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We present a systematic calculation of the electric dipole forbidden transitions in the homonuclear molecular
ion H2

+. We get that the transition rate from the ground ortho (v=0, N =1, J =1/2) state to the ground para
(v=0, N =0, J =1/2) state is 4.9×10−14 s−1, which corresponds to the lifetime of 6.4×105 yr. The Einstein
coefficient Ann′ for the (v=1, N =1, J =1/2)→ (v=0, N =0, J =1/2) transition is equal to 0.12×10−9 s−1,
which is of comparable order with the values for quadrupole transitions in H2

+. It gives hope that the ortho-para
transitions in H2

+ can be explored by laser spectroscopy.
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I. INTRODUCTION

Forbidden E1 transitions between ortho (triplet in the
proton spins, I = 1) and para (singlet, I = 0) states in the
hydrogen molecular ion H2

+ are of significant interest. So
far, only transitions between near-threshold high vibrational
v ∼ 18−19 states were studied numerically [1] and experi-
mentally [2], where it was discovered that due to strong g/u
state mixing (gerade/ungerade electronic symmetry states)
near threshold the transition rate is high enough for spec-
troscopic measurements. For example, the rate of the (v =
19, N = 1) → (v = 18, N = 0) transition is 9.6 × 10−6 s−1.

In the case of a hydrogen molecule H2, Wigner gave a
qualitative estimate for the E1 radiative decay rate from or-
tho to para hydrogen as Rest = 10−14 s−1 (see Ref. [3]). First
calculations by Raich and Good [4] showed that the decay
rate of the X 1�+

g (N =1) lowest vibrational ortho state is
about ∼2×10−13 yr−1, many orders of magnitude smaller than
the nominal rate due to strong cancellations. Dodelson [3]
reanalyzed the calculations of Raich and Good using a fully
quantum electrodynamical approach, introduced by Feinberg
and Sucher [5] for calculations in the helium atom, and de-
rived additional terms, which change the previous result by
about 20%. Later, Pachucki and Komasa [6] extended the
calculations by taking into account both E1 and M2 transi-
tions, resulting in an E1 decay rate of the (v=0, N =1, J =1)
ortho state equal to 1.68×10−13 yr−1 (or 5.3×10−21 s−1).
The radiative lifetimes of the 1sσg (v=0, N =1, J =1/2) or-
tho state of the H2

+ molecular ion have been only roughly
estimated in Ref. [1]. Our calculation shows that this estimate
was incorrect.

In the present work we intend to perform calculations of
the E1 forbidden transitions for the hydrogen molecular ion
H2

+ at low v and N , which take into account all relativistic
corrections of order (me/mp)(Zα)2 to the transition amplitude.
We intend to show that in the case of the E1 decay, transition

rates are much higher than for the neutral molecule and are in
agreement with Wigner’s estimate for this quantity.

In what follows we assume atomic units: h̄ = |e| =
me = 1.

II. THE HAMILTONIAN

In this work we adopt the following notations: v is the
vibrational quantum number, and N is the total orbital angular
momentum of the nonrelativistic wave function. The spin part
is described by the spin operators of two protons, I1, I2, and
the spin of an electron, se; I = I1 + I2 is the total nuclear spin;
F = I + se is the total spin of the H2

+ ion; and J = F + N
is the total angular momentum. Thus, the ground para state
is denoted (v = 0, N = 0, I = 0, F = 1/2, J = 1/2). The ex-
cited rotational ortho state of the ground vibrational level
(v = 0, N = 1) has two spin states: F =1/2 and F =3/2. We
will call the first state the ground ortho state. The triplet states
with the total spin F =3/2 are not coupled to the subspace of
the singlet nuclear spin states, at least within the first-order
corrections to the wave function considered in this work. For
this reason we will ignore the F =3/2 states in our studies
and will use the shorter notation for description of a state:
(v, N, J ).

The Hamiltonian for an ion interacting with the radiation
electromagnetic field, which also includes the leading order
Breit-Pauli corrections, is expressed as follows:

H = H0 + HBP + HI , (1)

where H0 is the zero-order nonrelativistic Hamiltonian of the
particles, HBP is the Breit-Pauli Hamiltonian, and HI is the
part which describes the interaction of the ion with the elec-
tromagnetic field.
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The nonrelativistic Hamiltonian in the center of mass frame
may be written as

H0 = p2
1

2M
+ p2

2

2M
+ p2

e

2me
− Z

r1
− Z

r2
+ Z2

R
, (2)

where ri = re−Ri and R = R2−R1 are electron coordinates
relative to nuclei and internuclear position vectors in the
molecular coordinate notations, (re, R1, R2) and (pe, p1, p2)
are the position vectors and momenta of particles in the center
of mass frame, M = mp is the proton mass, and Z = 1 is

the proton charge. According to the tradition accepted in the
theory of the light atoms, we will keep using Z for the proton
charge in order to distinguish between two scales: α, fine
structure constant, and v/c ≈ Zα, mean particle velocity in
a bound system.

The Breit-Pauli Hamiltonian HBP is the leading-order rela-
tivistic correction (see, for example, Ref. [7]). Here we need
only the spin-spin and spin-orbit interactions responsible for
the g/u mixing; we will follow the notations of Ref. [8]. The
spin-spin and spin-orbit interactions are expressed, respec-
tively, as

Hss = α2 (1 + κe)(1 + κp)

memp

8π

3
[(se · I1)δ(r1) + (se · I2)δ(r2)]. (3)
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{
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2m2
e
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r3
1
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r3
2

]
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memp

[
[r1 × p1]

r3
1

+ [r2 × p2]

r3
2

]
se

− 1 + 2κp

2m2
p

[
[r1 × p1]

r3
1

I1 + [r2 × p2]

r3
2

I2

]
+ 1 + κp

memp

[
[r1 × pe]

r3
1

I1 + [r2 × pe]

r3
2

I2

]}
. (4)

The operators which connect ortho and para states are

H−
ss = α2 (1 + κe)(1 + κp)

memp

4π

3
{(se · I−)[δ(r1) − δ(r2)]},

H−
so = α2

{
1 + κp

2memp

(
[r1 × pe]

r3
1

− [r2 × pe]

r3
2

)
I− − 1 + 2κp

4m2
p

(
[r1 × p1]

r3
1

− [r2 × p2]

r3
2

)
I−

}
, (5)

where I− = (I1 − I2), κe and κp are the magnetic moment anomaly of an electron and proton, respectively, while μp = 1 + κp

is the magnetic moment of the proton in nuclear magnetons.
In our consideration we use the nonrelativistic quantum electrodynamics (NRQED) formalism [9–11]. For our needs only the

leading-order terms of the Lagrangian [10], Eq. (19), are needed for both an electron and proton. We use the Coulomb gauge,
and the one-photon interaction Hamiltonian (in the center of mass frame) may be expressed as

HI =
∑

a

Zaα
pa

ma
Ar +

∑
a

Zaα(1 + κa)

2ma
σaBr −

∑
a

Zaα(1 + 2κa)

8m2
a

σa(pa × E⊥ − E⊥ × pa)

+
∑

a

Z2
a α2

2ma
A · Ar −

∑
a

Z2
a α2(1 + 2κa)

4m2
a

σa(Ar × E‖) +
∑

a

Z2
a α2(1 + 2κa)

4m2
a

σa(E⊥ × A) + · · · , (6)

where we use Ar , Br , and E⊥ to denote operators of the
external electromagnetic radiation field. The transverse fields
E⊥ and Br depend on Ar as E⊥ = − 1

c
∂
∂t Ar (r, t ) and Br =

∇ × Ar (r, t ).
Operators E‖ and A are the electric-field strength and the

magnetic-field potential, which are induced by the particles
constituting the molecular ion. For our derivations we need
only the expression for the magnetic-field potential produced
by the magnetic moment of the nuclei [corresponding to the
A · Ar term of the electron line in (6)],

A = −Zα(1 + κp)

mp

(
[r1 × I1]

r3
1

+ [r2 × I2]

r3
2

)
,

which results in correction to the nonrelativistic current J(0) =∑
a Zaαpa/ma:

δJ = −Zα3(1 + κp)

2memp

{
[r1 × I1]

r3
1

+ [r2 × I2]

r3
2

}
. (7)

The other terms in Eq. (6) produce corrections to the
electric current which either do not contain the proton spin
operator, or are of a higher order in me/mp or Zα expansion
and thus will be neglected.

III. TRANSITION AMPLITUDES

The transition amplitude for the forbidden E1 transitions is
expressed as

T i
E1 = 〈ψn|Ji|ψn′ 〉 + 〈ψn|J (0)i

∣∣ψ (1)
n′

〉 + 〈
ψ (1)

n

∣∣J (0)i|ψn′ 〉
= 〈ψn|δJi|ψn′ 〉 + 〈ψn|J (0)iQ(En′ − H0)−1QHgu|ψn′ 〉

+ 〈ψn|HguQ(En − H0)−1QJ (0)i|ψn′ 〉, (8)

where J is the electric current operator of the system of bound
particles (ion), ψn and ψn′ are the nonrelativistic solutions
of the Schrödinger equation, ψ (1)

n and ψ
(1)
n′ are the first-order

relativistic corrections to the wave functions, Q is the projec-
tion operator on a subspace orthogonal to ψn (or ψn′ ), and the
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TABLE I. Comparison with calculations by Bunker and Moss
[1]. Averaged transition rates Ānn′ (in 10−6 s−1).

Transition This work Ref. [1]

(19, 0) → (18, 1) 11.5 11.5
(19, 0) → (17, 1) 161.4 163.7

operator

Hgu = H (−)
so + H (−)

ss

is the g/u symmetry breaking part of the Breit-Pauli
Hamiltonian.

Transition amplitude in the length form may be obtained
using relation [H0, ra] = −i pa/ma, or J(0) = iα[H0, d]. Then
one gets

T i
E1 = 〈ψn|Di|ψn′ 〉 + i αwnn′ 〈ψn|diQ(En′ − H0)−1QHgu|ψn′ 〉

+ i αwnn′ 〈ψn|HguQ(En − H0)−1Qdi|ψn′ 〉, (9)

where di = ∑
a Zari

a is the dipole operator in the length form,
wnn′ = En − En′ is the transition frequency, and

Di = i αwnn′di − iα[di, Hgu] + δJi.

Here the commutator is

i[d, Hgu]=−α2

2

(
1+ 1

mp

)
(1+κp)

memp

(
[r1 × I1]

r3
1

+ [r2×I2]

r3
2

)
,

(10)

and it cancels out the electric current correction term, Eq. (7),
in the leading order in me/mp.

The total transition probability for spontaneous emission
from state n to state n′ is expressed from the transition ampli-
tude as follows:

Ann′ = 1

τ

4α

3
wnn′

|〈ψn‖T i
E1‖ψn′ 〉|2

2Jn + 1
, (11)

where τ is a unit of time (in atomic units: τ = 2.41888 ×
10−17 s).

IV. RESULTS AND DISCUSSION

Numerical calculations were based on the exponential
variational expansion [12]. Particularly, the nonrelativistic so-
lutions ψn and the first-order corrections to the wave functions
ψ (1)

n were calculated using this expansion method. By averag-
ing Eq. (9), we obtained the transition amplitudes Tnn′ and,
eventually, the Einstein coefficients Ann′ for the spontaneous
emission of a photon from the state n = (v, N, J ) to the state
n′ = (v′, N ′, J ′).

In Table I our results are compared with the results of
Bunker and Moss [1]. In order to make this comparison, the
transition rates are averaged over J ′,

Ānn′ = ĀN=0,N ′=1 = 2
3 AJ= 1

2 ,J ′= 3
2
+ 1

3 AJ= 1
2 ,J ′= 1

2
. (12)

In Ref. [1] only the spin-spin interaction has been taken into
account as a source of the g/u breaking. That is justified

TABLE II. The Einstein coefficient Ann′ (in 10−12 s−1) for transi-
tions between ortho and para states, N = 0 → N = 1.

v → v′ J = 1
2 → J ′ = 1

2 J = 1
2 → J ′ = 3

2

0 → 0 0.0558 0.0494
0 → 1 123.7 128.3
0 → 2 0.1170 0.0708
0 → 3 0.0429 0.0554
0 → 4 0.0155 0.0183
1 → 0 238.7 122.7
1 → 1 0.0646 0.0585
1 → 2 274.3 283.1
1 → 3 0.8526 0.6433
1 → 4 0.1131 0.1510

for the weakly bound states where the spin-spin coupling
becomes dominant due to proximity of the 2pσu states.

Tables II and III present the results of our numeri-
cal calculations for N = 0 → 1 and N = 1 → 2 transitions,
respectively. As is seen, transition rates for �v = 1 transi-
tions are of comparable order of magnitude with the rate
of quadrupole transitions in H2

+ [13,14]. For example,
the E2 transition (v = 0, N = 0) → (0, 2) has Ann′ = 9.7 ×
10−12 s−1, and the E2 transition (v = 0, N = 0) → (2, 2) has
Ann′ = 32. × 10−9 s−1 [14]. This fact allows to hope that the
ortho-para transitions may be studied in laser spectroscopic
experiments.

It is interesting to note that the contribution of spin-orbit
interactions to the decay rate of low v states is about 5%–
10%. It turns out that a simple approach with only spin-spin
coupling should give fairly good results. In this case, only
the reduced matrix element of the transition N → N ′ can be
calculated, and the spin part of the amplitude can be expressed
using Wigner’s 6- j symbols, as for allowed transitions:

〈vFNJ‖d‖v′FN ′J ′〉

= (−1)J+F+N ′+1
√

(2J + 1)(2J ′ + 1)

×
{

N 1 N ′
N ′ F J

}
〈vN‖d‖v′N ′〉.

TABLE III. The Einstein coefficient Ann′ (in 10−12 s−1) for tran-
sitions between ortho and para states, N = 1 → N = 2.

v → v′ J = 3
2 → J ′ = 5

2 J = 3
2 → J ′ = 3

2 J = 1
2 → J ′ = 3

2

0 → 0 0.5229 0.0788 0.4186
0 → 1 151.8 26.15 128.3
0 → 2 0.0817 0.0070 0.0527
0 → 3 0.0561 0.0121 0.0523
0 → 4 0.0195 0.0039 0.0176
1 → 0 211.3 23.96 236.6
1 → 1 0.6076 0.0932 0.4899
1 → 2 337.1 57.82 284.3
1 → 3 0.7216 0.0865 0.5265
1 → 4 0.1511 0.0335 0.1426
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