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We have computed the cross sections of the mutual neutralization reaction between I+ and I− for a collision
energy varying from 0.001 eV to 50 eV. These cross sections were obtained using the adiabatic potential energy
curves of the I2 system computed with a direct relativistic multireference configuration interaction method and a
semiclassical approach (i.e., Landau-Zener surface hopping). We report the cross sections towards the following
neutral states: I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), I(2P1/2) + I(2P1/2), and I(5p46s) + I(2P3/2). We also dis-
cuss the cross sections towards the following two excited ionic states: I−(1S0 ) + I+(3P0 ) and I−(1S0 ) + I+(3D2).
The results of these calculations are in qualitative accordance with recent experimental measurements conducted
in the Double ElectroStatic Ion Ring ExpEriment (DESIREE) in Stockholm. These results can be used to model
iodine plasma kinetics and thus to improve our understanding of the latter.
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I. INTRODUCTION

The mutual neutralization (MN) of two oppositely charged
ions is a central reaction taking place in electronegative plas-
mas. The latter are found in, e.g., the lower ionosphere [1],
flames [2], interstellar medium [3,4], and in excimer lasers
[5]. As such, MN reactions have been investigated in various
systems (see, e.g., Ref. [6] and references therein).

Iodine plasma is one example of an electronegative plasma.
Interest in iodine plasma has been renewed recently since it
is a promising candidate to be used in electric propulsion
systems, notably for satellites (see, e.g., Refs. [7,8] and ref-
erences therein).

Very recently, the MN reaction between I+ and I− ions has
been studied experimentally by Poline et al. [9] at the Double
ElectroStatic Ion Ring ExpEriment (DESIREE) facility: the
branching ratios for the different channels were measured at
two collision energies, 0.1 eV and 0.8 eV. This work showed
that the MN reaction forms iodine atoms either in their ground
state or with one atom in an electronically excited state. These
two classes of states were found to be populated with nearly
equal proportions with no dependence on the collision energy.
The total cross sections at these collision energies were esti-
mated, but with fairly large uncertainties.

There are currently no accurate absolute cross sec-
tions published for the MN reaction between I+ and I− ions,
which impedes the modeling of iodine plasma. Investigating
such a collision system is a difficult task since iodine has a
strong spin-orbit coupling, and moreover, the potential en-
ergy curves of I2 exhibit multiple and overlapping avoided
crossings, where the MN reaction can take place. The aim of
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the present work is to provide estimates of these cross sec-
tions in a broad range of collision energies. For that, we have
employed a combination of ab initio relativistic electronic
structure calculations and the Landau-Zener surface hopping
(LZSH) method to compute the relevant cross sections. Our
calculations are then compared to the recent experiments of
Poline et al. [9].

This paper is organized as follows. In the next section we
briefly outline the methods used in the present work. Sec-
tion III is devoted to the discussion of the theoretical results of
this work and their comparison with the experimental results
obtained recently by Poline et al. [9] at the DESIREE double
ion ring. The conclusions are reported in Sec. IV. Atomic units
are used throughout, unless explicitly indicated otherwise.

II. METHODS

A. Potential energy curves

The potential energy curves used in this work, shown in
Fig. 1, were already presented in Poline et al. [9]. They
have been obtained with the multireference configuration in-
teraction (MRCI) method, as implemented in the Kramers
restricted configuration interaction (KRCI) module [10] of the
DIRAC relativistic electronic structure package [11]. Such cal-
culations have been carried out with the DIRAC19 [12] release
as well as with the development version identified by hash
1e798e5. We employed triple-zeta quality basis sets [13] sup-
plemented by diffuse functions so that Rydberg and ion-pair
(IPr) states could be accurately represented. The exponents
for the diffuse functions (listed in Table III of the Appendix)
were automatically generated by DIRAC as even-tempered se-
quences based on the most diffuse exponents of the dyall.v3z
basis. The reference wave function consisted of the set of
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FIG. 1. Potential energy curves of 51 electronic states of I2 computed with relativistic MRCI (reconstructed from the data from Poline
et al. [9]). Only the states of the symmetries that correlate with the I−(1S0 ) + I+(3P2) reactants state are displayed here.

determinants spanned by the p5 manifold of each of the io-
dine atoms (thus representing 10 electrons in 12 spinors). For
further information, readers can consult the computational
details section of Poline et al. [9].

It should be noted that we computed the potential energy
curves for states with projection of total electronic angular
momentum � = 0, 1, 2 but not for states with � > 2 since
the I−(1S0) + I+(3P2) reactant state does not correlate with
such states. Indeed, the I−(1S0) + I+(3P2) state correlates with
states having the following angular momenta [14]: the double
degenerate (� = 1)g, (� = 1)u, (� = 2)g, and (� = 2)u, and
the singly degenerate (� = 0)+g and (� = 0)+u .

Furthermore, for implementation reasons the KRCI mod-
ule does not take into account the +/- symmetry and thus is
not able to differentiate directly the + and the - states. In order
to do that, we also computed the dipole transition moments
between the (� = 0)g and the (� = 0)u states. Knowing that
the lowest (� = 0)g state is of + symmetry and that the lowest
(� = 0)u state is of - symmetry [14], we were able to rebuild
the potential energy curves of the (� = 0)+g and (� = 0)+u
states using the selection rule stating that the dipole transition
between a + and a - state is forbidden [15]. The list of the
computed states and their asymptotic energies are reported in
Table I.

B. Landau-Zener surface hopping

An accurate description of MN reactions at low collision
energies requires, in principle, a fully quantum mechanical
approach for the nuclear dynamics. However, in the current
system, such a sophisticated approach is out of reach from
a computational point of view: nonadiabatic couplings are
not implemented in the KRCI module of the DIRAC package.
Moreover, the potential energy curves of I2 exhibit multiple
and overlapping avoided crossings such that a diabatization

procedure would be a tedious and challenging task. To over-
come this difficulty, in this work we employ the LZSH method
[17] to obtain the cross sections of the I+ + I− mutual neutral-
ization reaction.

LZSH is a probabilistic, semiclassical method in which
the system is moving classically along the potential energy
curves. The nonadiabatic interactions are considered only
at the vicinity of avoided crossings [18,19]. The list of
the avoided crossings considered in this work is given in
Table IV of the Appendix. Note that, as previously mentioned
in Poline et al. [9], we estimated the electronic couplings at
large-distance (R > 7 Å) crossings between the ion-pair states
and the I(5p46s) + I(2P1/2) states. These couplings have been
shown to be negligible (see below).

The LZSH method can be described as follows: The system
starts at a distance R0 on the curve corresponding to the
reactants [i.e., the curves which correlate with the I−(1S0) +
I+(3P2) ion pair state], R0 being larger than the internuclear
distances of all avoided crossings [in this work, R0 = 12
atomic units (a.u.)]. The system then moves along this curve
while it has sufficient kinetic energy and until it reaches an
avoided crossing. At this point there is a probability pLZ

α→β

[given by the Landau-Zener formula [20–22], Eq. (1)] that
the system hops from its starting state (named α) to the other
state involved in the avoided crossing (named β), if its kinetic
energy is sufficient. We have

pLZ
α→β = exp

⎛
⎜⎝− π

2v

√√√√ �V 3
αβ

d2

dR2 (�Vαβ )

⎞
⎟⎠, (1)

where v is the relative radial velocity of the two nuclei at the
crossing and �Vαβ is the energy difference between the two
adiabatic potential energy curves at the avoided crossing. v is
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TABLE I. Asymptotic energies of the I2 states employed in this work. The molecular states are identified by the projection of the total
electronic angular momentum (�). The number of states for each � symmetry are given in parentheses. The last four states of this table
correspond to ion-pair states.

Dissociation limits Molecular states Asymptotic energy (eV)

MRCI (this work) Exp [16]
2P3/2 + 2P3/2 2g(1), 1g(1), 0+

g (2), 2u(1), 1u(2), 0−
u (2) 0 0

2P1/2 + 2P3/2 2g(1), 1g(2), 0+
g (1), 0−

g (1), 2u(1), 1u(2), 0+
u (1), 0−

u (1), 1.04 0.943
2P1/2 + 2P1/2 0+

g (1), 1u(1), 0−
u (1) 1.99 1.885

2[2]5/2 + 2P3/2 2g(3), 1g(4), 0+
g (2), 0−

g (2), 2u(3), 1u(4), 0+
u (2), 0−

u (2) 7.23 6.774
2[2]3/2 + 2P3/2 2g(2), 1g(3), 0+

g (2), 0−
g (2), 2u(2), 1u(3), 0+

u (2), 0−
u (2) 7.41 6.954

1S0 + 3P2 2g(1), 1g(1), 0+
g (1), 2u(1), 1u(1), 0+

u (1) 7.24 7.392
1S0 + 3P1 1g(1), 0−

g (1), 1u(1), 0−
u (1) 8.13 8.191

1S0 + 3P0 0+
g (1), 0+

u (1) 8.22 8.271
1S0 + 1D2 2g(1), 1g(1), 0+

g (1), 2u(1), 1u(1), 0+
u (1) 9.00 9.094

simply obtained by energy conservation,

v =
√

2[Em − Veff,α (R)]

μ
, (2)

with μ being the reduced mass of the system (for I2, μ =
115666 a.u.). Veff,α (R) is the effective adiabatic potential en-
ergy of the state α at the internuclear distance R,

Veff,α (l, R) = Vα (R) + l (l + 1)

2μR2
. (3)

Em is the mechanical energy of the system,

Em = Ecoll + Vasymp (4)

where Ecoll is the collision energy in the center of mass frame
and Vasymp is the energy of the I−(1S0) + I+(3P2) reactant state
at R → +∞.

When the kinetic energy of the system reaches 0, the sys-
tem turns back, and when it reaches R0 again, the trajectory
ends. By computing a sufficiently high number of trajectories,
we can compute a reaction probability Pf towards each of the
possible product states f :

Pf = Nf

Ntot
, (5)

where Nf is the number of trajectories which ended in the
product state f and Ntot is the total number of trajectories. In
this work we used Ntot = 400. We found that using a higher
value of Ntot has no significant impact on the results.

The cross sections towards each product state are then
obtained by integrating the Pf over the angular momentum
l [23],

σ X
f (Ecoll ) = π

2μEcoll

l=+∞∑
l=0

(2l + 1)Pf (Ecoll, l ), (6)

where X denotes a given symmetry state of the I2 potential
energy curves.

Practically, the sum in Eq. (6) stops (at a value l = lmax)
when the rotational barrier becomes too important for the
system to reach the farthest avoided crossing involving the

reactant state. We have

lmax = −1

2
+

√
1

4
− μR2

c

2
(4V (Rc) − Vasymp − Ecoll ), (7)

where Rc and V (Rc) are the internuclear distance and the
adiabatic energy of the reactant state at this avoided crossing.

This approach is used for each of the symmetries con-
sidered in this work (see Sec. II A), and the reaction cross
sections towards each state are then obtained by averaging
over all symmetries, taking into account their multiplicity,
hence

σ f (Ecoll ) =
∑

X∈symmetries mX σ X
f (Ecoll )∑

X∈symmetries mX
, (8)

with mX being the multiplicity of the symmetry X and σ X
α the

reaction cross section towards the state α for the symmetry X
obtained with Eq. (6).

At large distance (R > 7 Å), the avoided crossings between
the ion-pair states and the I(5p46s) + I(2P1/2) states are not
described by the MRCI calculations presented in Sec. II A. For
the avoided crossings between the ion pair states I−(1S0) +
I+(3P2), I−(1S0) + I+(3P1) and the I(5p46s) + I(2P1/2) states
we used a semiempirical model to estimate the electronic
couplings (see Olson et al. [24], Eq. (13), using γ 2

2 =
3.059 eV [25]). We obtained coupling values that are less than
8.10−5 a.u.. These avoided crossings take place at suffi-
ciently large distances for the semiempirical model to be
valid. However, the avoided crossings between the ion pair
states I−(1S0) + I+(1D2) and the I(5p46s) + I(2P1/2) states
take place at shorter distances and thus were described by
computing the potential energy curves of the system (using
the same method as the one described in Sec. II A), with 21
points with an internuclear distance varying from 7 to 8 Å. We
obtained coupling values that are less than 6 × 10−5 a.u.. In-
cluding these avoided crossings in our calculation was shown
to have no significant effect on the results (less than 0.2%
difference on the cross sections).

C. Empirical correction to the asymptotic energies

When comparing the asymptotic energies obtained with
the MRCI method and the experimental values (see Table I),
we noticed that the MRCI asymptotic energies of the neutral
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FIG. 2. Cross sections for the reactions between I+ and I− for the six symmetries correlating with the I−(1S0 ) + I+(3P2) reactants state.

states are overestimated while the MRCI asymptotic energy
of the ion pair states is underestimated. For the three lowest
neutral product states and the excited ion pair products, the
difference between the asymptotic energies of the reactant
and product states are satisfactory within the MRCI method
(between 3% and 12% of error). However, the differences of
asymptotic energy between the reactant and the 5p46s states
[I(2[2]3/2) + I(2P5/2) and I(2[2]3/2) + I(2P3/2) states] are not
well reproduced. The path towards the I(2[2]3/2) + I(2P5/2)
state is open only by 0.01 eV in the MRCI calculation while
it should be open with an asymptotic energy difference of
0.62 eV, and the path towards the I(2[2]3/2) + I(2P3/2) state
is closed while it should be open with an asymptotic en-
ergy difference of 0.44 eV. To correct for this qualitative and
quantitative failure, we decided to increase artificially the
asymptotic energy of the ion pair states by a quantity ε in order
to reproduce the experimental asymptotic energy difference
between the I(2[2]3/2) + I(2P5/2) and the I−(1S0) + I+(3P2).
The value of ε is 0.61 eV. This is the only departure from the
underlying ab initio energy curves in our work.

III. RESULTS AND DISCUSSION

Using the potential energy curves presented in Sec. II A,
we applied the LZSH method for each of the symme-
tries considered here (see Sec. II A). We thus obtained the
reaction cross sections towards the following neutral prod-
uct states: I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), I(2P1/2) +
I(2P1/2), and I(5p46s) + I(2P1/2).

Here, we did not try to differentiate the different sub-
states constituting the I(5p46s) configuration obtained with
the MRCI method, since the energy difference between some
of these substates is below 0.2 eV [16]. We lack extensive
benchmark studies between MRCI and other approaches such
as those based on coupled cluster wave functions for the io-
dine systems. However, from recent examples in the literature

[26–28] in which a comparison of methods has been made
on an equal footing (same basis set and Hamiltonian), we see
that among different correlated approaches, the corresponding
electronic state energies can differ by values which are similar
to, or higher than, the differences among substates seen here.

We also obtained the reaction cross sections towards the
two lowest-energy excited ion-pair states I−(1S0) + I+(3P1)
and I−(1S0) + I+(1D2). The evolution of these reaction cross
sections with respect to the collision energy is shown in Fig. 2
and the total symmetrized reaction cross sections, obtained
with Eq. (8), are shown in Fig. 3.

At collision energies lower than 0.1 eV the cross sec-
tions towards the neutral product states follow an asymptotic
behavior proportional to the inverse of the collision energy. At
these energies, for all symmetries, the most abundant prod-
uct is the neutral I(5p46s) + I(2P1/2) product, followed by

FIG. 3. Total (symmetry averaged) cross sections for the I+ +
I− → 2I and I+ + I− → (I+)∗ + I− reactions.
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FIG. 4. Total (symmetry averaged) cross section for mutual neu-
tralization cross section between I+ and I−.

the three lowest-energy neutral products I(2P3/2) + I(2P3/2),
I(2P3/2) + I(2P1/2), and I(2P1/2) + I(2P1/2), in this order.

At collision energies higher than 0.3 eV the cross sec-
tions towards the I(2P3/2) + I(2P3/2) state increase up to the
collision energy of 10 eV, while the cross sections towards the

I(2P1/2) + I(2P3/2) and I(5p46s) + I(2P1/2) states decrease at
a slower rate than for the collision energies below 0.1 eV. At
collision energies higher than 0.1 eV the cross sections to-
wards the I(2P1/2) + I(2P1/2) state continue to decrease as
the inverse of the collision energy, so it becomes negligible
compared to the other cross sections.

The reaction cross sections towards the I−(1S0) + I+(3P1)
and I−(1S0) + I+(1D2) ion pair states have energy thresholds
of, respectively, 0.26 eV and 1.1 eV. The values of these
cross sections after their threshold are of the same order of
magnitude as the one of the I(2P1/2) + I(2P3/2) state.

The total of the neutralization cross sections (sum of the
cross sections toward all neutral states) is shown in Fig. 4. It
decreases as the inverse of the collision energy up to 0.1 eV
and then decreases at a slower rate. The two discontinuities at
0.26 eV and 1.1 eV correspond to the energy thresholds of the
reactions producing the two excited ion pairs.

In 2021, Poline et al. [9] conducted an experiment at
the double ion storage ring DESIREE in Stockholm. They
were able to measure the branching ratios towards each of the
neutral product states—more specifically, they obtained the
ratio (denoted by Rσ ) between the I(5p46s) + I(2P1/2) states
and the I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), and I(2P1/2) +
I(2P1/2) states, for collision energy of 0.1 and 0.8 eV. We
therefore have Rσ as

Rσ = σ [I (2P3/2) + I (2P3/2)] + σ [I (2P3/2) + I (2P1/2)] + σ [I (2P1/2) + I (2P1/2)]

σ [I (5p46s) + I (2P1/2)] + σ [I (2P3/2) + I (2P3/2)] + σ [I (2P3/2) + I (2P1/2)] + σ [I (2P1/2) + I (2P1/2)]
(9)

We can directly obtain this ratio from our calculations. The
comparison between the theoretical ratio and the measure-
ments is shown in Fig. 5. Our results show that this branching
ratio does not vary significantly with respect to the collision
energy, with values between 22% and 27%. The measured and
computed ratio are of the same order of magnitude. However,
the LZSH-based model underestimates this ratio by a factor
of 1.5.

FIG. 5. Comparison of the Rσ ratios, computed with the LZSH
method and measured by Poline et al. [9] .

Moreover, our model gives a semiquantitative agreement
for the prediction of the ratios between the cross sections of
the I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), and I(2P1/2) +
I(2P1/2) states. These ratios, in comparison with those ob-
tained by Poline et al. [9], are displayed in Table II.

Poline et al. [9] were also able to estimate the absolute
neutralization cross section, at a collision energy of 0.1 eV,
to be in the range of 103±1 Å2. Our results displayed in Fig. 4
(165 Å2 at 0.1 eV) agree with this estimation.

The disagreement between the experiments at DESIREE
and our results may be attributed to the semiclassical ap-
proach employed in this work. However, given the complexity
of the studied collisional system and the lack of data on
the considered MN reaction, such semiquantitative estimates
represent a significant step toward a better modeling, and thus
understanding, of iodine plasma.

TABLE II. Ratios of the cross sections between the three lowest
neutral product states, obtained with the LZSH method and experi-
mentally by Poline et al. [9] at collision energy of 0.1 and 0.8 eV.

0.1 eV 0.8 eV

Product channel LZSH exp. LZSH exp.
I(2P3/2) + I(2P3/2) 5% 31% 12% 28%
I(2P3/2) + I(2P1/2) 76% 57% 76% 51%
I(2P1/2) + I(2P1/2) 19% 11% 13% 21%
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FIG. 6. Effective potential energy curves of the first eight states of the (� = 2)g symmetry for three different values of angular momentum.
The population n←

α (R) [n→
α (R)] is displayed with a color scheme in the left (right) panel. At t = 0, the population is 1 in the lowest ion-pair

state (the third state in energy order) and 0 in all the other states

In order to gain more insight into the dynamics of the MN
reaction, we investigate which avoided crossings contribute
the most to the reactivity. We computed statistically the popu-
lation on each state as a function of time [nα (t )],

nα (t ) = Nα (t )

Ntraj
, (10)

where Nα (t ) is the number of trajectories on the state α at
the time t . Since the time does not appear explicitly in the
method described in Sec. II B, we computed it a posteriori by
integrating Newton’s law of motion [see Eq. (11), with ri, r j

being two adjacent points of the potential energy surface and
v being the speed of the system]. The time is set arbitrarily
at 0 when a trajectory starts at R0. Ntraj is the total number of

computed trajectories.

�t ji =
√

2μ

B (
√

Em − V (r j ) − √
Em − V (ri)) if R decreases

�ti j =
√

2μ

B (
√

Em − V (ri ) − √
Em − V (r j )) if R increases,

(11)
with �tlk = t (rl ) − t (rk ) and B = [V (r j ) − V (ri)]/(r j − ri ).

For each of the symmetries considered in this work we
computed Ntraj = 10 000 trajectories, for a collision energy of
0.9 eV and three different values of the angular momentum l
(l = 0, l = 350, and l = 700). The populations obtained with
these trajectories are then computed using Eq. (10) for each of
the electronic states considered in this work. The population
on each of the first eight electronic states of the (� = 2)g

symmetry are displayed in Fig. 6. For clarity we choose to
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TABLE III. Diffuse exponents used in the electronic structure
calculations for the iodine atom. These were added to the dyall.v3z
basis set.

Primitive type Exponents

s 0.0395300
0.0175618
0.0078021

p 0.0285513
0.0112589
0.0044398

d 0.0773620
0.0321000
0.0133193

f 0.1159934
0.0331410
0.0094689

represent separately the population n←
α (R) coming from the

part of the trajectories with decreasing values of R (before
reaching the closest approach distance) and the population
n→

α (R) coming from the part of the trajectories with increasing
values of R (after reaching the closest approach distance),
which are given by

n←
α (R) = N←

α (R)

Ntot
and n→

α (R) = N→
α (R)

Ntot
, (12)

withN←
α (R) [N→

α (R)] being the number of trajectories cross-
ing the internuclear distance R before (after) reaching the
closest approach distance. In Fig. 6, n←

α (R)[n→
α (R)] is shown

in the left (right) panel of the figure using a color scheme
traced on the effective potential energy curves [see Eq. (3)]
of the (� = 2)g symmetry.

At the first avoided crossing reached by the system (at
2.8 Å), it mainly has a diabatic behavior with approximately
90% of the population transferred to the higher energy state.
This behavior is observed for the majority of the avoided
crossings of the system, with the important exception of the
crossing between the fourth and fifth states (in increasing
energy order) at 2.7 Å (marked with a star in Fig. 6). For this
crossing we mainly observe an adiabatic behavior, but still
with an important percentage of the population (about 30%)
transferred to the higher energy state. This intermediate be-
havior is directly responsible for the reactivity towards the I∗

states, and indirectly responsible for the reactivity towards the
lowest energy states through the avoided crossings between
the third and fourth states at 2.5 Å and between the second
and third states at 2.3 Å. The path towards the lowest energy
states is the first to be screened by the rotational barrier. A
chemical reaction towards those states is thus only possible
for collisions with a low impact parameter (the link between
the impact parameter b and the angular momentum l is given
by l = √

2μEcoll × b [23]).
The reactions towards the I(5p46s) + I(2P3/2) states are

still possible at higher values of l , which explains the
higher reactivity towards those states (see Fig. 5). The
populations were also computed for the other symmetries.
We did not find any major difference in the behavior of the

TABLE IV. List of the avoided crossings considered in this work.
For each avoided crossing we give its internuclear distance and the
index of the two electronic states concerned by this crossing. The
electronic states indexes are given by their energetic order (starting
from zero for the lowest energy state of each symmetry)

Symmetry Lower state Higher state R (Å)

(� = 0)+g 3 4 2,30
2 3 2,36
5 6 2,36
4 5 2,39
1 2 2,42
3 4 2,42
2 3 2,46
5 6 2,48
4 5 2,51
3 4 2,54
2 3 2,66
5 6 2,74
6 7 2,78
4 5 2,82
5 6 2,86
7 8 2,96
7 8 3,15
6 7 3,18
7 8 3,28

(� = 0)+u 4 5 2,42
3 4 2,48
1 2 2,48
2 3 2,54
1 2 2,58
4 5 2,62
3 4 2,64
2 3 2,68
4 5 2,76
3 4 2,86
4 5 2,90
3 4 2,92

(� = 1)g 5 6 2,24
4 5 2,26
6 7 2,29
3 4 2,31
2 3 2,33
5 6 2,34
1 2 2,35
4 5 2,37
3 4 2,38
0 1 2,42
6 7 2,42
5 6 2,44
2 3 2,44
4 5 2,46
1 2 2,48
3 4 2,48
2 3 2,53
7 8 2,67
6 7 2,70
5 6 2,71
4 5 2,76
8 9 2,77
7 8 2,78
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TABLE IV. (Continued)

Symmetry Lower state Higher state R (Å)

6 7 2,80
3 4 2,84
8 9 2,85
5 6 2,86
7 8 2,87
4 5 2,94
6 7 2,96
8 9 2,99
5 6 3,06
7 8 3,25

(� = 1)u 6 7 2,34
5 6 2,36
3 5 2,42
2 3 2,46
6 8 2,46
6 7 2,50
5 6 2,52
4 5 2,54
7 9 2,54
6 7 2,56
3 4 2,56
5 6 2,58
4 5 2,60
9 10 2,64
7 8 2,64
6 7 2,70
8 9 2,70
7 8 2,86
8 9 2,90
6 8 2,92
9 10 3,06
8 9 3,10
7 8 3,14

(� = 2)g 2 6 2,24
3 4 2,24
1 2 2,30
6 7 2,42
0 1 2,42
4 6 2,44
3 4 2,46
1 2 2,54
6 7 2,61
2 3 2,49
5 6 2,62
4 5 2,64
3 4 2,68
2 3 2,82
6 7 2,86
5 6 2,88
4 5 2,94
6 7 2,94
5 6 3,04
3 4 3,14
6 7 3,16

(� = 2)u 3 4 2,48
6 7 2,50
5 6 2,50

TABLE IV. (Continued)

Symmetry Lower state Higher state R (Å)

4 5 2,51
3 4 2,52
2 3 2,55
1 2 2,56
4 5 2,64
6 7 2,70
5 7 2,74
4 5 2,78
3 4 2,82
2 3 2,84
6 7 2,86
4 5 2,90
5 6 2,92
4 5 2,94
3 4 2,98
6 7 3,15

populations between the (� = 2)g symmetry and the other
symmetries.

IV. CONCLUSION

As a first step towards the generation of accurate mod-
els for the reactivity in iodine plasmas, in this work we
have investigated a computational protocol, combining four-
component multireference CI calculations for the I2 system to
obtain potential energy curves and the semiclassical Landau-
Zener surface hopping method to treat nuclear dynamics, to
obtain theoretical cross sections of the mutual neutralization
reaction between I+ and I− for collision energies varying from
0.001 eV to 50 eV.

Our results agree qualitatively with the recent experimental
measurements performed at the double ion ring DESIREE
facility in the overlapping collision energy range. Further-
more, our work provides absolute cross sections over a broad
range of collision energy. Our results show that the total cross
section decrease from 1000 Å2 at 0.001 eV collision energy to
about 10 Å2 at 10 eV impact energy. Moreover, the branching
ratios towards the different final states do not vary signifi-
cantly with respect to the collision energy. We also studied
the dynamics of this mutual neutralization reaction.

The data and insights provided in this work will allow
to model, beyond the current state of the art, the chemistry
taking place in iodine plasma, which is particularly relevant
for electric space propulsion.
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APPENDIX

The diffuse functions used to describe accurately Rydberg
and ion-pair states are given in Table III. Table IV reports the
list of the avoided crossings considered in this work.
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