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Quantum sensors are expected to be a prominent use-case of quantum technologies, but, in practice, noise
easily degrades their performance. Quantum sensors can for instance be afflicted with erasure errors. Here, we
consider using quantum probe states with a structure that corresponds to classical [n, k, d] binary block codes
of minimum distance d � t + 1. We obtain bounds on the ultimate precision that these probe states can give
for estimating the unknown magnitude of a classical field after at most t qubits of the quantum probe state are
erased. We show that the quantum Fisher information is proportional to the variances of the weight distributions
of the corresponding 2t shortened codes. If the shortened codes of a fixed code with d � t + 1 have a nontrivial
weight distribution, then the probe states obtained by concatenating this code with repetition codes of increasing
length enable asymptotically optimal field sensing that passively tolerates up to t erasure errors.
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I. INTRODUCTION

Quantum sensors which promise to estimate physical pa-
rameters with unprecedented precision have yet to realize
their full potential because of decoherence. One approach to
combat the effects of decoherence would be to use probe states
chosen from quantum error correction codes, and perform ac-
tive quantum error correction [1–8]. However, in lieu of active
quantum error correction protocols, which remain challenging
to implement, it is pertinent to understand the extent to which
the advantage promised by quantum metrology can persist. In
this paper, we consider using probe states constructed from
classical error correction codes, with no requirement of any
quantum error correction protocol. This approach to robust
quantum metrology will be compatible with future protocols
that are focused on fault-tolerant quantum metrology, since
the probe states considered here are code states of quantum
Calderbank-Shor-Steane (CSS) codes [9]. Hence, our strat-
egy serves as a proposal both for near-term resource-limited
schemes as well as long-term fault-tolerant architectures.

The research area of quantum metrology is very broad,
and in this paper, we focus on the widely studied problem of
field sensing using quantum resources. We first describe the
field sensing scheme in the ideal noiseless setting. Here, the
quantum resource is an n-qubit probe state ρ. Mathematically,
the action of a classical field that interacts linearly with an en-
semble of n qubits can be modeled using the unitary evolution

Uθ = exp (−iθH ), (1)

*oyingkai@gmail.com
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where θ is an unknown phase proportional to the magnitude
of the classical field strength, and H is the Hamiltonian expe-
rienced by the qubits, given by

H = Z1 + · · · + Zn, (2)

where Zj denotes the Pauli operator that applies Z = |0〉〈0| −
|1〉〈1| on qubit j and the identity operator on all other qubits.
The unitary Uθ acts on the probe state ρ, which evolves into

ρθ = UθρU †
θ . (3)

Then, an observable M is measured on the state ρθ which
depends on θ . This process is repeated for many preparations
of the probe state ρ, and the measurement data are recorded.
Based on statistics of the measurement results, we can con-
struct a classical estimator θ̂ that estimates θ . From θ̂ , we can
infer the magnitude of the classical field. Typically in quantum
metrology, we aim to find a locally unbiased estimator θ̂ that
has the minimum variance Var(θ̂ ) because, in general, the
optimal observable M will depend on the true value of θ .

In a noiseless setting, field sensing using quantum re-
sources does offer a quantum advantage. Using only classical
resources (modeled by separable states), the optimal Var(θ̂ )−1

scales linearly with the number of spins n. Once we use a
quantum probe state (that can have entanglement), there can
be a quadratic scaling in the optimal Var(θ̂ )−1. Namely, in a
noiseless scenario, the optimal Var(θ̂ )−1 is equal to n2, and is
achieved using an n-qubit GHZ state (|0〉⊗n + |1〉⊗n)/

√
2 as

the probe state. However, relying on the GHZ state to achieve
a quantum advantage in field sensing is vulnerable to noise,
because even a single erasure error or phase error renders the
GHZ state completely classical. This begs the question as to
what type of probe states can be inherently robust for field
sensing.
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FIG. 1. A cartoon sketch of the robust metrology problem. First
a probe state is prepared. Then noise occurs on the probe state.
Subsequently, the probe state picks up information θ . An estimator
θ̂ of the true parameter θ is obtained after measuring an appropriate
physical observable on the quantum state.

In this paper, we focus on what we call “robust field
sensing” (see Fig. 1) In this model, noise only afflicts the
initial probe state ρ and all other aspects of the quantum
sensing protocol remain noiseless. Robust field sensing is a
good approximation to the scenario when the majority of the
noise occurs during preparation of the probe state, and when
one is waiting for the signal to accumulate. Here, we consider
erasure errors, where we know that qubits labeled by a set
E ⊂ {1, . . . , n} have been removed. The quantum channel that
models erasure errors on E is NE , which applies the partial
trace on every qubit included in E .

Erasure errors occur naturally in certain types of qubits,
such as in dual rail qubits [10]. A zero state and a one
state in a dual rail qubit are represented by |0D〉 = |0〉|1〉 and
|1D〉 = |1〉|0〉, respectively, where |0〉 represents the vacuum
state and |1〉 represents a single-photon state. With the loss of
a single photon, the |0D〉 state and |1D〉 both can relax to |0〉|0〉.
Determining whether each dual rail qubit is in the |0〉|0〉 state
allows us to identify which dual rail qubits have been erased
[10].

When a qubit is defined on the two lowest energy levels
of a physical system, there can be leakage [11] of the qubit
to higher energy levels via energy excitations. The detection
of such leakage errors allows us to pinpoint which qubits
suffer from these leakage errors, and this can also be inter-
preted as an erasure error. Physical systems where this can
occur include superconducting qubits [12] and atomic systems
[13]. Moreover, it has been recently shown how over 99% of
naturally occurring types of errors can also be converted into
erasure errors in neutral atom qubits [14].

Usually, in coding theory, erasure errors are the first type
of noise that one would consider [15,16]. In view of this, we
consider an erasure noise model that acts on quantum probe
states in this paper.

GNU codes [17], an important subset of permutation-
invariant quantum codes [18–21], have been studied in the
context of being used for field sensing in the presence of
erasure errors [22], but unfortunately GNU codes are only a
very special family of codes. In the field of quantum error
correction, there are also many other important families of
quantum error correction codes, such as CSS codes [9], which
have quantum states whose structure is based on the underly-
ing classical codes. Hence, the question arises as to how probe
states with structure based on classical codes perform under
the influence of erasure errors, in lieu of active quantum error
correction.

In this paper, we address this gap; we calculate the perfor-
mance of classical-code-inspired probe states in field sensing
and show that they can be robust against some erasure errors.

A. Field sensing as a quantum state estimation problem

In quantum state estimation [23], we have a known
parametrized set of quantum states S = {ρθ : θ ∈ R}. Given
multiple copies of an unknown state ρθ ∈ S , the task is to
construct an unbiased estimator θ̂ to estimate θ . The estima-
tor is unbiased in the sense that E(θ̂ ) = θ . We furthermore
want to have the smallest possible mean squared error (MSE)
Var(θ̂ ) = E[(θ̂ − θ )2] [23, Chapter 6.4]. This estimator θ̂ can
be obtained from measuring an observable M on ρθ The
associated MSE arises from the error propagation formula and
is given by [24], [25, Eq. (1)]

Var(θ̂ ) = Tr(ρθM2) − Tr(ρθM )2∣∣ ∂
∂θ

Tr(ρθM )
∣∣2 , (4)

which holds in the limit where θ̂ → θ . The error propagation
formula is a simple consequence of calculus and properties
of the variance function. To see this, given the spectral de-
composition M = ∑

i mi|mi〉〈mi|, note that by the Born rule,
measurement of the state ρθ in the basis {|mi〉 : i} collapses
the state to |mi〉 with probability 〈mi|ρθ |mi〉, and that the
corresponding expected eigenvalue of M is given by

μ = Tr(ρθM ) =
∑

i

mi〈mi|ρθ |mi〉. (5)

Now, let μ̂ be an unbiased estimator of μ, and assume that it
is equal to mi with probability 〈mi|ρθ |mi〉. Then it follows that
E(μ̂) = Tr(ρθM ) and

Var(μ̂) =
∑

i

m2
i 〈mi|ρθ |mi〉 −

(∑
i

mi〈mi|ρθ |mi〉
)2

= Tr(ρθM2) − Tr(ρθM )2. (6)

In general, μ can be expressed as a function of θ , where μ =
f (θ ). Similarly, the estimator μ̂ can be written as a function
of the estimator θ̂ , where μ̂ = f (θ̂ ).

Assuming the continuity of 〈mi|ρθ |mi〉 as function of θ , it
follows that f is continuous with respect to θ . Hence for any
θ0, we can write

μ = f0 + f1(θ − θ0) + O((θ − θ0)2). (7)

It follows that

μ̂ = f0 + f1(θ̂ − θ0) + O((θ̂ − θ0)2), (8)

and

Var(μ̂) = f 2
1 Var(θ̂ ) + O(Var(θ̂ − θ0)2). (9)

From continuity of 〈mi|ρθ |mi〉 with respect to θ , it follows that
for all θ0 ∈ R, we have

f1 =
∑

i

mi〈mi| ∂ρθ

∂θ

∣∣∣∣
θ=θ0

|mi〉 = Tr

(
∂ρθ

∂θ

∣∣∣∣
θ=θ0

M

)
. (10)
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The error propagation formula then follows from substituting
θ0 = θ , which gives [using (10)]

Var(θ̂ ) = Var(μ̂)Tr

(
M

∂ρθ

∂θ

)−2

+ O(Var[(θ̂ − θ )2]). (11)

This proves that the error propagation formula (4) holds in the
limit where θ̂ → θ .

When θ̂ is a locally unbiased estimator of a fixed θ , its
minimum MSE can be calculated by solving the following
optimization program:

Mminimize
Hermitian Var(θ̂ )

subject to Tr(ρθM )= θ.
(12)

The estimator θ̂ is a (globally) unbiased estimator if θ̂ is
locally unbiased for all values of θ , which means that the op-
timal solution M to this optimization problem is independent
of θ . In general, it is not possible to find an optimal M that
is independent of θ , and hence it is typical to focus on the
scenario where θ̂ is a locally unbiased estimator.

Now, substituting (4) and rewriting the optimization prob-
lem, we get equivalently

Mminimize
Hermitian Tr(ρθM2) − Tr(ρθM )2

subject to Tr(ρθM )= θ,

Tr
(

∂ρθ

∂θ
M

)= 1,

(13)

which has the advantage of being written explicitly as a con-
vex optimization program, with a convex quadratic objective
function and linear constraints. Hence, this program models
the quantum state estimation problem.

To establish the connection between quantum state esti-
mation and field sensing, we consider a specific family of
states S , namely n-qubit states such that for every θ ∈ R,
we can write ρθ = UθρU †

θ , where Uθ = e−iθH and H = Z1 +
· · · + Zn. Since we are locally estimating θ̂ , without loss of
generality, we can take θ to be in the neighborhood of zero.

B. The quantum Cramér-Rao bound

In quantum metrology, the Hermitian operator Lθ , known
as the symmetric logarithm derivative (SLD), is defined im-
plicitly via the equation

∂ρθ

∂θ
= 1

2
(Lθρθ + ρθLθ ). (14)

For example, when ρ is a pure state and Uθ = e−iθH , the
corresponding SLD can be written as

Lθ = 2i(ρθH − Hρθ ). (15)

While the solution Lθ to (14) is not necessarily unique, the
quantity Tr(ρθL2

θ ) is well defined [26]. This is because Lθ

admits a basis-independent representation as a solution of the
Lyapunov differential equation [25, Eq. (94)]. Because of this,
we can define the quantity

Q

(
ρθ ,

∂ρθ

∂θ

)
:= Tr

(
ρθL2

θ

)
(16)

based on the SLD, and this quantity depends only on ρθ and
∂ρθ/∂θ .

The quantity Q(ρθ , ∂ρθ/∂θ ) is equal to what is known as
the quantum Fisher information (QFI), which plays a central

role in quantum metrology. The QFI can also be interpreted as
a metric [27–29], which in this case depends on the probe state
and the generator H . However, evaluating the QFI explicitly
requires the full spectral decomposition of the probe state, and
may thus be challenging to find in general. While the QFI can
be defined in many different but equivalent ways, we use (16)
for its structural simplicity.

The QFI’s importance arises from its role in the celebrated
quantum Cramér-Rao bound (QCRB), proven by Helstrom
and Holevo [30–32]. Namely, the QCRB states that the mini-
mum variance of θ̂ must satisfy the following inequality:

min{Var(θ̂ ) : M = M†, Tr(ρθM ) = θ} � Q

(
ρθ ,

∂ρθ

∂θ

)−1

.

(17)

For the case of estimating a single parameter, which is the
focus of this paper, the QCRB can be tight, which means
that the QFI can tell us what the ultimate precision is for
quantum metrology. In particular, equality in the QCRB
is attained by using a θ -dependent observable M = θ1 +
Lθ /Q(ρθ , ∂ρθ/∂θ ) [25, Eq (108)]. For notational simplicity,
when it is clear what ρθ and ∂ρθ/∂θ are from the context, we
will write QFI = Q(ρθ , ∂ρθ/∂θ ).

Furthermore, when ρθ = UθρU †
θ , it is easy to see that the

M that saturates the QCRB is also locally unbiased and hence
a feasible solution to the optimization problem (12). To see
this, note that Tr(∂ρθ/dθ ) = 0, since every ρ ∈ S must have
unit trace. Also, from the SLD equation we have ∂ρθ/dθ =
1
2 (Lθρθ + ρθLθ ). It follows that Tr(ρθLθ ) = 1

2 Tr(ρθLθ ) +
1
2 Tr(Lθρθ ) = Tr(∂ρθ/dθ ) = 0. This implies that

θ̂ = Tr(ρθM ) = Tr

(
ρθ

[
θ1 + Lθ /Q

(
ρθ ,

∂ρθ

∂θ

)])
= Tr(ρθθ1) = θ, (18)

which proves that, for the phase estimation problem that we
consider, the optimal observable gives rise to a locally unbi-
ased estimator θ̂ with variance that saturates the QCRB.

Since the QFI can be complicated to analyze analytically in
general, we can appeal to some bounds on the QFI. A lower
bound on the QFI that arises from its relationship with the
Bures distance [33, Lemma 6] is given by

Q

(
ρθ ,

∂ρθ

∂θ

)
� ‖[H, ρ]‖2

1. (19)

From the fact that the 1-norm is lower bounded by the 2-norm,
we get

Q

(
ρθ ,

∂ρθ

∂θ

)
� ‖[ρ, H]‖2

2 = 2Tr(ρ2H2) − 2Tr(ρHρH ).

(20)

This bound is tight when ρ is a pure state, which corresponds
to the case where zero erasures occur. The QFI is also at most
the variance of the observable H [see Ref. [25, Eq (98)] ]:

Q

(
ρθ ,

∂ρθ

∂θ

)
� 4Tr(ρH2) − 4Tr(ρH )2. (21)

This bound is tight when ρ is a pure state. Using (21), when
Uθ = exp(−iθH ), the optimal entangled ρ corresponds to the
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GHZ state (|0〉⊗n + |1〉⊗n)/
√

2 and has a QFI equal to n2,
which achieves the so-called Heisenberg scaling. In compari-
son, the optimal QFI for separable states is achieved by |+〉⊗n,
and has a QFI equal to n, which is the standard quantum limit
(SQL).

Note that when even a single erasure occurs on the GHZ
state, it becomes separable and loses its quantum advantage.
Therein lies the question of what probe states have a QFI
that is robust against erasure errors. In this paper, we will
construct probe states for robust field sensing from classical
error-correcting codes, and evaluate their corresponding QFI
lower and upper bounds under a noise model that introduces a
finite set of erasures. We emphasize that our protocol does not
involve quantum error correction procedures.

C. Classical codes and their corresponding probe states

The classical codes that we consider are sets of length n
binary strings, called codewords, so these sets are subsets of
{0, 1}n. Given any length n binary classical code C ⊂ {0, 1}n,
we let |ψC〉 denote a pure state of the form

|ψC〉 := 1√|C|
∑
x∈C

|x〉, (22)

where for x = (x1, . . . , xn) ∈ {0, 1}n we define |x〉 := |x1〉 ⊗
· · · ⊗ |xn〉. We propose to use |ψC〉 as the ideal probe state
for robust field sensing. By choosing appropriate codes, one
might leverage fault-tolerant state preparation techniques in
the quantum error correction literature to prepare these fixed
states, but we do not discuss this aspect further in this paper.

A classical binary code C is said to be linear if it is a group
under the binary addition operator, and is said to be self-
orthogonal if x · y = 0 for all x, y ∈ C, where · denotes the
inner product over the binary field. An [n, k, d] binary linear
code C encodes k information bits into n code bits, and the
minimum number of ones in any codeword of C is d , called its
minimum distance. One important family of quantum codes
are CSS codes [9], which can be constructed from a pair of
classical codes C1, C2 that satisfy C2 ⊆ C1. As a special case,
a CSS code can be constructed from any binary linear code C
that is also self-orthogonal, by setting C2 = C and C1 = C⊥,
the dual code of C. A short background on classical codes and
quantum CSS codes is given in the Appendix.

When interpreted through the lens of quantum error cor-
rection (QEC), if C is taken to be a linear self-orthogonal
code, then |ψC〉 corresponds to the logical | + + · · · +〉 state
of a CSS code by appropriately identifying the CSS code’s
logical X operators (including the X -type stabilizers) from the
code C. Similarly, if C is taken to provide only the X -type
stabilizers, then the above is just the logical |00 · · · 0〉 state
[16, Section 10.4.2]. As a trivial case, the state |ψC〉 is also
the unique code state (up to a global phase) of the CSS code
defined by C1 = C2 = C.

D. The main result and its implications

In this paper, given any classical code C with a minimum
distance that is at least t + 1, we obtain upper and lower
bounds on the QFI after any t qubits are erased from the quan-
tum probe state ρC = |ψC〉〈ψC |. When erasure errors occur on

a subset E = { j1, . . . , jt } of qubits in the probe state ρC , the
resultant state is just the partial trace of ρC over the qubits
labeled by E . We denote this state as ρC[E ] = NE (ρC ), where
NE denotes an erasure channel on the qubits labeled by the set
E , with |E | � t . We say that t erasures occur if |E | = t . If E
comprises of t ′ consecutive qubits, we say that t ′ burst erasures
have occurred. In the robust field-sensing problem, to bound
the MSE of the estimator θ̂ , it suffices to obtain bounds on the
QFI

QE (C) := Q

(
UθρC[E ]U †

θ ,
∂

∂θ
(UθρC[E ]U †

θ )

)
, (23)

where Uθ = exp[−iθ (Z1 + · · · + Zn−|E |)].
In this scenario, we find that using our code-inspired probe

states, after at most t erasure errors have occurred, QE (C)
scales with the variances of the weight distributions of 2t

shortened codes of C. Our result applies in a very general
setting; aside from a distance criterion we impose on the
classical code C, we make no other assumptions. Hence, C
can in general be a nonlinear binary code. Moreover, we show
that if C is any constant-length code concatenated with inner
repetition codes of length linear in n, then QE (C) is at least
quadratic in the code length n and the concatenated code can
also withstand a linear number of burst erasures in n (see
Corollary 6).

An implication of our result is that, given any quantum
CSS code of constant length, we can concatenate it with
repetition codes of length linear in n. If we do so and pick an
appropriate state in the CSS codespace, the QFI under erasure
errors is boosted by concatenation with the inner repetition
codes. The operational significance is that (a) CSS codes are
well-understood in quantum coding theory; (b) we can achieve
robust field sensing with CSS states, without any error correc-
tion performed; and (c) our framework for robust field sensing
is compatible with subsequent protocols where quantum error
correction on CSS codes is required [1–8].

Now let us outline the structure of the paper. In Sec. II,
we give the main results of our paper, which are bounds on
the precision of estimating θ after t erasures have occurred
on a probe state |ψC〉 constructed from a classical code C. In
Sec. II A, we consider the example where C is a binary Reed-
Muller code with parameters RM(1,3) and evaluate upper and
lower bounds on its QFI in the noiseless case as well as when
there is a single erasure. In Sec. II B, we introduce notation
related to having multiple erasures, and define a disjointness
property for partitions of C that we need to establish our
main results. In Sec. II C, we give a lower bound on the QFI
of a probe state |ψC〉 after t erasure errors have occurred.
This lower bound is related to the variances of the weight
distributions of 2t shortened codes of C. We also show how
concatenating C with inner repetition codes can allow the
QFI to scale quadratically with n as long as the length of
the outer code is held constant and the number of erasures
t remains bounded by the disjointness criterion. Our results
imply that our probe states can also tolerate a linear number
of burst erasures. In Sec. II D, we give corresponding upper
bounds on the QFI. In Sec. III, we use the error propagator
formula (11) to evaluate the MSE for an observable motivated
from the SLDs of pure states, and show that the MSE exhibits
the same behavior as the inverse of the QFI. In Sec. IV, we

022620-4



DESCRIBING QUANTUM METROLOGY WITH ERASURE … PHYSICAL REVIEW A 107, 022620 (2023)

explain how our results can work with explicit codes. Finally,
in Sec. V, we summarize our results and discuss what we think
are interesting problems to consider in the future.

II. BOUNDS ON THE QUANTUM FISHER INFORMATION
AFTER ERASURES

When t erasure errors occur, we can always write down
the labels of the erased qubits to be j1, . . . , jt and let E =
{ j1, . . . , jt } denote the corresponding set of erasures. With-
out loss of generality, we can assume that j1 < · · · < jt . For
notational simplicity, we will denote ρ = ρC[E ] in the rest of
the paper whenever the set E and the code C is clear from the
context, and set H = Z1 + · · · + Zn−t .

A. Example: A probe state from an [[8,3,2]] Reed-Muller code

Consider the [[8, 3, 2]] quantum Reed-Muller (QRM) code
[34,35] described by two classical binary codes C2 and C1

defined as C2 := RM(0, 3) and C1 := RM(1, 3), respectively.
Due to the properties of RM codes [36], we have C2 ⊂ C1

and the dimensions are dim(C2) = 1 and dim(C1) = 4. The
standard generator matrix for C1 is given by

G(C1) =

⎡
⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎤
⎥⎥⎦ =

[
G(C2)

G(C1/C2)

]
.

(24)

The X stabilizers are given by C2, the length 8 repetition
code, and the Z stabilizers are given by C⊥

1 = C1 since C1

is the [8,4,4] extended Hamming code that is self-dual. The

canonical generators for the logical X operators correspond
to degree-1 monomials that generate the space C1/C2, namely
X̄1 = X2X4X6X8, X̄2 = X3X4X7X8, X̄3 = X5X6X7X8. Therefore,
for x1, x2, x3 ∈ {0, 1}, the logical computational basis states
can be written as

|x1x2x3〉L ≡ 1√
2

X̄ x1
1 X̄ x2

2 X̄ x3
3 (|00000000〉 + |11111111〉).

(25)

We choose the probe state for metrology as

|ψ〉 = |+ + +〉L ≡ 1

4

∑
c∈C1

|c〉. (26)

First, let us assume that the channel erases the first qubit, so
that the resulting reduced density matrix is ρ = Tr1[|ψ〉〈ψ |].
The generator matrix, Gp

1 = G(Cp
1 ) ∈ {0, 1}4×7, for the code

C1 punctured in the first position, which is the standard [7,4,3]
Hamming code, is the matrix G(C1) with the first column
removed. The last 3 rows of Gp

1, denoted as the matrix Gs
1 =

G(Cs
1) ∈ {0, 1}3×7, is a generator matrix for the dual of the

Hamming code, which is the shortened RM(1, 3) code, also
called the [7,3,4] simplex code. Therefore, the aforesaid re-
duced density matrix is

ρ = 1

16

∑
c1,c2∈Cs

1

|c1〉〈c2| + 1

16

∑
c1,c2∈Cs

1

|1 ⊕ c1〉〈1 ⊕ c2|, (27)

where 1 denotes the length 7 vector with all entries equal to 1.
In this example, H = ∑7

i=1 Zi. To obtain a lower bound on the
QFI of the probe state after the first qubit is erased, it suffices
to calculate 2Tr(ρ2H2) − 2Tr(ρHρH ) = ‖[ρ, H]‖2

2. We first
observe that

H2 = 7I128 + 2
7∑

i, j=1
i< j

ZiZ j, (28)

ρ2 = 1

256

∑
c1,c2,c′

1,c
′
2∈Cs

1

[|c1〉〈c2|c′
1〉〈c′

2| + |1 ⊕ c1〉〈1 ⊕ c2|1 ⊕ c′
1〉〈1 ⊕ c′

2|] (29)

= 8

256

∑
c1,c′

2∈Cs
1

[|c1〉〈c′
2| + |1 ⊕ c1〉〈1 ⊕ c′

2|] (30)

= 1

32

∑
c1,c2∈Cs

1

[|c1〉〈c2| + |1 ⊕ c1〉〈1 ⊕ c2|]. (31)

Then we can calculate

ρ2H2 = 7

32

∑
c1,c2∈Cs

1

[|c1〉〈c2| + |1 ⊕ c1〉〈1 ⊕ c2|]
︸ ︷︷ ︸

A

+ 2

32

∑
c1,c2∈Cs

1

7∑
i, j=1
i< j

[|c1〉〈c2|ZiZ j + |1 ⊕ c1〉〈1 ⊕ c2|ZiZ j]

︸ ︷︷ ︸
B

, (32)

Tr(A) = 7

32
× (2×8) = 7

2
, (33)
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Tr(B)
(a)= 1

16

∑
c1∈Cs

1

7∑
i, j=1
i< j

2(−1)c1(ei+e j )T
(34)

(b)= 1

8

[(
7

2

)
+

{(
4

2

)
+

(
3

2

)
−

(
21 −

(
4

2

)
−

(
3

2

))}
× 7

]
(35)

= 0, (36)

⇒ 2Tr(ρ2H2) = 7. (37)

In step (a) the vectors ei and e j denote the standard basis vectors for {0, 1}7 with a single entry 1 in the ith and jth entry,
respectively, and zeros elsewhere. We have used the fact that ZiZ j |c2〉 = (−1)c2(ei+e j )T |c2〉 and c1 = c2 for the trace to be nonzero.
Furthermore, in step (b) we have used the fact that all nonzero codewords of the simplex code Cs

1 have weight exactly 4. Next
we calculate

ρH = 1

16

∑
c1,c2∈Cs

1

7∑
i=1

[|c1〉〈c2|Zi + |1 ⊕ c1〉〈1 ⊕ c2|Zi] (38)

= 1

16

∑
c1,c2∈Cs

1

(
7∑

i=1

(−1)c2,i

)
[|c1〉〈c2| − |1 ⊕ c1〉〈1 ⊕ c2|]. (39)

This implies that

ρHρH = 1

256

⎡
⎣ ∑

c1,c2∈Cs
1

7∑
i=1

(−1)c2,i (|c1〉〈c2| − |1 ⊕ c1〉〈1 ⊕ c2|)
⎤
⎦

×
⎡
⎣ ∑

c′
1,c

′
2∈Cs

1

7∑
j=1

(−1)c′
2, j (|c′

1〉〈c′
2| − |1 ⊕ c′

1〉〈1 ⊕ c′
2|)

⎤
⎦ (40)

= 1

256

∑
c1,c2,c′

2∈Cs
1

⎛
⎝ 7∑

i, j=1

(−1)c2,i+c′
2, j

⎞
⎠(|c1〉〈c′

2| + |1 ⊕ c1〉〈1 ⊕ c′
2|) (41)

= 1

256

⎡
⎣ ∑

c2∈Cs
1

7∑
i=1

(−1)c2,i

⎤
⎦

⎡
⎣ ∑

c1,c′
2∈Cs

1

⎛
⎝ 7∑

j=1

(−1)c′
2, j

⎞
⎠(|c1〉〈c′

2| + |1 ⊕ c1〉〈1 ⊕ c′
2|)

⎤
⎦ (42)

= 0. (43)

Hence, it follows that 2Tr(ρHρH ) = 0, from which it follows that

‖[ρ, H]‖2
2 = 2Tr(ρ2H2) − 2Tr(ρHρH ) = 7. (44)

If any qubit other than the first is erased, it can be easily verified that the resulting shortened code Cs
1, where the punctured bit

takes the value 0 in all codewords, has an identical weight distribution as for the above case of the first bit being erased. A similar
statement is true for the coset of this shortened code generated by adding the all-ones vector to all codewords, corresponding to
the second summation in ρ above. Hence, if exactly one qubit out of the eight are erased, then the QFI is at least seven.

Let us now calculate the QFI lower bound for the state |ψ〉 when there are no erasures. First, we have

ρC = |ψ〉〈ψ | = 1

16

∑
c1,c2∈C1

|c1〉〈c2| = ρ2. (45)

In this case, we can take H = ∑8
i=1 Zi. Then H2 = 8I256 + 2

∑8
i< j ZiZ j . Hence,

ρ2H2 = 8

16

∑
c1,c2∈C1

|c1〉〈c2| + 2

16

∑
c1,c2∈C1

8∑
i, j=1
i< j

|c1〉〈c2|ZiZ j (46)

= 1

2

∑
c1,c2∈C1

|c1〉〈c2| + 1

8

∑
c1,c2∈C1

8∑
i, j=1
i< j

(−1)c2(ei+e j )T |c1〉〈c2|. (47)
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It is clear that the trace of the first term is 16/2 = 8. For the trace of the second term, we calculate

1

8

∑
c1∈C1

8∑
i, j=1
i< j

(−1)c1(ei+e j )T (a)= 1

8

[
2

(
8

2

)
+ 14

{(
4

2

)
+

(
4

2

)
−

( (
8

2

)
− 2

(
4

2

))}]
(48)

= 7 − 7 = 0. (49)

Here, in step (a) we have used the fact that, except the all-zeros
codeword and the all-ones codeword, all codewords in C1 have
weight exactly 4. Therefore, we have 2Tr(ρ2H2) = 16. Next,
we observe that

ρH = 1

16

∑
c1,c2∈C1

8∑
i=1

(−1)c2,i |c1〉〈c2|. (50)

So we can calculate

ρHρH = 1

256

∑
c1,c2,c′

1,c
′
2∈C1

8∑
i, j=1

(−1)c2,i+c′
2, j |c1〉〈c2|c′

1〉〈c′
2|

(51)

= 1

256

⎡
⎣ ∑

c2∈C1

8∑
i=1

(−1)c2,i

⎤
⎦ ∑

c1,c′
2∈C1

8∑
j=1

(−1)c′
2, j |c1〉〈c′

2|

(52)

= 0, (53)

again because the only codeword weights in C1 are 0,4,8. This
implies 2Tr(ρHρH ) = 0 and thus

‖[|ψ〉〈ψ |, H]‖2
2 = 2Tr(ρ2H2) − 2Tr(ρHρH ) = 16. (54)

This means that the QFI of the Reed-Muller pure probe state
is 16. In contrast, if we use the optimal separable state, we
have a QFI contribution of n = 8. Since this generator bound
is tight for pure states, we observe that the introduction of
a single erasure has more than halved the QFI lower bound
for this Reed-Muller probe state. We will show later that this
situation can be improved by concatenating the chosen code
C = C1 with an inner repetition code. Namely, the QFI lower
bound becomes 7r2 when we use inner repetition codes of
length r. For example, concatenating with repetition codes of
lengths 3, 5, and 8 produces probe states consisting of 24, 40,
and 64 qubits, with QFI lower bounds of 63, 175, and 448,
respectively, assuming a single qubit is erased. Hence, these
QRM probe states outperform the optimal separable states at
large sizes.

B. Multiple erasures on a general probe state

We now show that the erasure corrupted probe state ρC[E ]
has a particularly simple form. But first, we have to introduce
some notation that corresponds to the partition of the code
C into 2t sets, each labeled by Cz,E , where z = (z1, . . . , zt )
denotes a length t binary string. The set Cz,E consists of all
codewords c in C that satisfy c ji = zi for all i ∈ {1, 2, . . . , t},
where E = { j1, j2, . . . , jt } � {1, 2, . . . , n} as defined earlier.
Now, given a vector x, let x[E ] denote the vector obtained
from x after deleting (puncturing) all components labeled by

the set E . Then for all z ∈ {0, 1}t , we define the length n − t
shortened codes of C,

Cz[E ] := {x[E ] : x ∈ Cz,E }. (55)

Note that Cz[E ] is a nonlinear code except when z is the all-
zeros vector. Also, if Cz[E ] is not an empty set

pz := |Cz[E ]|
|C| = |Cz,E |

|C| , (56)

|ψz〉 := 1√|Cz[E ]|
∑

x∈Cz[E ]

|x〉. (57)

If Cz[E ] is an empty set, we let pz = 0 and |ψz〉 = 0. Using
this notation, we will now obtain a simple expression for
ρC[E ], the probe state after qubits in E are erased.

Proposition 1. Let C be a binary code of length n, and
let E = { j1, j2, . . . , jt } � {1, 2, . . . , n}. Let ρC = |ψC〉〈ψC |,
where |ψC〉 is as given in (22). When the qubits belonging
to E are erased from ρC , the candidate probe state becomes

ρC[E ] = 1

|C|
∑

z∈{0,1}t

∑
x,y∈Cz[E ]

|x〉〈y| =
∑

z∈{0,1}t

pz|ψz〉〈ψz|.

(58)

In general, the codes Cz[E ] for distinct values of z ∈ {0, 1}t

need not be disjoint, and the states |ψy〉 and |ψz〉 need not be
pairwise orthogonal. Proposition 1 only gives a spectral de-
composition of ρC[E ] when the codes Cz[E ] are disjoint codes
for distinct values of z ∈ {0, 1}t . This disjointness condition
is guaranteed whenever C has distance strictly larger than t ,
although this distance criteria is not a necessary condition. We
make this condition explicit in the following definition:

Definition 2. Let C be a code and E be a t set such that any
pair of codes Cy[E ] and Cz[E ] are disjoint for distinct y, z ∈
{0, 1}t . Then we say that C is t disjoint with respect to E .

Subsequent sections obtain upper and lower bounds on the
QFI of Uθ ρC[E ]U †

θ in terms of the properties of the classical
code C. Crucial to the development of these bounds are the
weight enumerators of Cz,E and Cz[E ], given respectively by

AC,k,z,E = |{x ∈ Cz,E : wt(x) = k}|, (59)

AC,k,z[E ] = |{x ∈ Cz[E ] : wt(x) = k}|. (60)

We correspondingly define XC,z,E and XC,z[E ] to be random
variables such that

Pr[XC,z,E = k] = AC,k,z,E

|Cz,E | , (61)

Pr[XC,z[E ] = k] = AC,k,z[E ]

|Cz[E ]| . (62)

In Proposition 3, we prove that the variances of the random
variables XC,z,E and XC,z[E ] are equal.
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Proposition 3. Let C be any binary code of length n.
Then, for any E � {1, . . . , n} and z ∈ {0, 1}|E |, we have
Var(XC,z,E ) = Var(XC,z[E ]).

Proof. Given any codeword x ∈ Cz,E , there is a cor-
responding codeword x[E ] ∈ Cz[E ] such that wt(x) =
wt(x[E ]) + wt(z). So, all weights of Cz,E are a constant wt(z)
away from the weights of Cz[E ], i.e., XC,z,E = XC,z[E ] +
wt(z). Hence, this constant does not affect the variance of
these associated random variables. �

C. Lower bounds using the variances of weights

Given a set of erasure errors of size t , our first key result
in this section is a lower bound for QE (C) in terms of the
variances of the weight distributions of the codes Cz,E , for z ∈
{0, 1}t .

Theorem 4. Let C be a binary code of length n, and let
E = { j1, . . . , jt } � {1, . . . , n} label a set of qubits that will be
erased. Suppose that C is t disjoint with respect to E . Then we
have

QE (C) � 8
∑

z∈{0,1}t

p2
zVar(XC,z,E ). (63)

Proof. Recall that ρ = ρC[E ] and H = Z1 + · · · + Zn−t .
Using the disjointness of the codes Cz along with the form
of ρ from Proposition 1, we see that

ρ2 = 1

|C|2
∑

z∈{0,1}t

|Cz[E ]|
∑

x,y∈Cz[E ]

|x〉〈y|. (64)

Now, for every (n − t )-bit string x, we have

H |x〉 = (−wt(x) + [n − t − wt(x)])|x〉
= [n − t − 2wt(x)]|x〉. (65)

The cyclic property of the trace implies that Tr(ρ2H2) =
Tr(Hρ2H ). Using (64), and taking the trace, we get

Tr(ρ2H2) = 1

|C|2
∑

z∈{0,1}t

|Cz[E ]|
∑

x,y,u∈Cz[E ]

〈u|H |x〉〈y|H |u〉.

(66)

Since H is a diagonal operator in the computational basis it
follows that

Tr(ρ2H2) = 1

|C|2
∑

z∈{0,1}t

|Cz[E ]|
∑

x∈Cz[E ]

〈x|H |x〉〈x|H |x〉. (67)

Since 〈x|H |x〉 = [n − t − 2wt(x)], we establish a connection
between Tr(ρ2H2) and the weight enumerator through the
equation

Tr(ρ2H2) = 1

|C|2
∑

z∈{0,1}t

|Cz[E ]| qz, (68)

where

qz :=
n−t∑
k=0

AC,k,z[E ][(n − t )2 − 4(n − t )k + 4k2]. (69)

Similarly, we can see that

Tr(ρHρH )

= 1

|C|2
∑

z∈{0,1}t

∑
x,y,u,v∈Cz[E ]

〈v|H |x〉〈y|H |u〉

= 1

|C|2
∑

z∈{0,1}t

∑
x,y∈Cz[E ]

〈x|H |x〉〈y|H |y〉

= 1

|C|2
∑

z∈{0,1}t

∑
x,y∈Cz[E ]

[n − t − 2wt(x)][n − t − 2wt(y)]

= 1

|C|2
∑

z∈{0,1}t

⎛
⎝ ∑

x∈Cz[E ]

[n − t − 2wt(x)]

⎞
⎠2

. (70)

Then, by direct usage of the definitions of the classical weight
enumerators, we get

Tr(ρHρH ) =
∑

z∈{0,1}t

r2
z

|C|2 , (71)

where

rz :=
n−t∑
k=0

AC,k,z[E ](n − t − 2k). (72)

Since we have the generator bound QE (C) � 2Tr(ρ2H2) −
2Tr(ρHρH ), we can use (68) and (71) to get

QE (C) � 2

|C|2
∑

z∈{0,1}t

(|Cz[E ]|qz − r2
z

)
. (73)

Using (62) with (69) and (72), respectively, we get

qz = |Cz[E ]| {(n − t )2 − 4(n − t )E(XC,z[E ])

+ 4E(XC,z[E ]2)}, (74)

rz = |Cz[E ]|{(n − t ) − 2E(XC,z[E ])}. (75)

Noting that

r2
z

|Cz[E ]|2 = {(n − t ) − 2E(XC,z[E ])}2

= {(n − t )2−4(n − t )E(XC,z[E ]) + 4E(XC,z[E ])2},
it follows that

|Cz[E ]|qz − r2
z = 4|Cz[E ]|2Var(XC,z[E ]). (76)

From Proposition 3, it follows from (76) that

|Cz[E ]|qz − r2
z = 4|Cz[E ]|2Var(XC,z,E ). (77)

Using (77) on the inequality (73) then gives the result. �
Remark. Suppose that C is a linear code with distance at

least two and has no zero columns in its generator matrix.
Then for all z = 0, 1, and j = 1, . . . , n, the cardinality of
C(z),{ j} is equal to |C|/2. Therefore,

Q{ j}(C) � 2 [Var(XC,(0),{ j}) + Var(XC,(1),{ j})]. (78)

Theorem 4 shows an explicit relation between a lower
bound for QFI and the classical weight enumerators of the
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relevant punctured codes under the t-qubit erasure model. We
recollect that for quantum metrology we desire the QFI to
grow quadratically, or at least superlinearly, with the number
of (physical) qubits n. Next we show that concatenating a fixed
length code C with a repetition code can boost the QFI and
hence potentially lead us towards our goal.

Lemma 5. (Boosting Lemma) Let Couter be a binary code
of length m. Denote by C the concatenated code of length
n = mr, where C is the concatenation of Couter with a rep-
etition code of length r as the inner code, i.e., replace each
bit of codewords in Couter with r copies of that bit. Let
E = {i1, . . . , it ′ } � {1, . . . , n} be a set that labels which t ′
qubits are to be erased, so that the set of outer blocks with at
least one erasure is given by Eg = {�(i − 1)/r� + 1 : i ∈ E} =
{ j1, . . . , jt } � {1, . . . , m}, which has t distinct elements. Sup-
pose that Couter is t disjoint with respect to Eg. Then we have

QE (C) � 8r2
∑

zg∈{0,1}t

p2
zg

Var(XCouter,zg,E ). (79)

Proof. From Theorem 4 we have

QE (C) � 8

|C|2
∑

z∈{0,1}t ′
|Cz[E ]|2 Var(XC,z,E ). (80)

Due to the concatenation structure, for many values of z,
|Cz[E ]| is equal to zero. Hence, in the above summation, we
only need to count terms where z respects the concatenation
structure of C. In particular, whenever ik and ik′ are elements
of E such that they belong to the same outer block, i.e.,

�(ik − 1)/r� = �(ik′ − 1)/r�, (81)

we must have zik = zik′ . Now let us label the qubits in E that
occur on the jth outer block as

S j = {i ∈ E : �(i − 1)/r� + 1 = j}. (82)

Then, for a given z ∈ {0, 1}t ′
, we know that, if “zik = zik′ for all

ik, ik′ ∈ S j” holds for all j ∈ Eg, then |Cz[E ]| = |Couter
zg

[Eg]|;
otherwise, |Cz[E ]| = 0. Hence, the number of terms in the
summation that are nonzero is at most 2t instead of 2t ′

. Next,
let x = (x1, . . . , xm) be a codeword of Couter. Then the corre-
sponding concatenated codeword in C is

x′ =
⎛
⎝x1, . . . , x1︸ ︷︷ ︸

r

,
(m−2)r︷ ︸︸ ︷. . . , . . . , . . ., xm, . . . , xm︸ ︷︷ ︸

r

⎞
⎠, (83)

and it comprises of m blocks of repeated indices. The weight
of x′ is r times of wt(x) for every x ∈ Couter. Hence, it follows
that

Var (XC,z,E ) = r2 Var(XCouter,zg,S ). (84)

Since we also have |C| = |Couter|, the lemma follows. �
Corollary 6. From the above result that QFI of the concate-

nated code scales quadratically with the lengths of the inner
repetition codes r, we make the following conclusions:

(1) When the outer code is fixed and the length of the
inner repetition codes are allowed to grow, the QFI scales like
�(r2) = �(n2/m2), and this is quadratic in the code length n
since m is a constant.

(2) Since t ′ in the boosting lemma is at most tr, and C
being t disjoint fixes t < m, it follows that t ′ = �(n) because
r = n/m scales linearly in n, by definition, once m is fixed.
Hence, following the arguments in the previous conclusion,
we can remain robust to a linear number of burst erasures
while also having the QFI scale quadratically with n.

So far, we have been discussing the asymptotic perfor-
mance of the QFI under arbitrary erasure errors and burst
erasure errors. Later, in Sec. IV A, we give more explicit lower
bounds on the QFI using noisy probe states which arise from
Reed-Muller codes concatenated with inner repetition codes.

D. Upper bounds using the variances of weights

In the previous section, we have analyzed the minimum
scaling of QFI for probe states based on classical codes and
also shown that concatenation with repetition codes helps
achieve the Heisenberg scaling. However, it is still an in-
teresting problem to explore the upper limit on QFI under
mild assumptions, without any concatenation. The following
result establishes such an upper bound for code-inspired probe
states.

Theorem 7. Let C be a length n binary code, and let
E = { j1, . . . , jt } � {1, 2, . . . , n}. Suppose further that C is t
disjoint with respect to E . Then we have

QE (C)

� 16
∑

z∈{0,1}t

pz E(XC,z[E ]2) − 16

⎛
⎝ ∑

z∈{0,1}t

pz E(XC,z[E ])

⎞
⎠2

.

(85)

Proof. To simplify notation, let ρ = ρC[E ]. For every (n −
1)-bit string x, we have

H |x〉 = (−wt(x) + [n − 1 − wt(x)])|x〉
= [n − 1 − 2wt(x)]|x〉. (86)

The cyclic property of the trace implies that Tr(ρH2) =
Tr(HρH ). Using the form of ρ from Proposition 1 we get

Tr(ρH2) = 1

|C|
∑

z∈{0,1}t

∑
x,y,u∈Cz[E ]

〈u|H |x〉〈y|H |u〉. (87)

Since H is a diagonal operator in the computational basis, it
follows that

Tr
(
ρH2

) = 1

|C|
∑

z∈{0,1}t

∑
x∈Cz[E ]

〈x|H |x〉〈x|H |x〉. (88)

Since 〈x|H |x〉 = [n − t − 2wt(x)], we establish a connec-
tion between Tr(ρH2) and weight enumerators through the
equation

Tr(ρH2) = 1

|C|
∑

z∈{0,1}t

qz, (89)

where qz is as given in (69). Similarly, we can see that

Tr(ρH ) = 1

|C|
∑

z∈{0,1}t

∑
x∈Cz[E ]

〈x|H |x〉. (90)
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It follows that

Tr(ρH ) = 1

|C|
∑

z∈{0,1}t

∑
x∈Cz[E ]

[n − t − 2wt(x)]

= 1

|C|
∑

z∈{0,1}t

rz, (91)

where rz is as given in (72). Since we have the generator bound
QE (C) � 4Tr(ρH2) − 4Tr(ρH )2, we can use (89) and (91) to

get

QE (C) � 1

|C|

⎛
⎝ ∑

z∈{0,1}t

qz − 1

|C|
∑

y,z∈{0,1}t

ryrz

⎞
⎠. (92)

Now note that

∑
z∈{0,1}t

qz = (n − t )2
∑

z∈{0,1}t

|Cz[E ]| − 4(n − t )
∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ]) + 4
∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ]2) (93)

= (n − t )2|C| − 4(n − t )
∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ]) + 4
∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ]2), (94)

and

1

|C|

⎛
⎝ ∑

z∈{0,1}t

rz

⎞
⎠2

= 1

|C|

⎛
⎝(n − t )

∑
z∈{0,1}t

|Cz[E ]| − 2
∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ])

⎞
⎠2

(95)

= 1

|C|

⎛
⎝(n − t )|C| − 2

∑
z∈{0,1}t

|Cz[E ]| E(XC,z[E ])

⎞
⎠2

(96)

= (n − t )2|C| − 4(n − t )
∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ])

+ 4

|C|

⎛
⎝ ∑

z∈{0,1}t

|Cz[E ]| E(XC,z[E ])

⎞
⎠2

. (97)

The result then follows. �

Remark 1. We can obtain a simpler, albeit looser, upper
bound on the QFI that is expressed explicitly in terms of the
variances of the weight distributions of the shortened codes.
To arrive at a simpler bound, aside from the assumptions made
in Theorem 7, we suppose that we additionally have∑

z∈{0,1}t

pz E(XC,z[E ]) � s, (98)

for some s � 1. Then

QE (C) � 16
( s

n

) ∑
z∈{0,1}t

pz Var(XC,z[E ])

+ 16
(

1 − s

n

) ∑
z∈{0,1}t

pz E(XC,z[E ]2). (99)

Proof. [Proof of (99) in Remark 1] Now let us consider
an inequality relating

∑
z pzx2

z and n(
∑

z pzxz)2, where pz are
probabilities, and xz are non-negative numbers in the inter-
val [0, n] for some positive number n. Suppose further that∑

z pzxz � s � 1. Then it follows that

∑
z

pzx2
z � n

∑
z

pzxz �
(n

s

)(∑
z

pzxz

)2

. (100)

Using (100) and identifying xz with E(XC,z[E ]), we find that
−(

∑
z pzxz)2 � ( s

n )
∑

z pzx2
z . Substituting this inequality into

Theorem 7 gives the upper bound (99). �
Theorem 7 shows that the QFI upper bound depends on

a variance-like quantity on the weight distributions of the
2t shortened codes. If t � k and the submatrix comprising
the columns corresponding to E of any generator matrix
for C has full rank, then we will indeed have pz = 1

2t by
symmetry of binary subspaces. Furthermore, both the lower
and upper bounds on the QFI indicate that we need codes
with a large variation in codeword weights. So, for such
codes it is reasonable to expect that E(XC,z[E ]) ≈ n

2 when-
ever t � n, in which case the QFI lower and upper bounds
simplify to

4

2t+1

⎡
⎣ 4

2t

∑
z∈{0,1}t

E(XC,z[E ]2) − n2

⎤
⎦ � QE (C),

QE (C) � 4

⎡
⎣ 4

2t

∑
z∈{0,1}t

E(XC,z[E ]2) − n2

⎤
⎦. (101)

We would like to emphasize that (101) holds for any positive
integer n.
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Our comparison shows quite clearly that the generator-
based QFI lower and upper bounds from the literature are
away by a factor 2−t−1 in our setting of code-inspired probe
states. But, it also explicitly shows that codes with quadrat-
ically scaling second moments on the weight distributions
of their shortened versions are highly desirable for robust
metrology.

III. AN EXPLICIT OBSERVABLE

For us, ρ = ρE (C) is not a pure state, but a mixed state with
the form

ρ =
∑

z

pz|ψz〉〈ψz|. (102)

Unfortunately, the symmetric logarithmic derivative (of ρθ =
UθρU †

θ ) becomes more complicated in this case. We can
nonetheless consider the operator

L = i
∑

z

pz(|ψz〉〈ψz|H − H |ψz〉〈ψz|) (103)

as the observable to measure on

ρθ = UθρU †
θ =

∑
z

pz
∣∣ψθ

z

〉〈
ψθ

z

∣∣, (104)

where H=Z1+ · · · + Zn−t , |ψθ
z 〉:=Uθ |ψz〉, and Uθ = e−iθH .

To evaluate the performance of our observable L, we must
evaluate the quantities

Tr(ρθL),
∂

∂θ
Tr(ρθL), Tr(ρθL2). (105)

These quantities can be calculated using the following lemma.
Lemma 8. For every y∈{0, 1}t , let |ψy〉= 1√

|Cy|
∑

x∈Cy
|x〉,

where Cy is a binary code of length n − t . Then〈
ψθ

y

∣∣ψy
〉 = 1

|Cy|eiθ (n−t )
∑
x∈Cy

e−2iθwt(x), (106)

〈
ψθ

y

∣∣H |ψy〉 = 1

|Cy|eiθ (n−t )
∑
x∈Cy

[(n − t ) − 2wt(x)]e−2iθwt(x),

(107)

〈ψy|H |ψy〉 = (n − t ) − 2

|Cy|
∑
x∈Cy

wt(x), (108)

〈ψy|H2|ψy〉 = (n − t )2 − 4(n − t )

|Cy|
∑
x∈Cy

wt(x)

+ 4

|Cy|
∑
x∈Cy

wt(x)2. (109)

Proof. It is easy to see that

H |x〉 = (n − t ) − 2wt(x)|x〉, (110)

H2|x〉 = [(n − t ) − 2wt(x)]2|x〉, (111)

e−iθH |x〉 = exp {−iθ [(n − t ) − 2wt(x)]}|x〉. (112)

The results then directly follow from these observations. �
Now define

μy := 1

|Cy|
∑
x∈Cy

wt(x), (113)

Vy := 1

|Cy|
∑
v∈Cy

(wt(v)2) − μ2
y. (114)

Here, Vy denotes the variance of the weight distribution of Cy.
Then we have the following lemmas:

Lemma 9. The unitarily evolved probe state and its associ-
ated symmetric logarithmic derivative satisfy

Tr(ρθL) = 8θ
∑

y

p2
yVy + O(θ3), (115)

∂ρθ

∂θ
Tr(ρθL) = 8

∑
y

p2
yVy + O(θ2). (116)

Proof. Since H is a diagonal matrix and we expand |ψy〉
in the computational basis, we have

Tr(ρθL)

= 2i
∑
u,y

pu pyTr
[∣∣ψθ

u

〉〈
ψθ

u

∣∣ (|ψy〉〈ψy|H − H |ψy〉〈ψy|)
]

= 2i
∑

y

p2
y

[〈ψy|H
∣∣ψθ

y

〉〈
ψθ

y

∣∣ψy
〉 − 〈

ψy
∣∣ψθ

y

〉〈
ψθ

y

∣∣H |ψy〉
]
.

(117)

Now by interpreting 〈ψy|H |ψθ
y 〉〈ψθ

y |ψy〉 as a complex number
z, and noting that z − z∗ = 2iIm(z), we can use the results of
Lemma 8 to get

Tr(ρθL) = −4
∑

y

p2
y

|Cy|2 Im

⎡
⎣∑

x∈Cy

e−2iθwt(x)
∑
v∈Cy

((n − t ) − 2wt(v))e2iθwt(v)

⎤
⎦

= −4
∑

y

p2
y

|Cy|2
∑

x,v∈Cy

[n − t − 2wt(v)]

× {cos [2θwt(x)] sin [2θwt(v)] − sin [2θwt(x]) cos [2θwt(v)]}

= −4
∑

y

p2
y

|Cy|2
∑

x,v∈Cy

[n − t − 2wt(v)] sin {2θ [wt(v) − wt(x)]}. (118)
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It follows that

Tr(ρθL) = 0 − 8θ
∑

y

p2
y

|Cy|2
∑

x,v∈Cy

[n − t − 2wt(v)][wt(v) − wt(x)] + O(θ3)

= 16θ
∑

y

p2
y

|Cy|2
∑

x,v∈Cy

[wt(v)2 − wt(v)wt(x)] + O(θ3)

= 16θ
∑

y

p2
yVy + O(θ3) (119)

Differentiating with respect to θ , we get

∂

∂θ
Tr(ρθL) = 8

∑
y

p2
yVy + O(θ2). (120)

�
Similarly we prove another property.
Lemma 10. The unitarily evolved probe state and its associated symmetric logarithmic derivative satisfy

Tr(ρθL2) = 16
∑

y

p3
yVy + O(θ2). (121)

Proof. Next, using the assumption that |ψy〉 and |ψz〉 are term-wise orthogonal since Cy ∩ Cz = ∅, we find that

Tr(ρθL2) = −4
∑
u,y,z

pu py pzTr
[∣∣ψθ

u

〉〈
ψθ

u

∣∣ (|ψy〉〈ψy|H − H |ψy〉〈ψy|) (|ψz〉〈ψz|H − H |ψz〉〈ψz|)
]

= −4
∑

y

p3
yTr

[∣∣ψθ
y

〉〈
ψθ

y

∣∣ (|ψy〉〈ψy|H − H |ψy〉〈ψy|) (|ψy〉〈ψy|H − H |ψy〉〈ψy|)
]

= −4
∑

y

p3
y

〈
ψθ

y

∣∣ [
(|ψy〉〈ψy|H ) (|ψy〉〈ψy|H ) − (|ψy〉〈ψy|H ) (H |ψy〉〈ψy|)

− (H |ψy〉〈ψy|) (|ψy〉〈ψy|H ) + (H |ψy〉〈ψy|) (H |ψy〉〈ψy|)]
∣∣ψθ

y

〉
= −4

∑
y

p3
y

[〈
ψθ

y

∣∣ψy
〉〈ψy|H |ψy〉〈ψy|H

∣∣ψθ
y

〉 − 〈
ψθ

y

∣∣ψy
〉〈ψy|H2|ψy〉

〈
ψy

∣∣ψθ
y

〉
− 〈

ψθ
y

∣∣H |ψy〉〈ψy|H
∣∣ψθ

y

〉 + 〈
ψθ

y

∣∣H |ψy〉〈ψy|H |ψy〉
〈
ψy

∣∣ψθ
y

〉]
= −4

∑
y

p3
y

[
2Re

(〈
ψθ

y

∣∣ψy
〉〈ψy|H |ψy〉〈ψy|H

∣∣ψθ
y

〉) − ∣∣〈ψθ
y

∣∣ψy
〉∣∣2〈ψy|H2|ψy〉 − ∣∣〈ψθ

y

∣∣H ∣∣ψy
〉∣∣2]

. (122)

Then it follows from Lemma 8 that

Re
(〈
ψθ

y

∣∣ψy
〉〈ψy|H |ψy〉〈ψy|H

∣∣ψθ
y

〉)
= 1

|Cy|2 Re

⎛
⎝∑

u∈Cy

e−2iθwt(u)(n − t − 2μy)
∑
x∈Cy

[n − t − 2wt(x)]e2iθwt(x)

⎞
⎠

= (n − t − 2μy)

|Cy|2
∑

u,x∈Cy

[n − t − 2wt(x)]{cos [2θwt(u)] cos [2θwt(x)] + sin [2θwt(u)] sin [2θwt(x)]}

= (n − t − 2μy)

|Cy|2
∑

u,x∈Cy

[n − t − 2wt(x)] cos {2θ [wt(u) − wt(x)]}. (123)

Thus,

Re
(〈
ψθ

y

∣∣ψy
〉〈ψy|H |ψy〉〈ψy|H

∣∣ψθ
y

〉) = (n − t − 2μy)2 + O(θ2). (124)

Next we find that

∣∣〈ψθ
y

∣∣ψy
〉∣∣2〈ψy|H2|ψy〉 = 1

|Cy|2
∑

v,u∈Cy

e2iθwt(v)e−2iθwt(u)

⎛
⎝(n − t )2 − 4(n − t )μy + 4

|Cy|
∑
x∈Cy

wt(x)2

⎞
⎠. (125)
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Hence, it follows that∣∣〈ψθ
y

∣∣ψy
〉∣∣2〈ψy|H2|ψy〉 = (n − t )2 − 4(n − t )μy + 4

|Cy|
∑
x∈Cy

wt(x)2 + O(θ2) = (n − t − 2μy)2 + 4Vy + O(θ2). (126)

Also,

∣∣〈ψθ
y

∣∣H ∣∣ψy
〉∣∣2 =

∣∣∣∣∣∣
1

|Cy|
∑
x∈Cy

[(n − t ) − 2wt(x)] e2iθwt(x)

∣∣∣∣∣∣
2

, (127)

and hence ∣∣〈ψθ
y

∣∣H ∣∣ψy
〉∣∣2 = |n − t − 2μy + i(n − t )θμy − 2iθ

|Cy|
∑
x∈Cy

wt(x)2|2 + O(θ2) = (n − t − 2μy)2 + O(θ2). (128)

The result then follows. �

Now we present the main result of this section.
Theorem 11. Let ρ = ∑

y∈{0,1}t py|ψy〉〈ψy|, where |ψy〉
satisfy the assumptions of Lemma 8. Assume that the length
(n − t ) (potentially nonlinear) codes Cy satisfy Cy ∩ Cz = ∅
for distinct y and z, so that |ψy〉 and |ψz〉 are pairwise orthog-
onal, term by term. Let ρθ and L be as defined in (104) and
(103), respectively. When θ is small, measuring the observ-
able L gives an estimator θ̂ of θ that satisfies the bound

Var(θ̂ ) � 1

16
∑

y∈{0,1}t p2
yVy

+ O(θ2). (129)

Moreover, when θ = 0, θ̂ is also a locally unbiased estimator.
Proof. Using the error propagation formula and the previ-

ous lemmas, we have that

Var(θ̂ ) = Tr(ρθL2) − Tr(ρθL)2∣∣ ∂
∂θ

Tr(ρθ L)
∣∣2 + O(θ2)

= 16
∑

y p3
yVy + O(θ2)

162
( ∑

y p2
yVy + O(θ2)

)2 + O(θ2)

� 1

16
∑

y p2
yVy

+ O(θ2). (130)

The fact that θ̂ is approximately a locally unbiased estimator
at θ = 0 arises from (115). �

Let us now identify Cy with Cy[E ] for each y ∈ {0, 1}t

and thus ρ with ρC[E ], the classical code-inspired probe
state after the subset E of qubits is erased. Then, we can
compare the result of Theorem 7 on Var(θ̂ ) with respect to
the observable L with the lower bound on QFI obtained in
Theorem 4. Recollecting that the minimum variance is given
by the inverse of QFI, we see that measuring the observable
L is optimal asymptotically, i.e., whenever θ is close to zero.
Furthermore, when combined with the boosting lemma, this
implies that measuring L on a probe state constructed from a
fixed length (m) code concatenated with a length �(n) (inner)
repetition code will have the desired Heisenberg scaling in
Var(θ̂ ) whenever θ is close to zero. Finally, we note that the
above result holds also when θ approaches integer multiples
of π .

IV. EXAMPLES

A. Boosted Reed-Muller codes

Let us revisit the [[8,3,2]] quantum Reed-Muller code
based probe state discussed in Sec. II A. In this case the
classical code corresponding to the probe state is the [8,4,4]
self-dual Reed-Muller code C = RM(1, 3). We observed ear-
lier that under no erasure the state has a QFI lower bound
of 16 but under a single erasure this drops to 7. Assume we
concatenate Couter = C with an inner repetition code of length
r = 3 to get a code of length n = 24. According to the boost-
ing lemma (Lemma 5), the QFI lower bound for the probe
state constructed from the concatenated code only depends
on the projection of the erasures to the outer code C. Since
we earlier considered a single erasure on the nonconcatenated
code, in order to make a fair comparison let us fix the erasure
rate as 1/8. Thus, approximately three qubits get erased on
the 24-qubit probe state. If these qubit indices belong to the
same “block” of repeated bits in the concatenated code, then
the projection to Couter = C produces a single qubit erasure.
While this produced a QFI lower bound of 7 for the noncon-
catenated code, for the 24-qubit probe state this is enhanced
by r2 = 9 to 63, according to the boosting lemma. Similarly, if
the projection produces two (three) erasures on the outer code,
then the QFI for the 24-qubit probe state is 27 (9). In general,
for the outer code C, if one, two or three qubits are erased,
then the normalized QFI lower bound is 7/8, 3/8, and 1/8,
respectively. If four or more qubits are erased then the QFI
lower bound is trivial (i.e., 0). Therefore, when concatenated
with a repetition code of length r, the normalized bound
increases to 7r/8, 3r/8, and r/8, respectively, depending on
the size of the projection of the erasures on the concatenated
code to just the outer code.

In Fig. 2 we compare the performance of our probe state
from the concatenated RM(1,3) code with that of previously
studied GNU probe states [22]. GNU probe states arise from
the codespace of a specific family of permutation-invariant
quantum error correction codes called GNU codes [17]. These
codes on GNU qubits have three parameters, given by G, N ,
and U . Here, G relates to the correctible number of bit-flips,
N corresponds to the number of correctible phase-flips, and
U is an unimportant scaling factor that is at least one. These
permutation-invariant codes however cannot be studied using
the framework in our paper, as the distance of the correspond-
ing classical code is equal to one.
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FIG. 2. We plot lower bounds on logn(QFI) for various code-
inspired probe states for the robust quantum metrology problem. We
compare the lower bounds that we have for the concatenated RM(1,3)
code with that of previously studied GNU probe states [22] after
one erasure error has occurred. Whenever the lower bound is above
one, there is a quantum advantage in using these code-inspired probe
states.

B. Boosted Calderbank-Shor-Steane codes

As mentioned earlier, the general code-inspired probe state
we have considered is always the logical | + + · · · +〉 state
of a CSS code whose logical X group (including the X -type
stabilizers) is given by the chosen classical binary code C, as
long as C is a linear code. So, if we used C = RM(1, 3) above,
then in the future when QEC-based metrology becomes fea-
sible, we will only be able to detect a single error since the
corresponding CSS code has parameters [[8,3,2]]. However,
if we chose the logical |+〉 state of the [[15,1,3]] quantum
Reed-Muller code, then we can make use of Reed-Muller
properties while also being able to correct a single error. Some
properties that could be leveraged are the large symmetry
group of (classical) Reed-Muller codes [36] and the fact that
this quantum code has a transversal T property [35,37]. Since
transversal T realizes logical T −1 on this [[15,1,3]] code, it
does not take the logical |+〉 state to a code state that is
orthogonal to it, so it remains unclear how this symmetry
can be leveraged. However, since the unitary induced by
the generator H = ∑

i Zi produces a transversal Z rotation,
it will be interesting to explore the utility of the transversal
Z-rotation property. If this is found to be useful for quantum
metrology, then one can easily incorporate well-known fam-
ilies of CSS codes, such as triorthogonal codes [37], which
possess such a property into our code-inspired probe state
framework [35,38].

Surface codes form a popular family of CSS codes that
are thought to be attractive candidates for quantum error
correction in the near-term [39]. Although these codes en-
code a fixed number of qubits, with typical parameters being
[[2d2, 2, d]] on a d × d square lattice, for metrology pur-
poses our results show that only the variances of the weight
distributions of the corresponding shortened classical codes
matter. It is known that surface codes can be constructed as a

hypergraph product of two classical length d repetition codes
[40,41]. Since repetition codes only have codeword lengths 0
and n, they have a quadratically scaling variance even under
erasures. However, the logical X group for surface codes is not
given by a repetition code, so one needs to analyze the weight
distribution of this group to assess the utility of the resultant
probe state for robust metrology. As surface codes are highly
likely to be practically realized, this approach would naturally
be adaptable to fault-tolerant quantum error correction based
metrology when that becomes feasible.

Our scheme has some interesting connections with
Ref. [2], where a scheme for quantum metrology with ac-
tive quantum error correction was proposed. There, the probe
states were of the form (|0L〉⊗m + |1L〉⊗m)/

√
2, where |0L〉

and |1L〉 are logical codewords from any quantum error cor-
rection code. So the concatenation has the repetition code as
the outer code, and other quantum error correction codes as
inner codes, opposite to the case we considered.

Another related work is in Ref. [42], where the authors
derive some conditions for the noise model under which the
QFI has absolutely no degradation. In contrast, we consider a
weaker condition, where the QFI can degrade under the effects
of erasure errors. In Ref. [42], the authors revisited the metrol-
ogy problem using the probe states (|0L〉⊗m + |1L〉⊗m)/

√
2,

and obtained heuristically the same conclusion as we do.
Namely, they also find that concatenation of quantum error
correction codes with repetition codes is advantageous. In
our work however, we have several additional key findings.
First, we have explicit bounds for the QFI in this scenario that
are absent in Ref. [42], which applies to any quantum error
correction code concatenated with repetition codes. Second,
our work establishes the connections of the problem of robust
quantum metrology with that of coding theory.

V. DISCUSSION

In summary, we have studied the performance of code-
inspired probe states for the problem of noisy quantum
metrology. We find that there is a strong connection be-
tween noisy quantum metrology and classical coding theory.
Namely, the QFI is related to the variances of the weight
distributions of shortened codes. The larger the variance, the
larger the corresponding QFI. Moreover, we have a boosting
lemma that implies that any CSS code, when concatenated
with repetition codes of linear length can be useful for robust
field sensing with a constant number of erasure errors.1 We
thereby side-step the no-go result of random codes for robust
field sensing by having these CSS codes to have asymptot-
ically vanishing relative distance. We also expect that when
the CSS codes are concatenated with repetition codes, we will
also do very well for burst erasure errors, but we leave this for
future work.

In general, erasure errors do not commute with the sig-
nal, and therefore their impact in the different stages of
the quantum sensing protocol is different. In our model, we

1These boosted probe states have a form similar to those proposed
in Ref. [2], and indeed, our results are reminiscent of those in
Ref. [42].
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assume that only errors occur during signal accumulation,
which models the scenario where the dominant noise process
occurs before signal accumulation. When erasures occur dur-
ing state preparation, one would expect the QFI to degrade
more than if the erasures occur later. This is because if t era-
sure errors occur at the end of signal accumulation just before
measurement, for QEC codes that correct at least t errors,
then the erasure errors do not decrease the QFI [43]. More
recently, the active QEC has been shown to be an effective
way to combat erasure errors (and deletion errors [21]) that
occur during signal accumulation [44].

We like to highlight the distinction between our protocol
and the usual QEC setting. In the usual QEC setting, the goal
is to minimize the logical error rate using active QEC given
some predetermined amount of noise. In our setting, we want
to choose the best QEC states to maximize the QFI, without
the use of active QEC. In particular, our setting does not
require the logical error rate to be low; only the QFI is the
metric of merit here. Hence, we like to emphasize that, while
our probe state is indeed a logical state of some CSS code, the
advantage we get after erasures is only in terms of precision
in the context of metrology and not in the logical error rate for
the code.

There are many open problems that remain to be solved.
First, continuous quantum error correction protocols have pre-
viously been studied [45–47]. It will be interesting to extend
our work further in this direction, to see how continuous
time quantum error correction can be integrated with robust
quantum metrology. Second, the potential of using quantum
Reed-Muller codes for fault-tolerant quantum metrology has
recently been investigated [48]. Since quantum Reed-Muller
codes are CSS codes, it is interesting to see how quantum
Reed-Muller codes concatenated with repetition codes would
perform correspondingly in a fault-tolerant setting for quan-
tum metrology. Third, it will also be interesting to see how
concatenation of random codes with specific families of codes
with structure will perform for robust quantum metrology,
because this will correspondingly extend the work of Ref. [33]
which studied noisy quantum metrology for fully random
quantum states. Fourth, it will be interesting to extend our
results to a multiparameter setting, using recent developments
on obtaining tight bounds for the robust estimation of incom-
patible observables [49,50].
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APPENDIX: BACKGROUND OF
CALDERBANK-SHOR-STEAN CODES

An [n, k, d] classical binary linear code C is a k-
dimensional subspace of Fn

2, the vector space of all length-n
binary vectors. It encodes k message bits, m, into a length-
n codeword, c, through a k×n generator matrix, G(C), as
c = mG(C). The code has minimum distance d , which means
that the Hamming weight (i.e., number of nonzero entries) of
any codeword is d . The dual code to C, denoted C⊥, is the
subspace orthogonal to C in Fn

2.
The CSS construction takes as input an [n, k1, d1] code C1

and an [n, k2, d2] code C2 such that C2 ⊆ C1, and produces an
[[n, k = k1 − k2, d � min{d1, d⊥

2 }]] quantum stabilizer code,
where d⊥

2 denotes the minimum distance of C⊥
2 . Such a code

is said to encode k logical qubits into n physical qubits. Each
codeword in C2 produces an X -stabilizer by mapping ones to
Pauli X s and zeros to Is (identity). Similarly, each codeword
in C⊥

1 produces a Z stabilizer by mapping ones to Pauli Zs and
zeros to Is. The encoding map for the CSS code is defined as
follows: Given a binary vector x ∈ Fk

2, which represents the
logical basis state |x〉L, the encoded state is given by

|x〉L �−→ |ψx〉 := 1√|C2|
∑
c∈C2

|xG(C1/C2) ⊕ c〉, (A1)

where G(C1/C2) denotes a generator matrix for the quotient
space C1/C2 and ⊕ represents modulo 2 addition of binary
vectors. It can be easily verified that any X or Z stabilizer
defined above preserves this state, as required.

[1] E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D. Lukin,
Quantum Error Correction for Metrology, Phys. Rev. Lett. 112,
150802 (2014).

[2] W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, Im-
proved Quantum Metrology Using Quantum Error Correction,
Phys. Rev. Lett. 112, 080801 (2014).

[3] G. Arrad, Y. Vinkler, D. Aharonov, and A. Retzker, Increasing
Sensing Resolution with Error Correction, Phys. Rev. Lett. 112,
150801 (2014).

[4] T. Unden, P. Balasubramanian, D. Louzon, Y. Vinkler, M. B.
Plenio, M. Markham, D. Twitchen, A. Stacey, I. Lovchinsky,
A. O. Sushkov et al., Quantum Metrology Enhanced by

Repetitive Quantum Error Correction, Phys. Rev. Lett. 116,
230502 (2016).

[5] Y. Matsuzaki and S. Benjamin, Magnetic-field sensing with
quantum error detection under the effect of energy relaxation,
Phys. Rev. A 95, 032303 (2017).

[6] S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Achieving the
Heisenberg limit in quantum metrology using quantum error
correction, Nat. Commun. 9, 78 (2018).

[7] D. Layden, S. Zhou, P. Cappellaro, and L. Jiang,
Ancilla-Free Quantum Error Correction Codes for
Quantum Metrology, Phys. Rev. Lett. 122, 040502
(2019).

022620-15

https://doi.org/10.1103/PhysRevLett.112.150802
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.150801
https://doi.org/10.1103/PhysRevLett.116.230502
https://doi.org/10.1103/PhysRevA.95.032303
https://doi.org/10.1038/s41467-017-02510-3
https://doi.org/10.1103/PhysRevLett.122.040502


YINGKAI OUYANG AND NARAYANAN RENGASWAMY PHYSICAL REVIEW A 107, 022620 (2023)

[8] W. Górecki, S. Zhou, L. Jiang, and R. Demkowicz-Dobrzański,
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