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Time-bin qudits have emerged as a promising encoding platform in many quantum photonic applications.
However, the requirement for efficient single-shot measurement of time-bin qudits instead of reconstructive
detection has restricted their widespread use in experiments. Here, we propose an efficient method to measure
arbitrary superposition states of time-bin qudits and confirm it up to dimension 4. This method is based on
encoding time bins at the picosecond timescale, also known as ultrafast time bins. By doing so, we enable the
use of robust and phase-stable single spatial mode temporal interferometers to measure time-bin qudit in different
measurement bases.
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I. INTRODUCTION

Photonic quantum information plays a central role in the
greater quantum technology ecosystem [1]. The ability to
manipulate light at the quantum level has proven to be an
invaluable tool for a variety of applications in quantum in-
formation processing [2], quantum communication [3], and
quantum sensing [4]. The ability to efficiently measure pho-
tonic quantum states with high fidelity is at the heart of
these quantum technologies. In particular, information can
be encoded onto photons by various physical realizations. A
nonexhaustive list of photonic degrees of freedom that can ef-
ficiently carry quantum information includes polarization [5],
time bins [6,7], frequency bins [8], position bins [9], spatial
modes [10], temporal modes [11], and electromagnetic field
quadratures [12]. Polarization has often been the preferred de-
gree of freedom to encode photonic quantum information due
to its ease of generation, manipulation, and detection. How-
ever, other alternatives are being investigated to expand the
potential use of photons in various quantum information tasks.

Other photonic degrees of freedom, such as time and
frequency, or position and momentum, may offer new, yet un-
exploited advantages where polarization encoding is limited.
One noticeable advantage of these degrees of freedom is their
high-dimensional nature, i.e., qudits, whereas polarization is
bidimensional by nature, i.e., qubits. High-dimensional quan-
tum systems have been recognized as an essential resource
for applications in quantum information processing [13,14]
and fundamental problems in quantum mechanics [15,16].
In quantum communications, qudits are favorable in terms
of information capacity [17] and noise tolerance [18]. More
generally, quantum information processing requires a larger
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encoding space to perform simulation, computing, or sensing
tasks [19].

Although time-bin qubits have been widely employed in
many quantum information tasks, time-bin qudits remain rela-
tively unexplored. This can be credited to the lack of efficient,
versatile, and high-fidelity measurement schemes. Here, we
propose a technique to efficiently measure time-bin qudits
with high fidelity that is compatible with the requirements
of most quantum information tasks. We perform a proof-
of-principle quantum key distribution (QKD) experiment to
demonstrate the benefit and convenience of our technique.

The ease by which time-bin states of photons can be mea-
sured in their computational basis is only matched by how
difficult their measurements are in superposition bases. A fast
single-photon detector can directly detect the time-of-arrival
of photons, thus directly measuring the photon’s state in the
computational basis, i.e., |tn〉 ∈ {|t0〉, |t1〉, ..., |td−1〉}, where d
is the dimension of the encoding space. Time-bin qudits can
also be prepared in mutually unbiased basis (MUB) elements
made from superpositions of time bins. In dimension d , a
MUB example is given by

|ϕn〉 = 1√
d

d−1∑
m=0

exp

[
2π inm

d

]
|tm〉, (1)

for n = 0, 1, ..., d − 1. Here, we consider the following
MUB in dimension 4; |φ0〉 = (|t0〉 + |t1〉 + |t2〉 + |t3〉)/2,
|φ1〉 = (|t0〉 − |t1〉 + |t2〉 − |t3〉)/2, |φ2〉 = (|t0〉 + |t1〉 −
|t2〉 − |t3〉)/2, and |φ3〉 = (|t0〉 − |t1〉 − |t2〉 + |t3〉)/2. In this
MUB, an interferometric measurement among the time bins is
generally required. This is typically achieved by employing an
imbalanced, or time-delayed, interferometer [20,21]. In this
configuration, the path difference between both arms of the
interferometer is made to correspond to the time separation
among time bins. By doing so, one can obtain information
about the relative phase of specific time-bin states, but one
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generally needs to cascade time-delayed interferometers with
varying path differences to obtain a measurement outcome
on the overall state encoded from the MUB elements [22,23].
With passive elements, this approach is inefficient since the
time shifting occurring in the time-delayed interferometer
also leads to noninterfering events that do not result in useful
phase information. The fixed delays of such passive setups
must be interferometrically stable with respect to the distinct
time bins permitted by detector jitter and pulse duration, often
raising the need for active phase stabilization.

To overcome the inefficiency of passive interferometric
setups, active elements can be introduced to avoid noninter-
fering events. This can be achieved with fast electro-optic
modulators or optical nonlinearity such as cross-phase mod-
ulation based on the optical Kerr effect in the presence of a
strong pulsed laser [24–26]. However, in order to achieve an
efficient single-shot measurement of a time-bin superposition
state, the appropriate combination of active optical elements
and time-delayed interferometers must be realized. Recently,
we demonstrated the use of ultrafast time bins, where time-bin
qubits are encoded onto picosecond-duration pulses [27]. One
of the main advantages of operating at such a time scale is
the notable reduction of the time separation among time bins.
This has the direct effect of reducing the path difference of
time-delayed interferometers to only a few hundred microm-
eters, thus offering the potential for compact time-delayed
interferometers with intrinsic passive phase stability over long
periods of time. Finally, other configurations based on fast
optical modulation and spectral phase modulation have been
proposed and investigated numerically [28,29], but experi-
mental demonstrations have yet to be reported.

II. EXPERIMENT

Here, we propose and experimentally demonstrate a tech-
nique to measure time-bin qudits in a single-shot setting. The
practicality of our measurement scheme is then tested in a
proof-of-principle high-dimensional quantum communication
demonstration. Ultrafast time-bin qudits in dimension d = 4
are realized with a bin separation of τ = 2.25 ps. The small
time difference among time bins enables us to use compact
time-delayed interferometers. In particular, we take advantage
of the difference in group index experienced by orthogonal
linear polarization states in a birefringent crystal to achieve
a collinear time-delayed interferometer. An intrinsic phase
stability is realized by having both arms of the time-delayed
interferometers in a single spatial mode. At a signal wave-
length of λsignal = 720 nm, a 5-mm-long α-barium borate
(BBO) crystal can give rise to a group delay of τ = 2.25 ps
between orthogonal linearly polarized pulses.

In the computational basis, time-bin states are measured
using an ultrafast polarization switch (UPS), where the polar-
ization of the time bin that is measured is rotated by an angle
of 90◦. The UPS is achieved via cross-phase modulation in a
14-cm SM600 single-mode fiber (SMF) by applying a strong
pump pulse. We note that the pulse energies required to induce
a nonlinear phase shift of �φ = π , in our experiment, are well
below the point of optical damage in the fiber. The switching

efficiency η of the UPS is given by [30]

η = sin2 (2θ ) sin2

(
�φ

2

)
, (2)

where θ is the angle between the polarization of the pump and
the signal pulses, �φ = 8πn2Leff Ipump/3λsignal is the nonlin-
ear phase shift induced by the pump pulse in the SMF, n2 is
the nonlinear refractive index of the SMF, Leff is the effective
length of the nonlinear medium, and Ipump is the intensity of
the pump pulse. To achieve maximal switching efficiency, the
pump pulse is polarized at an angle of θ = π/4 with respect
to the polarization of the signal pulses and the pump intensity
is adjusted to achieve �φ = π . A single-shot measurement
of the time-bin qudits is realized by cascading two UPS; see
Fig. 1. Using the same experimental setup with additional
half-wave plates, time-bin qudits prepared in the superposition
basis can also be measured; see Fig. 2 and the Appendix. In
order to switch between measurement basis, the half-wave
plate is simply rotated from a 0◦ angle for the computational
basis to a 22.5◦ angle for the superposition basis. We note that
the pump pulse may induce an additional global phase onto
the rotated time-bin signal. In our experiment, this additional
phase is corrected by using a sequence of wave plates.

Weak coherent pulses are generated at a wavelength of
λsig = 710 nm by pumping an optical parametric oscillator
(OPO) with a Ti:sapphire laser at a wavelength and repetition
rate of λpump = 780 nm and frep = 80 MHz, respectively;
see Fig. 3. The signal and pump wavelengths are selected in
order to limit the amount of parasitic noise generated by the
strong pump pulses. In particular, nonlinear processes, such
as self-phase modulation and two-photon absorption, may
create noise photons covering the spectral range of interest
for the quantum signals [31]. The signal and pump pulses are
spectrally filtered to a bandwidth of �λsignal = 5.0 nm and
�λpump = 5.8 nm, corresponding to transform-limited pulse
durations of 0.15 and 0.15 ps, respectively. The time-bin qudit
states are prepared using a sequence of a half-wave plate
(HWP), a 5-mm α-BBO crystal, a polarizing beam splitter
(PBS), a HWP, a 10-mm α-BBO crystal, and another PBS.
The α-BBO crystals are set at a 45◦ angle from the PBS
and the rotation angles of both HWPs then determine the
generated time-bin qudit states. In the computational basis,
the states |t0〉, |t1〉, |t2〉, and |t3〉 are achieved by setting the
HWP angles to 22.5◦/22.5◦, −22.5◦/22.5◦, 22.5◦/−22.5◦,
and −22.5◦/−22.5◦, respectively. Similarly, in the superpo-
sition basis, the states |φ0〉, |φ1〉, |φ2〉, and |φ3〉 are achieved
by setting the HWP angles to 0◦/0◦, 45◦/0◦, 0◦/45◦, and
45◦/45◦, respectively. We note that using this method, an
overall state generation efficiency of 25% is achieved due
to postselection with the PBS. This does not constitute a
limitation since the weak coherent pulses must be attenuated
to single-photon levels regardless. However, efficient single-
photon state generation can also be achieved using active
switching with the UPS. Finally, the weak coherent pulses
are attenuated to the single-photon level. In our experiment,
a mean photon number of μ = 0.14 per pulse is measured.
In a real quantum communication setting, this parameter is
adjusted to maximize the overall secret key rate of the system.
Nevertheless, our experimental value is consistent with mean
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(a)

(b)

(c)

FIG. 1. Measuring time-bin qudits in the computational basis. Simplified experimental setup for the measurement of computational time-
bin qudits in dimension d = 4. (a) Computational time-bin qudits, |ti〉, are prepared and sent to a 14-cm single mode fiber (SMF), acting as the
nonlinear medium, followed by a 5-mm α-BBO crystal and a polarization time delay. As a second stage, the signal is sent to a second SMF
followed by a 10-mm α-BBO crystal and another polarization time delay. (b) A strong pump pulse at a center wavelength λpump is made to
overlap with the time bins t0 and t2. The polarizations of the time bins at times t1 and t3 are left unchanged while the polarizations of the time
bins at times t0 and t2 are rotated by π/2. The α-BBO crystal brings the pulses at time bins t1 and t3 to time bins t0 and t2. The polarization time
delay with a path difference of 80 cm between each arm, corresponding to a temporal shift of �τ1 = 2.6 ns, is used to temporally separate
each polarization to different nanosecond-scale time bins. (c) The signal is then sent in the second SMF where strong pump pulses are made
to overlap with the quantum signal. Specific time bins will experience polarization rotation due to the strong pump pulse inside the nonlinear
medium. Finally, the α-BBO crystal and the polarization time delay with a path difference of 170 cm between each arm, corresponding to
a temporal shift of �τ2 = 5.6 ns, are used to temporally separate each polarization to additional nanosecond scale time bins. The final state
can then be directly measured with a single-photon detector since the computational qudits are now encoded in time bins with nanosecond
temporal separation, which is larger than the timing jitter of the detector.

photon numbers reported in experimental demonstrations of
the decoy-state BB84 protocol [32].

At the measurement stage, the input states are sent to the
first SMF with a coupling efficiency of 80%. Two synchro-
nized pump pulses are also coupled in the same SMF with
a total pulse energy of 4.7 nJ for both pulses and coupling
efficiency of 70%. The pumps are prepared in order to overlap
with the signal time bins |t0〉 and |t2〉. This is done by using
a 10-mm α-BBO crystal on the pump beam. Here, we note
that the pump pulses will have orthogonal polarization which
will result in the rotated signal acquiring an additional π

phase from the UPS. This extra phase (not represented in
Fig. 2) is simply compensated for in the state preparation.
On exiting the SMF, the signal propagates through a 5-mm
α-BBO crystal which has the effect of recombining time bins
t1 with t0 and t3 with t2. In the superposition basis, this leads to
the interference of adjacent time bins, where the relative phase
information is mapped onto polarization. The signal beam is
then sent to a polarization time delay, with a path difference of
80 cm, used to achieve a fixed temporal shift of �τ1 = 2.6 ns,
in order to temporally separate the time bins with horizontal

and vertical polarization to different nanosecond scale time
bins. We note that the polarization time delay is only used to
map polarization to distinct nanosecond time bins and does
not require phase stability since no interference occurs at
the output ports. As a second stage, the signal is coupled
to a second SMF with a coupling efficiency of 76%. Two
orthogonally polarized pump beams prepared to overlap with
the signal pulses at the appropriate time bins are also coupled
to the second SMF with input pulse energies of 2.7 and 3.2
nJ, and coupling efficiencies of 64% and 62%, respectively.
Finally, a 10-mm α-BBO crystal recombines the signal time
bin t2 with t0, where, once again in the superposition basis, the
relative phase of the time bins is mapped on the polarization
of the final t0 time bin. A final polarization time delay with a
path difference of 170 cm, corresponding to a temporal shift
of �τ2 = 5.6 ns, in order to temporally separates horizontal
and vertical polarization to different nanosecond-scale time
bins. In both measurement bases, different input states will
ultimately be mapped to different nanosecond-scale time bins
that can be measured with a standard avalanche photodiode
detector (APD).
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FIG. 2. Measuring time-bin qudits in the superposition basis. Simplified experimental setup for the measurement of superposition time-bin
qudits in dimension d = 4. (a) The superposition time-bin qudit, |φ0〉, is prepared and sent to a 14-cm single mode fiber (SMF), acting as the
nonlinear medium, followed by a 5-mm α-BBO crystal, a half-wave plate (λ/2), and a polarization time delay. As a second stage, the signal
is sent to a second SMF followed by a 10-mm α-BBO crystal, a half-wave plate, and another polarization time delay. (b) A strong pump
pulse at a center wavelength λpump is made to overlap with the time bins t0 and t2. The polarization of the time bins at time t1 and t3 are left
unchanged while the polarization of the time bins at time t0 and t2 are rotated by π/2. A combination of an α-BBO crystal and a half-wave
plate, λ/2, brings the pulses at time bins t1 and t3 to interfere with time bins at t0 and t2. The polarization time delay with a path difference
of 80 cm between each arm, corresponding to a temporal shift of �τ1 = 2.6 ns, is used to temporally separate each polarization to different
nanosecond-scale time bins. (c) The signal is then sent in the second SMF where strong pump pulses are made to overlap with the quantum
signal. Specific time bins will experience polarization rotation due to the strong pump pulse inside the nonlinear medium. Finally, the α-BBO
crystal, half-wave plate, and polarization time delay with a path difference of 170 cm between each arm, corresponding to a temporal shift of
�τ2 = 5.6 ns, are used to temporally separate each polarization to additional nanosecond-scale time bins. The final state can then be directly
measured with a single-photon detector since the superposition qudits are now encoded in time bins with nanosecond temporal separation,
which is larger than the timing jitter of the detector. See Figs. 6–8 for the evolution of the states |φ1〉, |φ2〉, and |φ3〉 through the experimental
setup.

FIG. 3. Experimental setup. Experimental setup demonstrating the measurement of ultrafast time-bin qudits in dimension d = 4.
Ti:sapphire, titanium sapphire laser; λ/2, half-wave plate; λ/4, quarter-wave plate; PBS, polarizing beam splitter; OPO, optical parametric
oscillator; ND, neutral density filter; BS, beam splitter; DM, dichroic mirror; SMF, single mode fiber; APD, avalanche photodiode detectors.
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(a) (b) (c) (d)

FIG. 4. Time-bin qudit measurements. Detection events, N (α,β )
i, j for (a) α = 0, β = 0, (b) α = 0, β = 1, (c) α = 1, β = 0, and (d) α = 1,

β = 1. The shaded gray area represents the 1-ns temporal windows corresponding to each time-bin state. The number of detection events
shown corresponds to an integration time of 1 s. The cases for which α = 0 and α = 1 correspond to Alice preparing the input states in the
computational and superposition bases, respectively. The cases for which β = 0 and β = 1 correspond to Bob measuring the incoming states
in the computational and superposition bases, respectively.

III. RESULTS

We analyze the performance of our measurement scheme
in the context of QKD, where a sender, typically referred
to as Alice, prepares the time-bin states and sends them to
a receiver, typically referred to as Bob. Bob’s measurement
apparatus will be characterized experimentally by measuring
detection events N (α,β )

i, j corresponding to Alice preparing a

state |ψ (α)
i 〉 and Bob measuring a state |ψ (β )

j 〉. The compu-
tational basis corresponds to α, β = 0 and the superposition
basis to α, β = 1. From detection events, it is possible to
obtain the probability of detection of corresponding states,
i.e., P(α,β )

i, j = |〈ψ (β )
j |ψ (α)

i 〉|2 = N (α,β )
i, j /

∑3
k=0 N (α,β )

i,k , where

|ψ (0)
i 〉 = |ti〉 and |ψ (1)

i 〉 = |φi〉 for i ∈ {0, 1, 2, 3}. The α

and β bases correspond to Alice’s and Bob’s generation
and measurement bases, respectively. Finally, we define
the state fidelity, F (α)

i = P(α,α)
i,i in terms of probability of

detections. In the BB84 QKD protocol, an important figure of
merit is the quantum bit error rate (QBER), Q, and can be
experimentally obtained from the average state fidelity, i.e.,
Q = 1 − 1

2d

∑(d−1)
i=0 (F (0)

i + F (1)
i ).

The detection events, N (α,β )
i, j , are shown in Fig. 4. The

single-photon signal measured by the APD is shown as a
function of time at the nanosecond scale. We assign temporal
windows of 1 ns for each time-bin qudit state over which the
signal is integrated. From the experimental detection event,
we show the corresponding probabilities of detection; see
Fig. 5. In the computational basis, the state fidelities are
given by F (0)

0 = 98.7%, F (0)
1 = 98.4%, F (0)

2 = 97.8%, and
F (0)

3 = 98.6%. In the superposition basis, the state fidelities
are given by F (1)

0 = 97.8%, F (1)
1 = 94.8%, F (1)

2 = 96.5%, and

F (1)
3 = 94.5%. In a BB84 QKD protocol, the corresponding

QBER is given by Q = 2.8%. The performance of a quantum
communication system is given by the secret key rate, R.
In particular, the secret key rate for high-dimensional BB84
QKD protocol is given by [33]

R(d )(Q) = log2(d ) − 2h(d )(Q), (3)

FIG. 5. Probability of detection measurements. From the experi-
mental detection events, the probability of detection is obtained.
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FIG. 6. Measuring time-bin qudits in the superposition basis with input state |φ1〉. (a) Simplified experimental setup for the measurement
of superposition time-bin qudits in dimension d = 4 for input state |φ1〉. (b) The first stage consists of an SMF, a 5-mm α-BBO crystal, and a
polarization time delay with a path difference of ≈80 cm. (c) The second stage consists of an SMF, a 10-mm α-BBO crystal, and a polarization
time delay with a path difference of ≈170 cm.

where h(d )(x) := −x log2(x/(d − 1)) − (1 − x) log2(1 − x)
is the d-dimensional Shannon entropy. From the measured
QBER, we obtain a secret key rate of R = 1.54 bits per
sifted photon, which is beyond the R(2)(0) = 1 bit point
where qudits can increase the information capacity per
detected photon of quantum communication system. We
note that a diminished secret key rate is expected when
considering the security analysis of the decoy state protocol
[34]. Nevertheless, with sufficiently low noise and loss,
an improvement in secret key rate is still expected from a
high-dimensional protocol using our measurement scheme.

IV. DISCUSSION AND OUTLOOK

High-dimensional quantum communication schemes have
been investigated in many settings [17,22,35–37], with po-
tential applications with noise resilience and larger rates. For
the case of noise resilience, qudits may have an advantage
over their qubit counterpart, given a certain set of channel
conditions on noise characteristics of the generation and de-
tection systems [38]. For a different type of channel, i.e., short
communication links with low loss, where the detectors are
operated close to their saturation point, one may reach the
limit of the number of photons that can be detected per second.
However, the users in quantum communication systems are
interested in the secret key rate, which can be increased by
encoding more than one bit of secret key per photon. By doing
so, qudits can drastically improve the performance of quan-
tum communication systems. We note here that our ultrafast
time-bin qudit platform supports both avenues of operating at
large rates and tolerating larger amounts of noise. By encoding
time bins in the ultrafast regime, we are dealing with pulses

that have a minimum time-bandwidth product, also known
as Fourier transform limited, which are known to occupy a
single spectrotemporal mode. By appropriately filtering the
incoming signal, ultimate noise tolerance can be achieved
[39]. Thus, our scheme enables the full potential promised by
qudits in quantum communications.

We limited our demonstration to the case of dimension
d = 4, due to the limited laser power available; however,
the scheme may readily be extended to larger dimensions
with sufficient resources. For the case of d = 2n, where
n = 1, 2, 3, ..., one can cascade additional stages composed
of an SMF, an α-BBO of appropriate size, and a polarization
time delay with appropriate path difference. Additional pump
pulses need to be prepared and overlapped with the correct
signal time bins, but the excellent interferometric stability
would still be maintained by α-BBO crystals. We also note
that dimensions that are not powers of 2 can be achieved with
a slightly different and less compact experimental setup. With
enough UPS and birefringent crystals, any arbitrary time-bin
qudit states can be measured. The final separation of the
measurement bins was dictated by the timing jitter of our APD
detectors. Superconducting nanowire single-photon detectors
(SNSPDs) offer superior temporal resolution and high quan-
tum efficiency. Combined with our active detection scheme, in
principle the measurement bins could be much more closely
spaced. This would reduce the size of the polarization time
delays and increase the maximum possible bandwidth of the
system.

In conclusion, we have experimentally demonstrated an
efficient method to measure time-bin qudit states of single
photons in dimension 4. This measurement is carried out in
a single shot and not through a sequence of reconstructive
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FIG. 7. Measuring time-bin qudits in the superposition basis with input state |φ2〉. (a) Simplified experimental setup for the measurement
of superposition time-bin qudits in dimension d = 4 for input state |φ2〉. (b) The first stage consists of an SMF, a 5-mm α-BBO crystal, and a
polarization time delay with a path difference of ≈80 cm. (c) The second stage consists of an SMF, a 10-mm α-BBO crystal, and a polarization
time delay with a path difference of ≈170 cm.

measurements. Our method can be directly implemented and
applied in several quantum photonic applications such as
quantum communication, e.g., QKD. Moreover, we establish
a robust and phase-stable platform to manipulate multidimen-

sional temporal states of photons, a key ingredient in quantum
information processing systems. By doing so, we provide a
pathway to achieve temporal information processing using
ultrafast time-bin states of light.

(a)

(b)

(c)

FIG. 8. Measuring time-bin qudits in the superposition basis with input state |φ3〉. (a) Simplified experimental setup for the measurement
of superposition time-bin qudits in dimension d = 4 for input state |φ3〉. (b) The first stage consists of an SMF, a 5-mm α-BBO crystal, and a
polarization time delay with a path difference of ≈80 cm. (c) The second stage consists of an SMF, a 10-mm α-BBO crystal, and a polarization
time delay with a path difference of ≈170 cm.

022618-7



FRÉDÉRIC BOUCHARD et al. PHYSICAL REVIEW A 107, 022618 (2023)

ACKNOWLEDGMENTS

This work is supported by the High Throughput Secure
Networks Challenge Program at the National Research Coun-
cil of Canada (NRC), the Natural Sciences and Engineering
Research Council of Canada, and the University of Ottawa–
NRC Joint Centre for Extreme Photonics. We thank Kate
Fenwick, Rune Lausten, Denis Guay, and Doug Moffatt for
support and insightful discussions.

APPENDIX: MEASUREMENT OF TIME-BIN QUDITS
IN THE SUPERPOSITION BASIS

In Figs. 6–8, we show how superposition states |φ1〉, |φ2〉,
and |φ3〉 propagate through the measurement apparatus. Note
that the apparatus is identical to Fig. 2, but, due to inter-
ference, the different input modes are sorted into different
temporal bins.
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et al., Multidimensional quantum entanglement with large-scale
integrated optics, Science 360, 285 (2018).

[15] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A.
Zeilinger, Multi-photon entanglement in high dimensions, Nat.
Photon. 10, 248 (2016).

[16] M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-
dimensional quantum entanglement, Nat. Rev. Phys. 2, 365
(2020).

[17] J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and
D. Englund, High-dimensional quantum key distribution using
dispersive optics, Phys. Rev. A 87, 062322 (2013).

[18] S. Ecker, F. Bouchard, L. Bulla, F. Brandt, O. Kohout, F.
Steinlechner, R. Fickler, M. Malik, Y. Guryanova, R. Ursin, and
M. Huber, Overcoming Noise in Entanglement Distribution,
Phys. Rev. X 9, 041042 (2019).

[19] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S.
Kolthammer, and I. A. Walmsley, Optimal design for universal
multiport interferometers, Optica 3, 1460 (2016).

[20] I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden,
and N. Gisin, Time-bin entangled qubits for quantum communi-
cation created by femtosecond pulses, Phys. Rev. A 66, 062308
(2002).

[21] T. Brougham, S. M. Barnett, K. T. McCusker, P. G. Kwiat,
and D. J. Gauthier, Security of high-dimensional quantum key
distribution protocols using franson interferometers, J. Phys. B
46, 104010 (2013).

[22] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier,
Provably secure and high-rate quantum key distribution with
time-bin qudits, Sci. Adv. 3, e1701491 (2017).

[23] T. Ikuta and H. Takesue, Implementation of quantum state
tomography for time-bin qudits, New J. Phys. 19, 013039
(2017).

[24] S. J. Nowierski, N. N. Oza, P. Kumar, and G. S. Kanter, Tomo-
graphic reconstruction of time-bin-entangled qudits, Phys. Rev.
A 94, 042328 (2016).

[25] C. Kupchak, P. J. Bustard, K. Heshami, J. Erskine, M. Spanner,
D. G. England, and B. J. Sussman, Time-bin-to-polarization
conversion of ultrafast photonic qubits, Phys. Rev. A 96, 053812
(2017).

[26] C. Kupchak, J. Erskine, D. England, and B. Sussman, Terahertz-
bandwidth switching of heralded single photons, Opt. Lett. 44,
1427 (2019).

[27] F. Bouchard, D. England, P. J. Bustard, K. Heshami, and
B. Sussman, Quantum communication with ultrafast time-bin
qubits, PRX Quantum 3, 010332 (2022).

[28] J. M. Lukens, N. T. Islam, C. C. W. Lim, and D. J. Gauthier,
Reconfigurable generation and measurement of mutually unbi-
ased bases for time-bin qudits, Appl. Phys. Lett. 112, 111102
(2018).

[29] J. Ashby, V. Thiel, M. Allgaier, P. dOrnellas, A. O. C. Davis,
and B. J. Smith, Temporal mode transformations by sequential
time and frequency phase modulation for applications in quan-
tum information science, Opt. Express 28, 38376 (2020).

022618-8

https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1088/1361-6633/aad5b2
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1038/s41566-018-0301-6
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.82.2594
https://doi.org/10.1103/PhysRevLett.111.153602
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1364/OPTICA.388912
https://doi.org/10.1364/OE.26.031925
https://doi.org/10.1103/PhysRevX.5.041017
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1038/nature22986
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1038/s42254-020-0193-5
https://doi.org/10.1103/PhysRevA.87.062322
https://doi.org/10.1103/PhysRevX.9.041042
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1103/PhysRevA.66.062308
https://doi.org/10.1088/0953-4075/46/10/104010
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1088/1367-2630/aa5571
https://doi.org/10.1103/PhysRevA.94.042328
https://doi.org/10.1103/PhysRevA.96.053812
https://doi.org/10.1364/OL.44.001427
https://doi.org/10.1103/PRXQuantum.3.010332
https://doi.org/10.1063/1.5024318
https://doi.org/10.1364/OE.410371


MEASURING ULTRAFAST TIME-BIN QUDITS PHYSICAL REVIEW A 107, 022618 (2023)

[30] G. P. Agrawal, Nonlinear fiber optics, Nonlinear Science at the
Dawn of the 21st Century (Springer, Berlin, 2000), pp. 195–211.

[31] D. England, F. Bouchard, K. Fenwick, K. Bonsma-Fisher, Y.
Zhang, P. Bustard and B. Sussman, Perspectives on all-optical
Kerr switching for quantum optical applications, Appl. Phys.
Lett. 119, 160501 (2021).

[32] W.-Y. Hwang, Quantum Key Distribution with High Loss:
Toward Global Secure Communication, Phys. Rev. Lett. 91,
057901 (2003).

[33] L. Sheridan and V. Scarani, Security proof for quantum key
distribution using qudit systems, Phys. Rev. A 82, 030301(R)
(2010).

[34] X. Ma, B. Qi, Y. Zhao and H.-K. Lo, Practical decoy state for
quantum key distribution, Phys. Rev. A 72, 012326 (2005).

[35] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H.
Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner,
B. Heim et al., High-dimensional intracity quantum

cryptography with structured photons, Optica 4, 1006
(2017).

[36] Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt,
and L. K. Oxenløwe, High-dimensional quantum key distribu-
tion based on multicore fiber using silicon photonic integrated
circuits, npj Quantum Inf. 3, 25 (2017).

[37] F. Bouchard, K. Heshami, D. England, R. Fickler, R. W. Boyd,
B.-G. Englert, L. L. Sánchez-Soto, and E. Karimi, Experimen-
tal investigation of high-dimensional quantum key distribution
protocols with twisted photons, Quantum 2, 111 (2018).

[38] F. Zhu, M. Tyler, N. H. Valencia, M. Malik, and J. Leach, Is
high-dimensional photonic entanglement robust to noise? AVS
Quantum Sci. 3, 011401 (2021).

[39] F. Bouchard, D. England, P. J. Bustard, K. L. Fenwick, E.
Karimi, K. Heshami, and B. Sussman, Achieving Ultimate
Noise Tolerance in Quantum Communication, Phys. Rev. Appl.
15, 024027 (2021).

022618-9

https://doi.org/10.1063/5.0065222
https://doi.org/10.1103/PhysRevLett.91.057901
https://doi.org/10.1103/PhysRevA.82.030301
https://doi.org/10.1103/PhysRevA.72.012326
https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1038/s41534-017-0026-2
https://doi.org/10.22331/q-2018-12-04-111
https://doi.org/10.1116/5.0033889
https://doi.org/10.1103/PhysRevApplied.15.024027

