accurately
accounts for these corrections arising from QED perturbation
of the s orbitals, as we saw in Sec. II, Table I.

In Table III, we present QED corrections to s − p and
p − d E1 matrix elements for Cs, showing the effect of taking
account of many-body effects at different levels of approxi-
mation. At each level of approximation, the QED correction is
found as the difference between the result obtained with and
without the radiative potential. We present lowest-order re-
sults |zab| for two approximations of particular interest: (1) at
the RHF level and (2) with core polarization and fitted second-
order correlation corrections, which we denote as λ�(2) in the
table. We present the magnitude of these values, and the signs
of the QED corrections are taken to be relative to these. Across
all transitions considered for cesium, we see that the effect of
core relaxation is to increase the size of the QED correction.
For the s − p transitions, this increase ranges from ∼1% to
∼10%. For the p − d transitions, as we saw for francium, the
account of core relaxation entirely determines the sign and
size of the correction, which is produced due to QED pertur-
bation of the core s states. The core relaxation corrections to
the p − d transitions are so significant that the values reach
the same order of magnitude as the QED corrections for s − p
matrix elements.

It is seen from Table III that taking account of core
polarization—the electric dipole field acting on the core
orbitals—has essentially no effect on the QED corrections.
Also of limited influence is the scaling of the correlation
potential, mimicking the account of higher-order correlation
corrections. What is important, however, is the account of
correlations in the first instance. It is seen that when the
correlation potential is taken into account, the QED correc-
tions change by as much as a factor of two for some of
the p − d matrix elements, while the s − p matrix elements
hardly change. The correlation corrections for d states are
very large: for the energies, the corrections may be ∼25%
(see, e.g., Ref. [51]), and for the E1 matrix elements, it can
be seen from the table that in some cases they are as much as
50%. The effect of taking account of the correlation potential
is to pull the valence wave functions in closer to the nucleus.
The likely explanation for the increase in the size of the QED
corrections is the increased overlap of the d states with the
core s states.

Therefore, we have seen that the most important many-
body corrections to consider are core relaxation and taking
account of core-valence correlations, with the former the most
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TABLE IV. Reduced E1 matrix elements and QED radiative corrections for Rb, Sr+, Ba+, Fr, and Ra+ in different approximations. The
absolute values of the E1 reduced matrix elements in both the RHF and the fitted second-order correlation potential (“λ�(2)”) approximations
are included. The absolute QED correction in the fitted second-order correlation potential approximation is included for each atom under
“δQED”. The ground-state principal quantum number n = 5 for Rb and Sr+, n = 6 for Ba+, and n = 7 for Fr and Ra+. Units: |e|a0.

Rb Sr+ Ba+ Fr Ra+

a b RHF λ� (2) δQED RHF λ� (2) δQED RHF λ� (2) δQED RHF λ� (2) δQED RHF λ� (2) δQED

(10−3) (10−3) (10−3) (10−3) (10−3)

ns1/2 np1/2 4.82 4.24 1.93 3.48 3.07 1.13 3.89 3.32 2.05 5.14 4.28 6.52 3.88 3.23 3.80
(n + 1)p1/2 0.38 0.32 −1.20 0.07 0.04 1.13 0.07 0.09 2.13 0.46 0.29 −3.95 0.13 0.07 3.62
np3/2 6.80 5.98 2.77 4.92 4.34 1.66 5.48 4.68 3.14 7.09 5.89 10.55 5.34 4.48 6.57
(n + 1)p3/2 0.61 0.52 −1.47 0.16 0.01 −1.39 0.26 0.04 −2.43 1.10 0.89 −3.24 0.63 0.36 −3.26

(n + 1)s1/2 np1/2 4.26 4.16 −2.42 2.38 2.35 −1.76 2.55 2.51 −3.20 4.53 4.27 −7.49 2.64 2.55 −5.25
(n + 1)p1/2 10.29 9.72 4.05 6.81 6.53 2.19 7.39 7.02 3.87 10.78 10.08 13.09 7.37 6.97 7.08
np3/2 6.19 6.07 −3.02 3.50 3.47 −2.20 3.96 3.90 −3.94 7.74 7.51 −9.06 4.81 4.69 −6.47
(n + 1)p3/2 14.46 13.64 5.64 9.58 9.18 3.10 10.31 9.78 5.71 14.43 13.33 20.63 9.88 9.32 11.93

np1/2 (n − 1)d3/2 9.05 8.03 −0.57 3.73 3.11 −0.68 3.75 3.07 −1.26 9.22 7.23 −5.25 4.45 3.56 −2.99
nd3/2 0.24 1.34 0.78 4.33 4.30 0.29 5.14 4.90 0.53 1.96 3.49 7.97 4.53 4.36 2.56

np3/2 (n − 1)d3/2 4.08 3.63 −0.19 1.66 1.38 −0.33 1.64 1.34 −0.63 4.28 3.33 −2.82 1.88 1.51 −1.56
nd3/2 0.16 0.66 0.49 2.00 1.98 0.26 2.45 2.34 0.47 1.38 2.17 4.27 2.49 2.41 1.43
(n − 1)d5/2 12.24 10.89 −0.51 5.00 4.19 −0.84 5.00 4.13 −1.56 12.80 10.24 −6.39 5.86 4.83 −3.73
nd5/2 0.49 1.97 1.31 5.96 5.92 0.66 7.25 6.93 1.22 4.25 6.18 10.31 7.25 6.99 3.76

(n + 1)p1/2 (n − 1)d3/2 6.73 5.22 −0.99 0.03 0.05 0.28 0.35 0.25 0.40 4.63 2.57 −8.79 0.11 0.01 1.70
nd3/2 18.70 18.20 −0.49 9.09 8.58 −0.85 9.19 8.67 −1.65 19.83 18.36 −4.71 10.21 9.57 −4.07

(n + 1)p3/2 (n − 1)d3/2 2.96 2.28 −0.56 0.03 0.04 0.15 0.19 0.14 0.20 1.69 0.80 −3.73 0.17 0.13 0.60
nd3/2 8.44 8.20 −0.09 4.04 3.81 −0.45 4.02 3.78 −0.93 9.18 8.35 −3.24 4.33 4.04 −2.38
(n − 1)d5/2 8.83 6.83 −1.52 0.08 0.11 0.42 0.54 0.42 0.57 4.87 2.61 −9.29 0.46 0.34 1.72
nd5/2 25.34 24.62 −0.25 12.16 11.48 −1.15 12.22 11.52 −2.29 27.56 25.36 −7.12 13.37 12.57 −5.62

significant. These corrections determine the sign and magni-
tude of the QED corrections for p − d matrix elements, while
they have far less influence on the QED corrections for s − p
matrix elements. Still, what we see for the considered transi-
tions in cesium is that taking account of many-body effects
can change the QED corrections to s − p matrix elements by
as much as 20%.

In Table IV, we present reduced E1 matrix elements and
QED corrections for s − p and p − d transitions for the re-
maining atoms and ions considered in this work. Here, we
present three results for each transition: the E1 matrix ele-
ments at the RHF and “λ�(2)” approximations, and the total
QED correction to the E1 matrix elements including all many-
body effects that were considered for cesium in Table III. (The
QED results in Table IV are evaluated at the same level of
approximation as those in the final column of Table III.) As we
saw for cesium, taking account of core relaxation changes the
size of the effect by ∼10% for s − p transitions, ranging from
just a fraction of a percent, e.g., for the 8s − 8p1/2 transition
in Ra+, through to corrections of typically about 20% for
ns − (n + 1)p and (n + 1)s − np transitions for all considered
systems.

Indeed, for s − p transitions with a change in principal
quantum number, the overlap of the wave functions is reduced,
and the E1 matrix elements are significantly smaller than in
the case of transitions with the same n. However, there is
no reason for suppression of the absolute QED corrections
to these matrix elements. Therefore, it would be expected
that the relative size of the QED corrections in these cases
is enhanced. This is what we observe. We also see that the

QED corrections for s − p matrix elements with a change in
n are more sensitive to the account of many-body effects, in
particular to core relaxation. This is consistent with the results
for cesium.

For the p − d transitions, taking account of core relax-
ation changes the magnitude and often the sign of the QED
corrections, as we saw for cesium. Without taking account
of the many-body effects, the QED corrections to the p − d
matrix elements are typically an order of magnitude smaller
than those for s − p transitions (in absolute units). Expressed
as relative corrections, they are usually smaller still for p − d
transitions, due to the large lowest-order E1 matrix elements
that are typical. However, there are exceptions, particularly
when the transition is between states with a change of 2 in
principal quantum number n, with a correspondingly small
lowest-order amplitude. This is the case, for instance, for the
8p − 6d transitions in Ra+, where the relative corrections are
as large as, or several times larger than, the corrections for the
7s − 7p transition.

With taking account of many-body effects in the QED
contributions, we observe that the absolute QED corrections
for s − p and p − d transitions vary by only up to an order
of magnitude across each atom or ion. As we would expect,
we see that the absolute size of the corrections increases with
nuclear charge Z , and is smaller for the neighboring ions. The
magnitude of the lowest-order values, on the other hand, is
very similar for all considered neutral atoms, and tends to
be smaller for the ions. The largest relative QED corrections,
therefore, are seen generally for the heavier and more ionized
systems.
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TABLE V. Final QED corrections δQED and total theory values
“Theory” for E1 reduced matrix elements between states a and b
alongside experimental values “Expt.” Deviations � from experi-
mental central values are given in the two final columns as absolute
and percentage differences. Instances where |δQED| is larger than |�|
are shown in italics. Dagger (†) indicates that the deviation is within
the experimental uncertainty. Units: |e|a0.

a b δQED Theory Expt. � �(%)

Rb
5s1/2 6p1/2 −0.0012 0.3232 0.3235(9)a −0.0003 −0.1†

6p3/2 −0.0015 0.5256 0.5230(8)a 0.0026 0.5

Cs
6s1/2 6p1/2 0.0034 4.5052 4.5057(16)b −0.0005 −0.01†

7p1/2 −0.0023 0.2776 0.2781(4)c −0.0005 −0.2
6p3/2 0.0051 6.3402 6.3398(22)b 0.0004 0.01†

7p3/2 −0.0026 0.5741 0.5742(6)c −0.0001 −0.01†

7s1/2 6p1/2 −0.0044 4.2389 4.249(4)d −0.010 −0.2
6p3/2 −0.0054 6.4740 6.489(5)d −0.015 −0.2

Ba+

6s1/2 6p1/2 0.0020 3.3214 3.3251(21)e −0.0037 −0.1
6p3/2 0.0031 4.6886 4.7017(27)e −0.0131 −0.3

Fr
7s1/2 7p1/2 0.0064 4.2895 4.277(8)f 0.013 0.3

7p3/2 0.0105 5.9065 5.898(15)f 0.009 0.1†

Ra+

7s1/2 7p3/2 0.0065 4.4827 4.484(13)g −0.001 −0.02†

6d5/2 7p3/2 −0.0038 4.7889 4.788(14)g 0.001 0.02†

aRef. [52]; bRef. [53] (average of data from Refs. [54–64]);
cRef. [65]; dRef. [66]; eRef. [67]; fRef. [68]; gRef. [69].

V. HIGH-PRECISION E1 AMPLITUDES

In this section, we present our results of full all-orders
evaluation of E1 matrix elements, taking into account all
many-body corrections described in Sec. III, and we highlight
the contribution of the QED corrections to the amplitudes. We
consider those transitions for which there are high-precision
experimental data available to compare with, and which have
relatively significant QED corrections (�0.1%).

Our results are shown in Table V. The values under the
heading “Theory” are our final results, which include the QED
corrections explicitly given under the heading “δQED”. These
theory results were found in the all-orders correlation poten-
tial method, with the final correlation potential corresponding
to the fitted all-orders λ�(∞), and with Breit correction, struc-
tural radiation, and normalization of states included. The QED
values in this table are slightly different from those presented
in the earlier tables, Tables III and IV. This is because the
QED corrections have been found with taking account of the
higher-order correlation corrections; see Eq. (9). We refer the
reader to Sec. III for more information about the approach;
a more detailed description of the method, along with results
spanning many more transitions, can be found in Ref. [70].

In the remaining three columns of Table V, we present
the experimentally determined E1 matrix elements and the

deviations between our results and experiment (in absolute
units and as a percentage). For all considered cases, the de-
viations are within several 0.1%. And, in fact, for most cases,
the deviation is only 0.1% or less. This level of agreement
for high-precision many-body calculations for heavy atoms
and ions is unprecedented. The account of QED corrections,
while small, makes a meaningful contribution to the final
many-body results in several instances. Those cases for which
the size of the QED correction exceeds the deviation of the
final theory result from experiment are indicated in italics.
Notably, this includes four transitions in cesium, 6s − 6p and
6s − 7p; it is worth mentioning that these transitions are par-
ticularly important for the calculation of the cesium atomic
parity violating amplitude [17–19]. This demonstrates that
high-precision many-body atomic calculations have reached
the level of precision where QED contributions are important.

We note that while the deviations of the theory values from
experiment give an indication of the accuracy of atomic many-
body methods, it is also possible to assign reliable estimates
for the uncertainty of the theory calculations from first princi-
ples. This is studied at great length in our paper [70], where
a detailed survey of theoretical and experimental E1 matrix
elements is carried out, and a robust estimate for the theory
uncertainty for the all-orders correlation potential method is
proposed and tested.

VI. CONCLUSION

We have used the radiative potential method to carry out
a detailed study of the combination of QED and many-body
effects for electric dipole matrix elements. From comparison
with rigorous QED, we have found that the radiative poten-
tial method can be used to evaluate corrections to E1 matrix
elements for heavy atoms with an accuracy of about 25% or
better for most atoms. Our study of the influence of many-
body effects shows that taking account of core relaxation and
valence-core electron correlations is particularly important
and can change the QED correction by an order of magnitude.
For transitions with a change in principal quantum number,
the relative QED corrections may be large and they could be
exploited to test QED in heavy atoms. We have also performed
all-orders many-body calculations for full E1 matrix elements.
Comparison with experiment shows that the calculations of
E1 matrix elements have reached the level of about 0.1%
uncertainty. There are several transitions for which the QED
contribution is larger than the deviation of the calculated E1
matrix element from experiment. That is, atomic theory has
reached the level of precision where the QED corrections to
E1 amplitudes may be resolved in heavy-atom experiments.
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