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We report a joint experimental and theoretical study of a three-sideband (3-SB) modification of the reconstruc-
tion of attosecond beating by interference of two-photon transitions (RABBIT) setup. The 3-SB RABBIT scheme
makes it possible to investigate phases resulting from interference between transitions of different orders in the
continuum. Furthermore, the strength of this method is its ability to focus on the atomic phases only, independent
of a chirp in the harmonics, by comparing the RABBIT phases extracted from specific SB groups formed
by two adjacent harmonics. We verify earlier predictions that the phases and the corresponding time delays
in the three SBs extracted from angle-integrated measurements become similar with increasing photoelectron
energy. A variation in the angle dependence of the RABBIT phases in the three SBs results from the distinct
Wigner and continuum-continuum coupling phases associated with the individual angular-momentum channels.
A qualitative explanation of this dependence is attempted by invoking a propensity rule. Comparison between the
experimental data and predictions from an R matrix (close-coupling) with time dependence calculation shows

qualitative agreement in most of the observed trends.

DOI: 10.1103/PhysRevA.107.022801

I. INTRODUCTION

The reconstruction of attosecond beating by interference of
two-photon transitions (RABBIT) is a widely employed tech-
nique to measure attosecond time delays in photoionization
processes [1-3]. The extraction of time information from the
RABBIT measurements usually involves retrieving atomic
phases encoded in the delay-dependent modulation of the
sideband (SB) yield. These SBs are traditionally formed
in the photoelectron spectrum by the interaction of two
photons (one pump, one probe) with the target. Spectral har-
monics from an attosecond pulse train (the pump photons)
form discrete photoelectron signal peaks. The presence of
a time-delayed infrared field (the probe photon) then cre-
ates a signal between these main peaks that oscillates with
the time delay. The so-retrieved atomic phase (A¢™) from
the RABBIT measurement can be separated into a single-
photon ionization contribution (An, Wigner phase [4]) and a
continuum-continuum (cc) coupling phase (A¢p*) by apply-
ing an asymptotic approximation [5-7].

Variations of the RABBIT scheme, such as 0-SB, 1-SB,
and 2-SB, have been utilized to study dipole transition phases
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and attosecond pulse shaping [8—10]. As the name suggests,
in a 3-SB RABBIT scheme, three SBs are formed between
two consecutive main photoelectron peaks [11,12]. The delay-
dependent oscillation in the photoelectron signal of these three
SBs requires more than one transition in the continuum, i.e.,
the absorption or emission of several probe photons. For a
hydrogenic system, we recently [12] extended the asymptotic
approximation to a decomposition scheme, which expands the
phase of the Nth-order dipole matrix element M®, describ-
ing the absorption of an ionizing extreme ultraviolet (XUV)
photon followed by N —1 infrared (IR) photon exchanges in
the continuum, into a sum of the Wigner phase and N—1 cc
phases.

For atomic hydrogen, where numerical calculations with
high accuracy can be carried out by solving the time-
dependent Schrodinger equation (TDSE) directly, we verified
that the decomposition approximation explains the RABBIT
phases in all three SBs qualitatively [12]. As expected, its
accuracy improves with increasing energy of the emitted
photoelectron. On the other hand, assuming A¢*® to be in-
dependent of the orbital angular momenta of the continuum
states leads to deviations from the analytical prediction, par-
ticularly in the lower and the higher SB of the triplet at low
kinetic energies.

Even though starting with a 3p electron still limits the
information that can be extracted due to the combined effect of
at least rwo Wigner and the cc phases, we decided to perform
the present proof-of-principle study on argon due to its exper-
imental advantages, including a significantly lower ionization
potential than helium, which may be a viable alternative to
atomic hydrogen due to its quasi-one-electron character, as
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FIG. 1. 3-SB RABBIT scheme. M,_, and M, label the main
photoelectron peaks created directly by the odd harmonics (H,_; and
H,,) of the frequency-doubled fundamental probe frequency in the
XUV pulse, while S, ;, S, ¢, and S, ;, are the lower, central, and higher
SBs, respectively. These SBs are formed by emission or absorption
of probe photons by the quasi-free photoelectrons. |i) denotes the
initial state and /,, is the ionization potential.

long as one of the electrons remains in the ls orbital, i.e.,
away from doubly—excited resonance states. In argon, the
intermediate orbital angular momentum after the XUV step
is A=0or2, while A=1 in helium. For the latter target, as
for atomic hydrogen, the dependence on the Wigner phase
would drop out, and the 3-SB setup would provide direct
access to the phase associated with higher-order cc transitions
[11,12]. Nevertheless, a significant strength of our current
setup already lies in the fact that the results within each group
are independent of any chirp in the XUV pulse, because the
XUV harmonic pair is common to all three SBs.

This paper is organized as follows. We begin with a brief
review of the basic idea behind the 3-SB setup in Sec. II. This
is followed by a description of the experimental apparatus in
Sec. III and the accompanying theoretical R matrix (close-
coupling) with time dependence (RMT) approach in Sec. IV.
In Sec. V, we first show angle-integrated data (Sec. V A) be-
fore focusing on the angle dependence of the RABBIT phases
in the three SBs of each individual group in Sec. VB. We
finish with a summary and an outlook in Sec. VI.

II. THE 3-SB SCHEME

In this section, we briefly review the 3-SB scheme intro-
duced in Ref. [11] and the analytical treatment presented in
Ref. [12] as applied to the 3-SB RABBIT experiment.

Figure 1 illustrates only the two most dominant transi-
tion paths for each SB contributing to the oscillation in their
respective yields. The lowest-order transition dominates the
yield, but its modulation requires interference between at least
two distinct paths leading to the same energy. This involves
two different XUV harmonics that are aided by absorption or
emission of near-infrared (NIR) photons. For the lower (/) and
higher (k) SBs, S; and Sy, the most important interfering paths
are of second (one harmonic and one NIR) and fourth (one
harmonic and three NIR) order, which results in a weak mod-
ulation of the yield. The lowest-order terms contributing to the
buildup of the central (c¢) SB, S., are both of third order (one
harmonic and two NIR). Consequently, interference between
them exhibits the delay-dependent oscillation most clearly.

Mathematically, the angle-integrated yield in the three SBs,
considering only two prominent transition paths, can be writ-
ten as

S(/JO‘Z’(
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Here ¢ labels the SB group, while k; 4, k. 4, and kj; , denote
the final linear momenta of the ejected electron in the lower,
central, and higher sidebands in each group. The subscript
£ denotes one of generally several allowed orbital angular
momenta of the ejected electron in the final state and m labels
the magnetic quantum number, which can be 0 or £1 for the
electron starting in the 3 p subshell. Note that m is a conserved
quantity for all orders n of the transition matrix element Mg",)n
due to our use of linearly polarized light.

Furthermore, Eq = Eqe'®® and E, = E,e'“" (for ab-
sorption) are the complex electric-field amplitudes of the
colinearly polarized XUV-pump (£2) and NIR-probe (w)
pulses, respectively. A", = arg[/\/l(”) M;f(;)] is the phase
difference between the two matrix elements and a(e) denotes
the pathway involving absorption (emission) of the probe
photons. Finally, A¢{, is the spectral phase difference (XUV
chirp) of two neighboring harmonics.

As seen from Egs. (1), the yield of each SB is separated
into an average part Iy and another term /; that oscillates at
4 w with the delay. As discussed in Ref. [12], every dipole
transition also adds a phase of w /2. Since the two dominant
interfering terms in S; and S, are of different orders (second
and fourth), this leads to an additional = phase in S; and S,
relative to S, where both interfering terms are of the same
(third) order.

The RABBIT phase (¢r) includes the spectral phase differ-
ence of the two harmonics and the channel-resolved atomic
phases weighted according to their transition amplitudes. It
is a complex inverse trigonometric function involving many
parameters and hence is best determined by fitting the signal
to the known analytic form given above. Since the three SBs
involve the same pair of harmonics, the contribution of the
XUV group delay (i.e., the chirp) to the oscillation phase is
the same in all three SBs. This is a key advantage of the
3-SB method, since it removes the influence of the XUV chirp
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FIG. 2. Experimental setup. A holey mirror (BS) splits the linearly polarized laser beam between the two arms of the interferometer. In the
pump arm, the HHG process is driven by the second harmonic of the laser beam. The generated XUV and the fundamental probe beam are
recombined and focused onto a supersonic gas jet of argon. The interferometer is stabilized by tracking the movement of the fringes from the

pump and the probe beams.

when we compare the phases of the three SBs only within a
particular group.

III. EXPERIMENTAL SETUP

Figure 2 shows the schematic design of our 3-SB RABBIT
experimental setup. A commercial fiber-based laser delivers
pulses with a duration of approximately 50 fs [full width at
half maximum (FWHM)] at a 49 kHz repetition rate with a
pulse energy of 1.2 mJ and a center wavelength of 1030 nm.
This pulse is split into two parts using a holey mirror (BS) that
reflects ~85% of the incoming beam in the pump arm, while
the rest passes through the hole into the probe arm. The beam
size of the reflected donut beam in the pump arm is reduced
by a pair of lenses and passed through a 0.5-mm-thick Beta
Barium Borate (BBO) crystal to double its frequency.

The conversion efficiency for the second-harmonic gener-
ation (SHG) by the BBO crystal is 25%—30% . A dichroic
beam-splitter (DBS) filters out the fundamental beam, and a
lens with a focal length of 12 cm focuses the second harmonic
beam inside a vacuum chamber to a focal spot of 30—40 um
on a jet of neon gas, which results in an XUV frequency comb
through high-harmonic generation (HHG). The gas nozzle has
a diameter of 100 um and is operated at a backing pressure
of 1.2 bar with a chamber pressure of 5x10~3 mbar. The
generated XUV beam is spatially separated from the annu-
lar second harmonic with the help of an additional holey
dumping mirror (DM). The residual second harmonic passed
through the dumping mirror is weak and does not generate any
visible sidebands. The beam in the probe arm goes through
a retro-reflector mounted on a piezoelectric-translation stage
that offers a step-resolution of 5 nm with closed-loop posi-
tion control. Another holey mirror (RM) recombines the NIR
(probe) and XUV (pump) beams, which are then focused
inside a reaction microscope (ReMi) on a cold gas jet of argon.
The ReMi enables coincident detection and the reconstruction
of the three-dimensional momenta of the ions and electrons
created during the photoionization process [13]. The interfer-

ometer was actively stabilized [14] to achieve a stability of
~40as over a data acquisition time of 7 h. The stability of
the interferometer was critical for the successful realization
of the 3-SB scheme since the oscillation period was just
850 as.

IV. THEORETICAL APPROACH

In the theoretical part of this study, we employ the gen-
eral R matrix with time dependence (RMT) method [15]
to generate theoretical predictions for comparison with our
experimental data. In order to calculate the necessary time-
independent basis functions and dipole matrix elements, we
set up the two-state nonrelativistic model introduced by Burke
and Taylor [16] to treat the steady-state standard photoion-
ization process. In this model, multiconfiguration expansions
for the initial (3523p°)'S bound state and the two coupled
final ionic states (3s%3p°)>P and (3s3p°®)2S were employed.
We checked that the photoionization cross sections at the
photon energies corresponding to the various HHG lines was
reproduced properly (in agreement with Burke and Taylor [16]
as well as experiments [17,18]) by our RMT model.

The probe-pulse duration was chosen as about twice the
length of the XUV pulse. We emphasize that the present cal-
culation was meant as a supplement to the current experiment,
with the hope of providing additional qualitative insights
rather than quantitative agreement, which would require much
more detailed information about the actual pulses than what
was available. We purposely employed significantly lower
NIR peak intensities (10'' W/cm?) than in the experiment
(~6x10'"' W/cm?). This reduced the number of partial waves
needed to obtain converged results, diminished potential dis-
tortions, and thus made it easier to interpret the spectra.

Specifically, we performed calculations for 11 delays in
multiples of 0.05 NIR periods. For each delay, we needed
about 5 h on 23 nodes using all 56 available cores per node
on the Frontera supercomputer hosted at the Texas Advanced
Computing Center (TACC) [19].
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FIG. 3. (a) 3-SB RABBIT trace, (b) normalized photoelectron spectra generated with the XUV pulse only (dark) and during the RABBIT
measurement integrated over the delays (lighter), and (c) RABBIT phases extracted from all three sidebands. Note that the 7 phase difference
between S, and (S;, Sj,), which is clearly seen in the position of the maxima in (a), has been removed for better visibility in (c). The error bars
from the fitting procedure are generally smaller than the symbol size and hence hardly visible. The dashed box from about 6 eV to 21 eV
indicates the sideband groups that we concentrate on for the angle-differential cases.

V. RESULTS AND DISCUSSION

Below we present our results. We start with the angle-
integrated setup in Sec. VA before going into further
detail with angle-resolved measurements and calculations in
Sec. VB.

A. Angle-integrated RABBIT phases

Figure 3 exhibits the results of our 3-SB RABBIT ex-
periment after integrating the signal over all photoelectron
emission angles. To highlight the oscillations, the RABBIT
trace in Fig. 3(a) is plotted after subtracting the average delay-
integrated signal. The delay-integrated photoelectron spectra
(normalized to 1 at the highest peak) are plotted in Fig. 3(b).
Due to the high NIR intensity, some of the main bands are
depleted substantially and appear weaker than the SBs in
their vicinity. The angle-integrated photoelectron spectrum is
integrated over a spectral window of 0.7 eV around the peak
of the SBs.

The RABBIT phase (¢r) is extracted by fitting a cosine
function [cf. Eqgs. (1)] to these delay-dependent oscillating
signals of the sidebands, as seen in Fig. 4. Due to the large data
set available and the excellent stability of the interferometer,
the phase retrieval generally resulted in error bars smaller than
the symbol size in Fig. 3(c). This gives us confidence in the
results obtained from our extraction procedure. The numerical
values obtained for the various SB groups, as well as the
contrast ratio

_ max[SB(t)] — min[SB(7)] @)
V= max[SB(7)] + min[SB(7)]

are listed in Table I. As expected, the highest contrast is
found for the center sideband, due to the same (third) order
of transitions involved.

We note that there are several autoionizing resonances
with principal configuration 3s3p°n¢ in the SBj, range of
photoelectron kinetic energies, which converge towards the
(3s3p°)%S threshold of the first excited state of Ar™ around
13.5 eV [20]. Early measurements of the (3s3p°np)' P° reso-
nances were reported by Madden et al. [21]. They were also
seen by Burke and Taylor [16] in their photoionization work,
and further resonances with other configurations, which can
be reached by charged-particle or multiphoton impact, were
discussed by Bartschat and Burke [22]. More recently, the
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FIG. 4. The delay-dependent photoelectron signal (dots) of the
three sidebands in the SB), group and fits to a cosine function (lines).
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TABLE I. RABBIT phase extracted from the fitting procedure and the contrast y of the oscillation.

SBg SBio

SBy,

SBy4 SB1s

or Y Pr Y

®r

Y Pr Y Pr Y

$1:11.934£0.03 0.07 | 2.09 + 0.02 0.11

3.03+£0.02

0.11|3.384+0.03 { 0.09 | 4.56 + 0.10: 0.04

Sci| 0.00 £ 0.02 | 0.15 | 1.98 £ 0.01} 0.36

2.96 +0.01

0.41{3.29+£0.01;0.38( 3.66 + 0.02; 0.24

Sk 0.194£0.02 1 0.09 | 1.73 £ 0.021 0.10

3.00£0.01

0.283.334+0.01:0.32|3.824+0.05: 0.15

effect of these resonances on the RABBIT phase in 1-SB
setups was reported by Kotur et al. [23] and Cirelli et al. [24].

Since we used the coupled-state description of Burke and
Taylor [16], we saw resonance effects in test calculations, but
only with appropriate frequencies and sufficiently long pulses,
for which the resonance widths could be well resolved. Note
that these features are very sensitive to small fluctuations in
the frequency and bandwidth of the APT during the XUV
generation process. Therefore, these structures were not seen
in the three experimental data points presented in the SBi;
region. We hope to generate additional data with tunable
high-order harmonic frequencies in the future. This will make
it possible to investigate the resonance phenomena in more
detail.

As predicted by our generalized decomposition approxi-
mation [cf. Egs. (1)], the lower and the higher SBs oscillate
by 7 out of phase with the central SB. The retrieved RABBIT
phases ¢ are plotted in Fig. 3(c) after removing the extra
from S; and S;, to simplify the comparison. The time-delay
axis on the right side of this panel was created via the conver-
sion g = ¢Pp/(4w).

Five SB groups are clearly identifiable in Fig. 3(c). While
there are some irregularities in SBg and SB¢, especially with
the phase extracted from S;, groups SBjg, SB12, and SB4 show
the expected trend: The RABBIT phases of the three SBs in
each group are similar, although a small difference remains
visible in SBy. That difference, however, essentially vanishes
in SBlz and SB]4.

The irregularity seen in the SBg group is due to a significant
contribution of another fourth-order transition in the absorp-
tion path of the lowest SB S;, which involves a transition
from M7 down to the Rydberg states and back up to S;. The
Rydberg states enhance the strength of this transition and add
a resonance phase that leads to a significant deviation in the
RABBIT phase of S; compared to the other members of the
SBg group. Furthermore, due to the low cutoff of the XUV
spectrum based on HHG and the decreasing photoionization
cross section of argon with increasing photon energy, the
strength of the M}, peak is very weak compared to the rest
of the lower main peaks. As a result, higher-order transitions
involving lower main bands also play a significant role in the
oscillation of §; in the SBj¢ group, which again affects the
extracted phase.

B. Angle-differential RABBIT phases

We now further increase the level of detail by investigating
angle-dependent RABBIT phases, which is possible due to
the angle-resolving capability of the reaction microscope. For
the reasons given above regarding the additional complexities

associated with the SBg and SBj¢ groups, we concentrate the
remaining discussion on SBjg, SB12, and SBi4.

Figures 5(a)-5(c) show the RABBIT phases extracted
within these groups as a function of the photoelectron emis-
sion angle, which is defined relative to the (linear) laser
polarization vector. The photoelectron signal is integrated
over an angular window of 10° for each data point. The angle-
resolved RABBIT phases are shifted to fix the starting phase
of the central sideband in each group to zero. According to
both our experiment and the calculation [Figs. 5(d)-5(f)], the
phase of S, exhibits a stronger angular dependence compared
to that of S, and ;. With increasing photoelectron energy,
the differences diminish in both experiment and theory, with
theory predicting almost no angle dependence in the range of
SB14 plotted.

To explain the angle dependence in the RABBIT phase,
we need to consider the interference among all the angular-
momentum channels of the sidebands accessed through the
absorption and emission paths. We write the signal in com-
pressed form as

S 0) o Y a0 Yo (O, (0)
2,0, m

x cos (4wt — Agd — ABY, )

o 11(0) cos[4 wt — Pr(0)]. 3)
Here o and «¢ are the transition amplitudes involving the
various fields and matrix elements, while £(£') denotes the
angular-momentum channels accessed through the absorption
(emission) paths.

The dissimilarity in the RABBIT phases [¢g(6)] of the
three SBs can be explained by considering a propensity rule
for the transition amplitudes and the dependence of both the
Wigner and ¢ phases on the orbital angular momenta. It is
well known that the Wigner phase depends on the angular
momentum channel. The cc phase has also been shown to
depend slightly on whether there is an increase or decrease
in the angular momentum, while it appears to remain inde-
pendent of the target species [25,26]. Therefore, the atomic
phases (A¢y), ) arising from the interference between vari-
ous £ channels in the emission and absorption paths are also
expected to differ. Similar to bound-continuum transitions
[27], absorption (emission) within the continuum favors an
increase (decrease) in the angular momentum of the outgoing
photoelectron, especially for low kinetic energies [26,28-31].
The higher SB (S,) of the group involves the absorp-
tion of three probe photons (H,_; + 3 w) that, according to
the propensity rule, predominantly populate higher angular-
momentum states. Along the other path (H,;; — 1 ») leading
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FIG. 5. Top row: Angle-dependent RABBIT phases extracted from the measurements in group (a) SBj, (b) SB», and (c) SBy4. Bottom

row: Corresponding RMT predictions.

to Sy, the emission of one probe photon mainly creates lower
angular-momentum states. For §;, emission of three probe
photons (Hy4 — 3 w) primarily leads to the population of
lower angular-momentum states. Even though the absorption
path (H,_; + 1) to §; also favors an increase in the photo-
electron’s angular momentum, the possible values reached
by the absorption of a single probe photon remain relatively
small.

The interplay of the propensity rule for transition ampli-
tudes to each ¢ channel and the angle-dependent amplitudes
of the coupled spherical harmonics determine the angular
variation of ¢ in the three SBs. In cross-channel interference,
£ # ¢/, the angle-dependent spherical harmonics undergo a
sign change across their angular nodes, thus resulting in a
phase jump by m. If the relative magnitude of these cross-
channel interferences is significant compared to that of the
same-channel interference terms, £ = £’, this can lead to a
rapid variation in the angle dependence of ¢y in the vicinity
of the nodes [29]. Depending on the value of Ad’?;z/,m relative
to the average A¢™ of the interference terms, the additional
7 jump at the nodes in Y; ,, and/or Y, ,, can drive the angle-
dependent curve downward or upward.

With increasing ¢ value, the position of the first node
in the associated Legendre polynomial of the spherical har-
monic moves to smaller angles. Due to the propensity rule,
the weight of the cross-channel interference term containing
large ¢ values is most significant in the higher sideband. This
results in a relatively early onset of the descent in the angle-
dependent RABBIT phase in the higher sideband. In the lower

sideband, the amplitude of the cross-channel interference term
containing large ¢ values is not very strong; hence, the 7
jump across the node does not produce a substantial change
in the overall retrieved phase. With increasing kinetic energy,
for both the absorption or emission of the probe photons, the
transition amplitudes for increasing and decreasing angular
momentum tend to become similar [29]. Hence, the contri-
bution of cross-channel interference containing large £ values
decreases with increasing kinetic energy. Thus the m jumps
at the nodes of the corresponding spherical harmonics do not
change the retrieved phase significantly.

Since the retrieved angle-integrated RABBIT phase is the
weighted average of all the channel-resolved RABBIT phases
and the weights of these channels in the S;, S;, and S;, SBs are
different, the angle-integrated RABBIT phase in the three SBs
also turns out different. Also, owing to the propensity rule,
the unequal transition probabilities of reaching the various
angular-momentum states of the SBs in absorption and emis-
sion of the probe photons may cause incomplete interference
in the individual ¢ channels, thereby reducing the overall os-
cillation contrast in the angle-integrated photoelectron signal.

Finally, we notice that the scale of the variations in the
angle-dependence of the RABBIT phase depicted in Fig. 5
is smaller in the calculation than in our experiment. Also, the
positions of S; and S, relative to S, appear to be switched.
In addition to always possible shortcomings in the theoretical
model (as sophisticated as it might be) and unknown potential
systematic errors in the experiment, the differences in the
probe intensities and the pulse details, in general, are likely
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responsible for at least some of the discrepancies seen here.
We hope to be able to investigate this in more detail in the
future by performing additional calculations with different
intensities and more time delays.

VI. SUMMARY AND OUTLOOK

In summary, we carried out a proof-of-principle 3-SB
RABBIT experiment in argon. In contrast to more pop-
ular single-SB studies, our technique enables us to focus
on the photon-induced transition phases without distortion
from a possibly unknown or experimentally drifting XUV
chirp. While we confirmed earlier predictions that the angle-
integrated RABBIT phases extracted within a SB group
become increasingly similar, we enhanced the analyzing
power of the setup significantly by resolving the emission
angle with a reaction microscope. By doing so, we could
identify which of the three sideband phases within a group
is most sensitive to a change in the detection angle.

Our experimental efforts were accompanied by numerical
calculations performed with the nonperturbative all-electron
R matrix with time dependence method. There is some qual-
itative agreement between experiment and theory regarding
the general trends observed, but significant differences remain
in the details. Given the remaining limitations and challenges
faced in the present study, especially concerning the details
of the pulse and the argon target, the remaining deviations
between experiment and theory in the quantitative values of
the phases are not too surprising. We hope to address these
issues in future improvements of the setup.

As the next step, we plan to repeat this experiment with
helium, where the contribution of the Wigner phase for an
s — p transition remains the same in all three sidebands.

Any differences in the phases within the group then clearly
indicate the influence of ¢. This switch of targets will require
extending the harmonic cutoff, which is by no means trivial
in our scheme, as the cutoff in the HHG process decreases
with the driving frequency. Using helium instead of argon
also has the advantage of theory likely being more reliable
due to the simplicity of the target. On the other hand, heavier
quasi-two-electron targets with an (ns*)'S outer-shell config-
uration (unfortunately, these are metals that would need to
be vaporized rather than inert gases) would provide a larger
short-range modification of the relevant interaction potential
and therefore may be more suitable to investigate whether ¢
is indeed nearly universal.

Undoubtedly, many open questions will need to be
answered before the effects of the additional continuum-
continuum transitions in single- and multi-SB RABBIT setups
are fully understood. It would be interesting to analyze
whether the SB phases always converge to each other with
increasing energy, whether or not they cross in a predictable
way with increasing emission angle, and how the behavior
depends on the target investigated. While we cannot answer
these questions at the present time, we hope that other groups
will see the work reported in this paper as a worthwhile
inspiration to carry out further studies in this field.
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