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Affleck-Kennedy-Lieb-Tasaki (AKLT) states are an important class of many-body quantum states that are
useful in quantum information processing, including measurement-based quantum computation in particular.
Here we propose a general approach for constructing efficient verification protocols for AKLT states on arbitrary
graphs with local spin measurements. Our verification protocols build on bond verification protocols and
matching covers (including edge coloring) of the underlying graphs, which have a simple geometric and graphic
picture. We also provide rigorous performance guarantee that is required for practical applications. With our
approach, most AKLT states of wide interest, including those defined on one- and two-dimensional lattices, can
be verified with a constant sample cost, which is independent of the system size and is dramatically more efficient
than all previous approaches. As an illustration, we construct concrete verification protocols for AKLT states on
various lattices and on arbitrary graphs up to five vertices.
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I. INTRODUCTION

Ground states of local Hamiltonians play crucial roles
in many-body physics and have also found increasing ap-
plications in quantum information processing [1–6]. The
Affleck-Kennedy-Lieb-Tasaki (AKLT) states [7,8] are of spe-
cial interest because they are the ground states of exactly
solvable models and are tied to the famous Haldane conjec-
ture [9,10]. These states are originally defined on spin chains
and have been generalized to arbitrary graphs later [11–13].
Recently, AKLT states have attracted increasing attention
because of their connection with symmetry-protected topo-
logical orders [14–16]. Moreover, AKLT states on many
two-dimensional (2D) lattices, including the honeycomb lat-
tice, are universal resource states for measurement-based
quantum computation [17–21].

In practice it is not easy to prepare many-body states,
such as AKLT states, perfectly. Therefore, it is crucial to
verify these states within a desired precision efficiently. How-
ever, traditional tomographic approaches are too resource
consuming to achieve this goal for large and intermediate
quantum systems. Recently, great efforts have been directed
to addressing this problem [22–26], and various alterna-
tive approaches have been proposed, including compressed
sensing [27], direct fidelity estimation [28,29], and shadow
estimation [30,31], etc.

Here we are particularly interested in a promising ap-
proach known as quantum state verification (QSV), which can
achieve high efficiency based on local measurements [32–43].
So far, efficient verification protocols have been constructed
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for bipartite pure states [32,37,44–48], stabilizer states (in-
cluding graph states and Greenberger-Horne-Zeilinger states
in particular) [37,40,49–54], hypergraph states [53], weighted
graph states [55], Dicke states [56], and phased Dicke states
(including Slater determinant states) [56,57]. In addition,
several verification protocols have been demonstrated suc-
cessfully in experiments [58–61]. Moreover, this approach
can be generalized to the verification of quantum gates and
processes [62–65], which have also been demonstrated in
experiments [66,67]. Unfortunately, efficient verification pro-
tocols known so far are usually tailored to quantum states
with special structures and rely on explicit expressions of
the states under consideration. For the ground states of lo-
cal Hamiltonians, although several verification protocols have
been proposed [33,36,38,68,69], it is still too resource con-
suming to verify large and intermediate quantum systems.

Recently, we introduced a general recipe for verifying the
ground states of frustration-free Hamiltonians [70]. Following
this recipe, here we propose a general approach for construct-
ing efficient verification protocols for AKLT states defined on
arbitrary graphs. Notably, explicit expressions for the AKLT
states are not necessary. Our verification protocols are based
on local spin measurements and are thus easy to implement
in experiments. In addition, these verification protocols have
very simple description in terms of elementary geometric and
graph theoretic concepts. Moreover, we provide rigorous up-
per bounds on the number of tests (sample cost) required to
achieve a given precision. To this end we derive a number of
auxiliary results, which are of independent interest. With our
approach, most AKLT states of practical interest, including
those defined on one-dimensional (1D) and 2D lattices, can
be verified with a number of tests that are independent of
the system size, which is dramatically more efficient than
previous approaches [33,36,38,69]. In addition, we construct
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concrete verification protocols for all AKLT states defined on
arbitrary graphs up to five vertices.

The rest of this paper is organized as follows. In Sec. II we
review the basic framework of QSV and the idea of subspace
verification. In Sec. III we review the definition and basic
properties of AKLT states that are relevant in later studies.
In Sec. IV we clarify potential bond test operators based on
spin measurements and construct various optimal and efficient
bond verification protocols. In Sec. V we propose a general
approach for constructing efficient verification protocols for
AKLT states together with rigorous performance guarantee.
In Sec. VI we discuss in detail the verification of 1D AKLT
states. In Sec. VII we construct concrete verification protocols
for AKLT states defined on general graphs up to five vertices.
In Sec. VIII we summarize this paper. Several technical proofs
and a table are relegated to the Appendix.

II. QUANTUM STATE VERIFICATION

In preparation for later discussion here we review the gen-
eral framework of QSV [37,39,40] and the idea of subspace
verification [50,70].

A. Basic framework

A primitive in quantum information processing is to pro-
duce a given quantum state |�〉 with prescribed properties.
In practice, the device we employ is never perfect, and the
states produced in individual runs may be different from the
target state and also different from each other. So it is crucial
to verify whether the deviation from the target state, usu-
ally quantified by the infidelity, is tolerable. To address this
problem, in each run we can perform a random two-outcome
measurement {Tl , 1 − Tl} determined by the test operator Tl ,
where the two outcomes correspond to passing and failing the
test, respectively [37,39,40]. To guarantee that the target state
|�〉 can pass the test with certainty, the test operator Tl needs
to satisfy the requirement

Tl |�〉 = |�〉. (1)

Let pl be the probability of performing the test Tl and
define the verification operator [37,39,40]

� =
∑

l

plTl . (2)

Suppose σ is a quantum state whose fidelity with the target
state is at most 1 − ε, that is, 〈�|σ |�〉 � 1 − ε; then the
probability that σ can pass each test on average is bounded
from above as follows [37,39,40]:

max
〈�|σ |�〉�1−ε

tr(�σ ) = 1 − [1 − β(�)]ε = 1 − ν(�)ε, (3)

where β(�) denotes the second largest eigenvalue of the ver-
ification operator �, and ν(�) = 1 − β(�) is referred to as
the spectral gap.

As a corollary of Eq. (3) the probability that the states
σ1, σ2, . . . , σN can pass all N tests satisfies [37,39,40]

N∏
j=1

tr(�σ j ) �
N∏

j=1

[1 − ν(�)ε j] � [1 − ν(�)ε̄]N , (4)

where ε j = 1 − 〈�|σ j |�〉 is the infidelity of the state σ j and
ε̄ = ∑

j ε j/N is the average infidelity. To verify the target
state |�〉 within infidelity ε and significance level δ, which
means δ � [1 − ν(�)ε]N , the minimum number of tests re-
quired is given by [37,39,40]

N =
⌈

ln δ

ln[1 − ν(�)ε]

⌉
�
⌈

ln(δ−1)

ν(�)ε

⌉
, (5)

which decreases monotonically with the spectral gap ν(�). To
achieve a high efficiency, we need to construct a verification
operator with a large spectral gap. Here we shall focus on
verification protocols that can be realized by local projective
measurements, which are most amenable to practical applica-
tions.

The verification operator � is homogeneous [39,40,45] if
it has the form

� = |�〉〈�| + λ(1 − |�〉〈�|), (6)

where 0 � λ � 1. In this case, the probability that σ can pass
each test on average is completely determined by its fidelity
with the target state |�〉,

tr(�σ ) = F + λε = λ + νF = 1 − νε, (7)

where F = 〈�|σ |�〉 and ε = 1 − F . Such verification proto-
cols are of special interest because they can also be used for
fidelity estimation.

B. Subspace verification

The basic idea of QSV can also be applied to subspace ver-
ification [50,70], which emerges naturally in the verification
of multipartite pure states, such as the ground states of local
Hamiltonians. To see this point, suppose we want to verify the
multipartite pure state |�〉 whose reduced states are mixed and
are supported in certain subspaces. To this end, we can verify
that each reduced state is supported in a particular subspace.
Quite often it turns out that the target state |�〉 can be verified
in this way without additional steps. Notably, this strategy is
particularly useful to verifying the ground states of frustrate-
free Hamiltonians, including AKLT states in particular.

Let V be a given subspace of the Hilbert space H under
consideration and Q the corresponding projector. Our task
is to verify whether the state produced is supported in this
subspace. To address this problem, we can construct a set
of tests and perform a random test from this set in each
run. Every test corresponds to a two-outcome measurement
{Tl , 1 − Tl}, which is determined by the test operator Tl , as in
the verification of a pure state. Now the condition in Eq. (1) is
replaced by

TlQ = Q, (8)

so that all states supported in V can pass each test with cer-
tainty. Let pl be the probability of performing the test Tl and
define the verification operator

� =
∑

l

plTl (9)

as in QSV [cf. Eq. (2)]. Then � satisfies the condition �Q =
Q thanks to Eq. (8).
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Suppose the quantum state σ under consideration satisfies
the condition tr(Qσ ) � 1 − ε; then the probability that σ can
pass each test on average is bounded from above as follows:

max
tr(Qσ )�1−ε

tr(�σ ) = 1 − [1 − β(�)]ε = 1 − ν(�)ε, (10)

where

β(�) = ‖�̄‖, ν(�) = 1 − β(�), (11)

�̄ = (1 − Q)�(1 − Q), (12)

and ν(�) is also called the spectral gap of �. As a corollary
of Eq. (10), the probability that the states σ1, σ2, . . . , σN pro-
duced in N runs can pass all N tests satisfies

N∏
j=1

tr(�σ j ) �
N∏

j=1

[1 − ν(�)ε j] � [1 − ν(�)ε̄]N , (13)

where ε j = 1 − tr(Qσ j ) and ε̄ = (
∑

j ε j )/N . This result has
the same form as the counterpart in QSV. To verify the sub-
space V within infidelity ε and significance level δ, the number
of tests required reads

N =
⌈

ln δ

ln[1 − ν(�)ε]

⌉
≈ ln(δ−1)

ν(�)ε
, (14)

which also has the same form as the counterpart in QSV as
presented in Eq. (5).

The concept of homogeneous verification operators has a
natural generalization in the context of subspace verification.
Now the verification operator � is homogeneous if it has the
form

� = Q + λ(1 − Q), (15)

where 0 � λ � 1. In this case, the probability that σ can pass
each test on average is completely determined by the overlap
tr(Qσ ):

tr(�σ ) = λ + ν tr(Qσ ) = 1 − ν[1 − tr(Qσ )]. (16)

In other words, the overlap tr(Qσ ) can be estimated from the
passing probability tr(�σ ). Such verification strategies will
play an important role in the verification of AKLT states, as
we shall see shortly.

III. AKLT STATES

In this section we briefly review AKLT states defined on
general graphs [7,8,11–13]. For the convenience of the read-
ers, basic facts about spin operators and graphs are introduced
in advance.

A. Spin operators

The spin operator associated with a spin-S particle is
denoted by S = (Sx, Sy, Sz ), where Sx, Sy, Sz are the spin
operators along directions x̂, ŷ, ẑ, respectively, which act on
a Hilbert space of dimension 2S + 1. Note that Sx, Sy, Sz are
nondegenerate and have eigenvalues S, S − 1, . . . ,−S. Given
an eigenvalue m of Sz, the corresponding eigenstate is denoted
by |S, m〉 or |m〉 when S is clear from the context. Then the

operators Sx, Sy, Sz can be expressed as

Sx = S+ + S−
2

, Sy = S+ − S−
2i

, Sz =
S∑

m=−S

m|m〉〈m|,

(17)

where

S+ =
S−1∑

m=−S

√
S(S + 1) − m(m + 1) |m + 1〉〈m|,

(18)

S− =
S∑

m=−S+1

√
S(S + 1) − m(m − 1) |m − 1〉〈m|.

When S = 1 for example, Sx, Sy, Sz have the following matrix
representations:

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (19)

Let r be a (real) unit vector in dimension 3, then the spin
operator along direction r reads

Sr := r · S = rxSx + rySy + rzSz. (20)

Note that Sr has the same eigenvalues as Sz for any unit vector
r in dimension 3. The eigenstate of Sr associated with the
eigenvalue m is denoted by |S, m〉r or |m〉r when S is clear
from the context. When m = S (m = −S), the eigenstate is
also denoted by |+〉r (|−〉r). The projector onto |m〉r can be
expressed as

|m〉r〈m| =
S∏

k=−S,k �=m

Sr − k

m − k
, (21)

which implies that

|+〉r〈+| = |S〉r〈S| =
S−1∏

k=−S

Sr − k

S − k
,

(22)

|−〉r〈−| = |−S〉r〈−S| =
S∏

k=−S+1

Sr − k

−S − k
.

In the special case S = 1
2 , Eq. (22) yields

|±〉r〈±| =
∣∣∣∣±1

2

〉
r

〈
±1

2

∣∣∣∣ = 1

2
± Sr = 1 ± r · σ

2
, (23)

where σ = (σx, σy, σz ) is the vector composed of the three
Pauli operators. When S = 1 by contrast, Eq. (21) yields

|±〉r〈±| = Sr(Sr ± 1)

2
, |0〉r〈0| = 1 − S2

r . (24)

In addition, given two unit vectors r, s in dimension 3,
the fidelities between |±〉r and |±〉s read (cf. Sec. III D in
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Ref. [71])

|r〈+|+〉s|2 = |r〈−|−〉s|2 =
(

1 + r · s
2

)2S

,

(25)

|r〈+|−〉s|2 = |r〈−|+〉s|2 =
(

1 − r · s
2

)2S

.

When S = 1
2 , Eq. (25) yields the familiar fidelity formula for

a qubit,

|r〈+|+〉s|2 = |r〈−|−〉s|2 = 1 + r · s
2

,

(26)

|r〈+|−〉s|2 = |r〈−|+〉s|2 = 1 − r · s
2

.

B. Graph basics

A graph G(V, E ) is specified by a vertex set V and an edge
set E , where each edge is a two-vertex subset of V (here
we only consider graphs without loops) [72]. Two distinct
vertices j, k ∈ V are adjacent if { j, k} ∈ E , in which case j, k
are also called neighbors. The degree of a vertex j is the
number of its neighbors and is denoted by deg( j). The degree
of G is the maximum vertex degree and is denoted by 
(G).
The graph G is k regular if all the vertices have degree k. The
graph G is connected if for each pair of distinct vertices i, j,
there exists a sequence of vertices i1, i2, . . . , ih with i1 = i and
ih = j such that each pair of consecutive vertices are adjacent,
that is, {ik, ik+1} ∈ E for k = 1, 2, . . . , h − 1.

Two distinct edges of G are adjacent if they share a same
vertex and nonadjacent otherwise. A matching M of G is a
subset of E in which no two edges are adjacent. The matching
is a maximal matching if it is not contained in any other match-
ing; it is a maximum matching if it contains the largest number
of edges. The matching number is the cardinality of a maxi-
mum matching and is denoted by υ(G). A matching cover
M is a set of matchings that covers the edge set E , which
means ∪M∈M = E . An edge coloring of G is an assignment of
colors to its edge such that only nonadjacent edges can have
the same color. An edge coloring is trivial if all edges have
different colors. By definition, each edge coloring determines
a matching cover composed of disjoint matchings, and vice
versa. The chromatic index (or edge chromatic number) of G
is the minimum number of colors required to color the edges
of G and is denoted by χ ′(G). Meanwhile, χ ′(G) is also the
minimum number of matchings required to cover the edge
set E . According to Vizing’s theorem [72,73], the chromatic
index of G satisfies


(G) � χ ′(G) � 
(G) + 1. (27)

It is not always easy to find an optimal edge coloring, but
a nearly optimal edge coloring with 
(G) + 1 � χ ′(G) + 1
colors can be found efficiently [74].

C. AKLT Hamiltonians and AKLT states

Let G(V, E ) be a connected graph with n vertices, to
define the AKLT Hamiltonian associated with G, we first
assign a Hilbert space H j of dimension deg( j) + 1 to each
vertex j. The whole Hilbert space is a tensor product of H j ,
that is, H = ⊗

j∈V H j . Then we assign a spin operator S j =

(S j,x, S j,y, S j,z ) of spin value S j = deg( j)/2 on H j . Next, for
each edge e = { j, k} ∈ E of the graph, define Se = S j + Sk ,
then Se is the maximum possible value of the total spin of the
two nodes. Define

SE := max
e∈E

Se = max
{ j,k}∈E

(S j + Sk ); (28)

then we have

SE � 
(G), (29)

where the inequality is saturated if G is regular.
Given an edge e = { j, k}, denote by Pe = PSe (S j + Sk ) the

projector onto the spin-Se subspace of spins j and k. To be
concrete, the projector can be expressed as follows:

Pe = PSe (S j + Sk ) =
S j+Sk−1∏
l=|S j−Sk |

(S j + Sk )2 − l (l + 1)

Se(Se + 1) − l (l + 1)
, (30)

where

(S j + Sk )2 = (S j,x + Sk,x )2 + (S j,y + Sk,y)2 + (S j,z + Sk,z )2.

(31)

When S j = Sk = 1, Eq. (30) can be simplified as

P2(S j + Sk ) = S j · Sk

2
+
(
S j · Sk

)2

6
+ 1

3
. (32)

When S j = Sk = 3
2 , Eq. (30) can be simplified as

P3(S j + Sk ) = 27
160 S j · Sk + 29

360 (S j · Sk )2

+ 1
90 (S j · Sk )3 + 11

128 . (33)

Now the AKLT Hamiltonian associated with the graph
G(V, E ) can be expressed as

HG =
∑
e∈E

Pe =
∑

{ j,k}∈E

PSj+Sk (S j + Sk ). (34)

It is known that this Hamiltonian is frustration free and has a
unique ground state [11–13], which is called the AKLT state
and denoted by |�G〉 henceforth. By definition we have

Pe|�G〉 = 0 ∀ e ∈ E . (35)

Moreover, |�G〉 is the only state (up to an irrelevant overall
phase factor) that satisfies this condition.

Suppose e, e′ ∈ E are two edges of G; then Pe and Pe′

commute with each other unless e and e′ are adjacent. Suppose
e = { j, k}, then at most deg( j) + deg(k) − 2 projectors Pe′ do
not commute with Pe. Let

g = g(HG) = max
{ j,k}∈E

[deg( j) + deg(k) − 2]

= 2 max
e∈E

Se − 2 = 2SE − 2; (36)

then each projector Pe does not commute with at most g
projectors that compose the Hamiltonian HG in Eq. (34). By
Eq. (29) we have

g � 2
(G) − 2. (37)
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When G is the cycle graph with n � 3 vertices, we get the
prototypical 1D AKLT Hamiltonian

H◦(n) := HG =
n∑

j=1

P2(S j + S j+1), (38)

where the vertex label n + 1 is identified with 1 by convention.
Explicit expression for the AKLT state |�G〉 is known [7,8],
but it is not necessary to the current study. By contrast, the
AKLT Hamiltonian for the open chain with n nodes is denoted
by

H 1
2 , 1

2
(n) := P3

2
(S1 + S2) + P3

2
(Sn−1 + Sn)

+
n−2∑
j=2

P2(S j + S j+1); (39)

here the spin values for the two boundary spins are both equal
to 1

2 as indicated in the subscripts.
For the convenience of later discussions, we also define two

auxiliary Hamiltonians

H 1
2 ,1(n) := P3

2
(S1 + S2) +

n−1∑
j=2

P2(S j + S j+1), (40)

H1,1(n) :=
n−1∑
j=1

P2(S j + S j+1), (41)

where the subscripts indicate the spin values of the two
boundary spins. Note that the ground-state spaces of H 1

2 ,1(n)
and H1,1(n) are twofold degenerate and fourfold degenerate,
respectively, in contrast with H◦(n) and H 1

2 , 1
2
(n), which are

nondegenerate.

D. Spectral gaps of AKLT Hamiltonians

The spectral gaps of AKLT Hamiltonians are of key in-
terest in many-body physics. They also play a crucial role
in the verification of AKLT states as we shall see later. In
the original papers [7,8], Affleck, Kennedy, Lieb, and Tasaki
proved that the AKLT Hamiltonian on the closed chain is
gapped. Recently, researchers further showed that the AKLT
Hamiltonians on several 2D lattices are also gaped. Notably,
spectral gaps can be established rigorously for the honeycomb
lattice, decorated honeycomb lattice, and decorated square
lattice [75–79]. The estimated spectral gaps for the 1D chain,
honeycomb lattice, and square lattice are 0.350, 0.100, and
0.015, respectively [6,80]. Here we discuss briefly about the
spectral gaps in the 1D case and for arbitrary connected graphs
up to five vertices. The spectral gap of the Hamiltonian HG is
denoted by γ (HG) or γ for simplicity when there is no danger
of confusion.

1. 1D chains

The spectral gaps of the AKLT Hamiltonians for four types
of 1D chains up to 10 nodes are presented in Table I and illus-
trated in Fig. 1. Numerical calculation shows that the spectral
gaps for open chains, corresponding to H 1

2 , 1
2
(n), H 1

2 ,1(n), and
H1,1(n), decrease monotonically with the number of nodes.
In the case of the closed chain corresponding to H◦(n), by

TABLE I. Spectral gaps of the AKLT Hamiltonians H 1
2 , 1

2
(n),

H 1
2 ,1(n), H1,1(n), and H◦(n) for n = 3, 4, . . . , 10 together with the

lower bounds c̃n and cn defined in Theorems 1 and 2. Note that c̃k

is a lower bound for γ (H◦(n)) when n > k � 3, while ck is a lower
bound for γ (H◦(n)) when n > 2k � 6.

n 3 4 5 6 7 8 9 10

H 1
2 , 1

2
0.667 0.517 0.454 0.421 0.402 0.390 0.381 0.376

H 1
2 ,1 0.592 0.473 0.431 0.408 0.393 0.384 0.377 0.372

H1,1 0.500 0.449 0.413 0.398 0.387 0.379 0.374 0.367
H ◦ 0.833 0.333 0.454 0.348 0.402 0.350 0.381 0.350
c̃n 0 0.173 0.218 0.248 0.264 0.276 0.284 0.291
cn 0 0.207 0.254 0.280 0.290 0.296 0.299 0.301

contrast, the spectral gap decreases monotonically if the chain
has odd length, but increases monotonically if the chain has
even length. In addition, numerical calculation suggests the
following relations:

γ (H 1
2 , 1

2
(n)) � γ (H 1

2 ,1(n)) � γ (H1,1(n)), n � 3, (42)

γ (H 1
2 , 1

2
(n)) � γ (H◦(n)), n � 4, n �= 5. (43)

In the thermodynamic limit, the AKLT Hamiltonian on the
closed chain was shown to be gapped already in the original
work of AKLT [7,8]. Later, Knabe derived a lower bound for
γ (H◦(n)) based on the spectral gap γ (H1,1(k)) [81], where
H1,1(k) is the Hamiltonian associated with the open chain of
k nodes as defined in Eq. (41).

Theorem 1 (Knabe). Suppose n > k > 2. Then γ (H◦(n))
� c̃k with

c̃k :=
(

k − 1

k − 2

)[
γ (H1,1(k)) − 1

k − 1

]
. (44)

The Knabe’s bound above is nontrivial whenever
γ (H1,1(k)) > 1/(k − 1). Recently, Gosset and Mozgunov
proved a stronger result as stated in the following theorem
[82].

3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 1. Spectral gaps of the AKLT Hamiltonians H 1
2 , 1

2
(n),

H 1
2 ,1(n), H1,1(n), and H◦(n) for n = 3, 4, . . . , 10. Here lines are

guides for the eyes (similarly for many other figures).
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FIG. 2. Connected graphs of three, four, and five vertices whose
AKLT Hamiltonians have the largest spectral gaps (up) and smallest
spectral gaps (down).

Theorem 2 (Gosset-Mozgunov). Suppose k >2 and n>2k.
Then γ (H◦(n)) � ck with

ck := 5

6

(
k2 + k

k2 − 4

)[
γ (H1,1(k)) − 6

k(k + 1)

]
. (45)

Numerical calculation suggests that Theorems 1 and 2 still
hold if H◦(n) is replaced by H 1

2 , 1
2
(n), H 1

2 ,1(n), or H1,1(n) (cf.
Table I).

2. General graphs

Next, we consider the spectral gaps of AKLT Hamiltoni-
ans associated with general connected graphs G(V, E ) up to
five vertices, that is, n = |V | � 5. Up to isomorphism there
are 1 connected graph of two vertices, 2 connected graphs
of three vertices, 6 connected graphs of four vertices, and
21 connected graphs of five vertices [83]. The correspond-
ing spectral gaps are presented in Table V in Appendix F.
Calculation shows that the Hamiltonian associated with the
complete graph has the largest spectral gap among all graphs
with the same number of vertices, as illustrated in Fig. 2. To
be specific, the spectral gaps are 5

6 , 7
10 , and 3

5 for complete
graphs of three, four, and five vertices, respectively. We guess
the same conclusion holds even for graphs with more than five
vertices. We have not found a general pattern for the graph that
leads to the smallest spectral gap: the minimum is attained at
the linear graph when n = 3, the cycle graph when n = 4, and
the lower-right graph shown in Fig. 2 (corresponding to graph
No. 18 in Table V) when n = 5.

IV. BOND VERIFICATION PROTOCOLS

To verify the AKLT state associated with a given graph, we
first need to construct bond verification protocols for verifying
each pair of adjacent nodes, which is tied to the problem
of subspace verification. Here we shall focus on verification
protocols that build on spin measurements.

A. Test operators based on spin measurements

Let S1 and S2 be two spin operators of spin values S1 and
S2, respectively. Let S = S1 + S2 and let PS = PS (S1 + S2) be
the projector onto the subspace associated with the maximum
total spin S as defined in Eq. (30); let Q = 1 − PS . Here our
goal is to verify the null space of PS , that is, the support of

Q. To this end, we shall construct test operators based on spin
measurements.

Suppose the two parties perform spin measurements along
directions r, s, respectively, where r, s are real unit vectors in
dimension 3. The measurement outcomes can be labeled by
eigenvalues m1 and m2 of r · S1 and s · S2, respectively. Let

|S1, m1; S2, m2〉r,s := |S1, m1〉r ⊗ |S2, m2〉s, (46)

pr,s(S1, m1; S2, m2) := ‖PS|S1, m1; S2, m2〉r,s‖2

= tr[PSPr,s(S1, m1; S2, m2)], (47)

where

Pr,s(S1, m1; S2, m2) = |S1, m1; S2, m2〉r,s〈S1, m1; S2, m2|
= |S1, m1〉r〈S1, m1| ⊗ |S2, m2〉s〈S2, m2|

(48)

is the rank-1 projector onto the state |S1, m1; S2, m2〉r,s. Then
a general test operator R is a linear combination of the projec-
tors Pr,s(S1, m1; S2, m2) associated with all possible outcomes.
To guarantee that all states supported in the support of Q can
pass the test with certainty, R should satisfy the condition

R � Pr,s(S1, m1; S2, m2) (49)

whenever pr,s(S1, m1; S2, m2) < 1.
If r is neither parallel nor antiparallel to s, then the in-

equality in Eq. (49) should hold for all possible outcomes
m1, m2 according to Lemma 1 below. So the test operator R is
equal to the identity operator, and the test is trivial. When s is
parallel to r, nontrivial test operators can be constructed. Here
we are particularly interested in the canonical test projector
associated with r as defined as follows:

Rr := 1 − Pr(S1; S2) − Pr(−S1; −S2)

= 1 − | + +〉r〈+ + | − | − −〉r〈− − |, (50)

where

Pr(S1; S2) := Pr,r(S1, S1; S2, S2), (51)

Pr(−S1; −S2) := Pr,r(S1,−S1; S2,−S2), (52)

|±±〉r := | ± S1〉r ⊗ | ± S2〉r. (53)

According to Lemma 1 below, any other test operator R based
on the same spin measurements satisfies R � Rr and is thus
suboptimal. When s = −r, the set of accessible test operators
does not change given that

Pr,s(S1, m1; S2, m2) = Pr,−s(S1, m1; S2,−m2). (54)

Therefore, it suffices to consider canonical test projectors
based on parallel spin measurements.

The following lemma employed in the above analysis is
proved in Appendix A.

Lemma 1. Suppose S1 and S2 are positive integers or half
integers, mj = −S j,−S j + 1, . . . , S j for j = 1, 2, and r, s are
real unit vectors in dimension 3. Then

pr,s(S1, m1; S2, m2) � 1, (55)
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and the inequality is saturated iff one of the following four
conditions holds:

r = s, m1 = S1, m2 = S2; (56a)

r = s, m1 = −S1, m2 = −S2; (56b)

r = −s, m1 = S1, m2 = −S2; (56c)

r = −s, m1 = −S1, m2 = S2. (56d)

B. Spectral gaps of bond verification protocols

According to the discussion in Sec. IV A, each canonical
test projector is specified by a unit vector r in dimension 3.
Given any probability distribution μ on the unit sphere, then a
bond verification protocol can be constructed by performing
each test Rr with a suitable probability. The corresponding
verification operator reads

�S1,S2 (μ) =
∫

Rrdμ(r). (57)

When S1 and S2 are clear from the context, �S1,S2 (μ) can
be abbreviated as �(μ) for simplicity. The spectral gap of
�S1,S2 (μ) reads

ν(�S1,S2 (μ)) = 1 − ‖PS�S1,S2 (μ)PS‖, (58)

where PS is the projector defined according to Eq. (30). Note
that the spectral gap ν(�S1,S2 (μ)) is invariant when μ is sub-
jected to any orthogonal transformation; in addition, ν(�(μ))
is concave in μ.

Lemma 2. The spectral gap ν(�S1,S2 (μ)) is independent of
S1 and S2 once the sum S = S1 + S2 is fixed.

Lemma 2 follows from the definition of the test operator Rr

in Eq. (50) and the fact that the representation of the angular
momentum operators carried by the states |S1, S2〉r is inde-
pendent of S1 and S2 once the sum S = S1 + S2 is fixed. This
result holds even if S1 = 0 or S2 = 0, which is very helpful to
simplify the computation of the spectral gap. In view of these
facts, we shall denote the spectral gap of �S1,S2 (μ) by νS (μ)
for simplicity.

Denote by μsym the average distribution of μ and its center
inversion. Define

�S (μ) :=
∫

( 1 − |S〉r〈S| − |−S〉r〈−S| )dμ(r)

= 1 − 2
∫

|S〉r〈S|dμsym(r). (59)

Then

νS (μ) = 1 − ‖�S (μ)‖ = λmin(OS (μ)), (60)

where

OS (μ) := 2
∫

|S〉r〈S|dμsym(r), (61)

and λmin denotes the smallest eigenvalue. In particular, νS (μ)
is nonzero iff the operator OS (μ) has full rank. When μ

is a discrete distribution, to achieve a nonzero spectral gap
νS (μ) > 0, the support of μsym should contain at least 2S + 1
points, so the support of μ should contain at least �S + 1

2�
points. To construct a nontrivial bond verification protocol,
therefore, at least �S + 1

2� distinct canonical tests are required.

The following lemma proved in Appendix B is very in-
structive to understanding the properties of νS (μ).

Lemma 3. Suppose μ is a probability distribution on the
unit sphere. Then νS (μ) is nonincreasing in S. If S1 � S2, then

νS1 (μ) � 2S2 + 1

2S1 + 1
νS2 (μ). (62)

In the special case S = 1
2 , we have νS (μ) = 1 irrespective

of the distribution μ. So Lemma 3 implies that

νS (μ) � 2

2S + 1
, (63)

which sets an upper bound for the spectral gap achievable
by spin measurements. Alternatively, Eq. (63) follows from
Eq. (59), which implies that

tr[�S (μ)] = 2S − 1, ‖�S (μ)‖ � 2S − 1

2S + 1
. (64)

Bond verification protocols that saturate the upper bound in
Eq. (63) are called optimal. Notably, this bound is saturated
when μ is the isotropic (uniform) distribution on the unit
sphere, which leads to the isotropic protocol.

To clarify the condition required for constructing an
optimal bond verification protocol, we need to introduce addi-
tional concepts. Let t be a non-negative integer. A probability
distribution μ on the unit sphere is a (spherical) t-design if the
average of any polynomial of degree less than or equal to t
over the distribution is equal to the average over the isotropic
distribution [84–86]. By definition a t-design is automatically
a (t − 1)-design for any positive integer t . The design strength
of the distribution μ is the largest integer t such that μ is a t-
design. The isotropic distribution forms a spherical ∞-design
and has strength ∞. If μ is center symmetric, then μ is a
2 j-design iff μ is a (2 j + 1)-design for any positive integer
j, so the strength of μ is always an odd integer. The next
theorem follows from a similar reasoning used to establish
Theorem 3 in Ref. [70]. A self-contained proof is presented in
Appendix C.

Theorem 3. Let μ be a probability distribution on the unit
sphere and S a positive integer or half-integer. Then the fol-
lowing four statements are equivalent:

1 νS (μ) = 2
2S+1 .

2 �S (μ) = 2S−1
2S+1 .

3 �S (μ) is proportional to the identity operator.
4 μsym forms a spherical t design with t = 2S.
Due to the discussion before Theorem 3, when S is a

positive integer, μsym is a 2S-design iff it is a (2S + 1)-design;
when S is a positive half-integer, μsym is a 2S-design iff it is a
2�S�-design.

C. Concrete verification protocols

In this section we construct a number of concrete bond
verification protocols based on discrete distributions on the
unit sphere, which are appealing to practical applications.

First, we consider bond verification protocols based on
platonic solids. Each platonic solid inscribed in the unit sphere
determines a probability distribution on the unit sphere (by
convention all vertices have the same weight), which in turn
determines a bond verification protocol for any given pair
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TABLE II. Spectral gaps νS (μ) for 1 � S � 4 of bond verification protocols based on platonic solids, μ24, μ32, and the isotropic
distribution. Vertex number, distinct test number, and design strength of each distribution are also shown for completeness.

Protocol � Vertex number Test number Design strength ν1 ν3/2 ν2 ν5/2 ν3 ν7/2 ν4

Tetrahedron �t 4 4 2 2
3

1
2

1
3

5
18

5
27

5
54 0

Octahedron �o 6 3 3 2
3

1
2

1
3

1
6 0 0 0

Cube �c 8 4 3 2
3

1
2

1
3

5
18

5
27

5
54 0

Icosahedron �i 12 6 5 2
3

1
2

2
5

1
3

4
15

7
30

14
75

Dodecahedron �d 20 10 5 2
3

1
2

2
5

1
3

5
18

2
9

16
81

μ24 �(μ24) 24 24 7 2
3

1
2

2
5

1
3

2
7

1
4

23
105

μ32 �(μ32) 32 16 9 2
3

1
2

2
5

1
3

2
7

1
4

2
9

Isotropic �iso ∞ ∞ ∞ 2
3

1
2

2
5

1
3

2
7

1
4

2
9

of spins. In this way we can construct five bond verification
protocols by virtue of the five platonic solids. To be concrete,
the vertices of the regular tetrahedron are chosen to be

1√
3

(1, 1, 1),
1√
3

(1,−1,−1),

(65)
1√
3

(−1, 1,−1),
1√
3

(−1,−1, 1).

The vertices of the octahedron are chosen to be

(±1, 0, 0), (0,±1, 0), (0, 0,±1). (66)

The vertices of the cube are chosen to be

1√
3

(±1,±1,±1). (67)

The vertices of the icosahedron are chosen to be

1√
1 + b2

(±1,±b, 0),
1√

1 + b2
(±b, 0,±1),

(68)
1√

1 + b2
(0,±1,±b),

where b = (1 + √
5)/2. The vertices of the dodecahedron are

chosen to be

1√
3

(
±b,±1

b
, 0

)
,

1√
3

(
±1

b
, 0,±b

)
,

(69)
1√
3

(
0,±b,±1

b

)
,

1√
3

(±1,±1,±1).

For the convenience of the following discussions, the ver-
ification operators associated with the regular tetrahedron,
octahedron, cube, icosahedron, and dodecahedron, are de-
noted by �t , �o, �c, �i, and �d, respectively. Although these
verification operators may depend on the specific choices of
vertices, their spectral gaps as shown in Table II are indepen-
dent of the specific choices. Except for the regular tetrahedron,
every platonic solid is center symmetric, and the two tests
based on each pair of antipodal vertices are equivalent; so the
total number of distinct tests is equal to one half of the vertex
number. It is known that the regular tetrahedron, octahedron,
cube, icosahedron, and dodecahedron form spherical t designs
with t = 2, 3, 3, 5, 5, respectively. So, the icosahedron and

dodecahedron protocols are optimal when S = S1 + S2 � 5
2

thanks to Theorem 3.
To construct optimal bond verification protocols for S � 3,

we need to go beyond platonic solids and consider spheri-
cal designs with higher strengths. For example, a spherical
7-design can be constructed from an orbit of the rotational
symmetry group of the standard cube (which has order 24):
one fiducial vector has the form (u1, u2, u3), where

u j =
√

1

3

(
1 + 2

√
2

5
cos

θ + 2 jπ

3

)
, θ = arctan

3
√

10

20
(70)

for j = 1, 2, 3. This orbit has 24 vectors, which can be ex-
pressed as

{(a1uσ (1), a2uσ (2), a1a2 sgn(σ )uσ (3))|a1, a2 = ±1, σ ∈ S3}.
(71)

Here S3 denotes the symmetric group of three letters; sgn(σ )
is equal to 1 for even permutations and equal to −1 for odd
permutations. All points corresponding to these vectors have
the same weight as before; the resulting distribution on the
unit sphere is denoted by μ24 henceforth. Note that μ24 is not
center symmetric.

A spherical 9-design can be constructed from the union
of the vertices of the icosahedron in Eq. (68) and that of
the dodecahedron in Eq. (69), which form pentakis dodec-
ahedron (cf. Ref. [87]). The icosahedron has weight 5

14 in
total and each vertex has weight 5

168 , while the dodecahedron
has weight 9

14 in total and each vertex has weight 9
280 . The

resulting distribution on the unit sphere is denoted by μ32,
which is center symmetric by construction. The spectral gaps
νS (μ) for 1 � S � 4 of bond verification operators based on
μ24 and μ32 are also shown in Table II.

V. VERIFICATION OF AKLT STATES:
GENERAL APPROACH

A. Construction of verification protocols

Consider the AKLT Hamiltonian HG and AKLT state |�G〉
associated with a given graph G = (V, E ) of n vertices [see
Eqs. (34) and (35)]. To verify |�G〉, we need to verify each
bond associated with each edge of the graph G. More specif-
ically, we need to verify the null space of the projector Pe for
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each e ∈ E . Here we shall focus on bond verification protocols
based on spin measurements, which are determined by proba-
bility distributions on the unit sphere as discussed in Sec. IV.
For simplicity we also assume that the same distribution is
chosen for each bond, although this is not compulsory.

Let μ be a probability distribution on the unit sphere.
According to Sec. IV we can construct a bond verification
protocol for each edge of the graph G. The bond verifica-
tion operator associated with the edge e ∈ E is defined as in
Eq. (57) and denoted by �e(μ). Given a matching M of G,
then a test for |�G〉 can be constructed by performing the bond
verification protocols for all the bonds associated with edges
in M independently. The corresponding test operator is given
by

TM (μ) =
∏
e∈M

�e(μ). (72)

Note that all the bond verification operators �e(μ) for e ∈ M
commute with each other, so the order in the above product
is irrelevant. Suppose ν(�e(μ)) > 0 for each e ∈ M, then
a quantum state |�〉 satisfies the condition TM |�〉 = |�〉 iff
Pe|�〉 = 0 for each e ∈ M. Therefore, a state can pass the test
TM (μ) with certainty iff it is supported in the null space of the
projector Pe for each e ∈ M.

Let M = {M1, M2, . . . , Mm} be a matching cover of G
that consists of m matchings and let p = (p1, p2, . . . , pm) be
a probability distribution on M (we shall assume that the
distribution is uniform when p is not mentioned explicitly).
Then a verification protocol for |�G〉, called the matching
protocol henceforth, can be constructed by performing each
test TMl (μ) with probability pl . The matching protocol is
specified by the triple (μ,M , p) (here p can be omitted for
the uniform distribution), and the corresponding verification
operator reads

�(μ,M , p) =
m∑

l=1

plTMl (μ). (73)

Suppose pl > 0 for l = 1, 2, . . . , m and ν(�e(μ)) > 0 for
each e ∈ ∪l Ml = E ; then a quantum state |�〉 can pass all the
tests with certainty iff Pe|�〉 = 0 for each e ∈ E . So only the
target state |�G〉 can pass all the tests with certainty, which
means this verification protocol is effective.

B. Protocol optimization

To construct an efficient matching protocol, we need to
choose a suitable triple (μ,M , p), where μ is a probability
distribution on the unit sphere, M is a matching cover, and p
is a probability distribution on M . The distribution μ deter-
mines the bond verification operator and is discussed in detail
in Sec. IV. Here we focus on the optimization of the matching
cover M and the probability distribution p.

Let M ′ be another matching of G, then we can deduce from
Eq. (72) the following relation:

TM (μ) � TM ′ (μ) if M ⊆ M ′. (74)

Therefore, the spectral gap of �(μ,M , p) does not decrease
if Ml is replaced by another matching M ′

l that contains Ml . To
maximize the spectral gap, therefore, it is advisable to choose

matching covers composed of maximal matchings, including
maximum matchings in particular.

Next, suppose the distribution μ and the matching cover
M = {M1, M2, . . . , Mm} have been chosen. If the matchings
in M form one orbit under the symmetry group of the
graph G, then the spectral gap of the verification operator
�(μ,M , p) is maximized when the probability distribu-
tion p is uniform. In general, the maximum spectral gap of
�(μ,M , p) can be determined by semidefinite programming
(SDP). Define

T̄Ml (μ) := TMl (μ) − |�G〉〈�G|, (75)

�̄(μ,M , p) := �(μ,M , p) − |�G〉〈�G| =
m∑

l=1

pl T̄Ml (μ);

(76)

then

ν(�(μ,M , p)) = 1 − ‖�̄(μ,M , p)‖. (77)

To maximize the spectral gap of �(μ,M , p), it is equivalent
to minimize the operator norm of �̄(μ,M , p), which can be
realized by the following SDP:

minimize h

subject to h �
m∑

l=1

pl T̄Ml (μ), (78)

pl � 0,

m∑
l=1

pl = 1.

To construct an optimal matching protocol, in principle we
need to consider all maximal matchings before the optimiza-
tion, which is feasible only for small systems. When this
approach is too prohibitive, we can consider simple match-
ing protocols and resort to analytical bounds presented in
Sec. V D.

C. Overlaps between adjacent projectors that compose
the Hamiltonian HG

Before presenting our main results on the sample complex-
ity, we need to introduce some terminology. Suppose Pe and
Pe′ are two projectors associated with two edges of G = (V, E )
as defined in Eq. (30). Denote by s(PePe′ ) the largest singular
value of PePe′ that is not equal to 1, then s2(PePe′ ) is the
largest eigenvalue of PePe′Pe that is not equal to 1. By defi-
nition s(PePe′ ) = 0 if e = e′ or if e and e′ are not adjacent. If
e = {1, 2} and e′ = {2, 3}, then

Pe = P{1,2} = PS1+S2 (S1 + S2), (79)

Pe′ = P{2,3} = PS2+S3 (S2 + S3). (80)

So the value of s(PePe′ ) = s(P{1,2}P{2,3}) is determined by the
spin values S1, S2, S3; in addition, this value is invariant if S1

and S3 are exchanged. The specific values of s2(P{1,2}P{2,3})
for S1, S2, S3 � 5/2 are presented in Table III, which suggests
the following conjecture.

Conjecture 1. Suppose S1, S2, S3 are positive integers or
half-integers; then s2(P{1,2}P{2,3}) is a rational number. If in
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TABLE III. The value of s2(P{1,2}P{2,3}), namely, the largest
eigenvalue of P{1,2}P{2,3}P{1,2} that is not equal to 1, where P{1,2} =
PS1+S2 (S1 + S2) and P{2,3} = PS2+S3 (S2 + S3).

�������(S1, S3)
S2

1
2 1 3

2 2 5
2 3(

1
2 , 1

2

)
1
4

1
9

1
16

1
25

1
36

1
49(

1
2 , 1

)
1
3

1
6

1
10

1
15

1
21

1
28(

1
2 , 3

2

)
3
8

1
5

1
8

3
35

1
16

1
21(

1
2 , 2

)
2
5

2
9

1
7

1
10

2
27

2
35(

1
2 , 5

2

)
5

12
5
21

5
32

1
9

1
12

5
77(

1
2 , 3

)
3
7

1
4

1
6

3
25

1
11

1
14

(1, 1) 4
9

1
4

4
25

1
9

4
49

1
16

(1, 3
2 ) 1

2
3

10
1
5

1
7

3
28

1
12

(1, 2) 8
15

1
3

8
35

1
6

8
63

1
10

(1, 5
2 ) 5

9
5

14
1
4

5
27

1
7

5
44

(1, 3) 4
7

3
8

4
15

1
5

12
77

1
8(

3
2 , 3

2

)
9

16
9
25

1
4

9
49

9
64

1
9(

3
2 , 2

)
3
5

2
5

2
7

3
14

1
6

2
15(

3
2 , 5

2

)
5
8

3
7

5
16

5
21

3
16

5
33(

3
2 , 3

)
9

14
9

20
1
3

9
35

9
44

1
6

(2, 2) 16
25

4
9

16
49

1
4

16
81

4
25

(2, 5
2 ) 2

3
10
21

5
14

5
18

2
9

2
11

(2, 3) 24
35

1
2

8
21

3
10

8
33

1
5(

5
2 , 5

2

)
25
36

25
49

25
64

25
81

1
4

25
121(

5
2 , 3

)
5
7

15
28

5
12

1
3

3
11

5
22

(3, 3) 36
49

9
16

4
9

9
25

36
121

1
4

addition S1, S3 � S2, then

s2(P{1,2}P{2,3}) � 1/4, (81)

and the inequality is saturated iff S1 = S2 = S3.
Define

s(G) := max
e,e′∈E

s(PePe′ ) = max
e,e′∈E |e�=e′

s(PePe′ ). (82)

By definition 0 � s(G) < 1; in addition, s(G) > 0 unless all
the projectors Pe commute with each other. Here s(G) can be
abbreviated as s if there is no danger of confusion. According

to Table III, we have s(G) = 1
2 for most lattices of practical

interest, including the open chain (with at least five nodes),
closed chain, square lattice, honeycomb lattice, triangular lat-
tice, kagome lattice, and square-octagon lattice (cf. Fig. 3).
Incidentally, s(G) = 1

3 for the open chain with three nodes,
and s(G) = 1/

√
6 for the open chain with four nodes.

D. Sample complexity

In the following theorem, γ = γ (HG) is the spectral gap
of HG, while SE and νSE (μ) are defined in Eqs. (28) and (60),
respectively.

Theorem 4. Let |�G〉 be the AKLT state defined on the
graph G = (V, E ). Suppose �(μ,M ) is the verification op-
erator specified by the probability distribution μ and the
matching cover M composed of m matchings. Then

ν(�(μ,M )) � νSE (μ)

m
f

(
γ

s2g2

)
� νSE (μ)γ

24m(SE − 1)2
, (83)

where s = s(G), g = 2SE − 2, and

f (x) =
⎧⎨
⎩

√
1+x−1√

1+x
, m = 2,

√
1+x−1√
1+x+1

, m � 3.
(84)

If μsym forms a spherical t-design with t = 2SE , then

ν(�(μ,M )) � 2

m(2SE + 1)
f

(
γ

s2g2

)

� γ

12m(2SE + 1)(SE − 1)2
. (85)

Theorem 4 is proved in Appendix D; it follows from The-
orem 1 in Ref. [70] as well as Lemma 3 and Theorem 3 in
Sec. IV. Here the function f (x) is monotonically increasing in
x for x � 0. In conjunction with Eq. (5), it is straightforward to
derive the following upper bound on the minimum number of
tests required to verify the AKLT state |�G〉 within infidelity
ε and significance level δ:

N �
⌈

m(2SE + 1) ln(δ−1)

2ε f
(

γ

s2g2

)
⌉

�
⌈

12m(2SE + 1)(SE − 1)2 ln(δ−1)

γ ε

⌉
. (86)

FIG. 3. Optimal edge colorings of several common 2D lattices: triangular lattice, kagome lattice, and square-octagon lattice. These optimal
colorings can be used to construct efficient protocols for verifying AKLT states on these lattices, which require constant sample costs that are
independent of the lattice size.
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When x � 1, f (x) can be approximated by x/2 for m = 2 and
x/4 for m � 3. If γ /(s2g2) � 1, then Eq. (83) implies that

ν(�(μ,M )) �

⎧⎨
⎩

γ νSE (μ)
2ms2g2 , m = 2,

γ νSE (μ)
4ms2g2 , m � 3.

(87)

This equation is instructive to understanding the efficiency
of the matching protocol. Equations (85) and (86) can be
simplified in a similar way.

Recall that the minimum number of matchings required to
cover the edge set of G is equal to the chromatic index χ ′(G).
If m = χ ′(G), then Eq. (83) reduces to

ν(�(μ,M )) � νSE (μ)

χ ′(G)
f

(
γ

s2g2

)
� νSE (μ)γ

24χ ′(G)(SE − 1)2

� νSE (μ)γ

24[
(G) + 1][
(G) − 1]2
� νSE (μ)γ

24
(G)3
,

(88)

where the third inequality follows from the facts that χ ′(G) �

(G) + 1 and SE � 
(G) [see Eqs. (27)–(29)]. Although it
is not always easy to find an optimal matching cover, a nearly
optimal matching cover composed of 
(G) + 1 � χ ′(G) + 1
matchings can be found efficiently [74].

If in addition μ forms a spherical t-design with t = 2SE ,
then Eq. (88) implies that

ν(�(μ,M )) � 2

χ ′(G)(2SE + 1)
f
( γ

s2g2

)

� γ

12χ ′(G)(2SE + 1)(SE − 1)2
� γ

24
(G)4
.

(89)

Accordingly, the number of tests required satisfies

N �
⌈

χ ′(G)(2SE + 1) ln(δ−1)

2ε f
(

γ

s2g2

) ⌉
�
⌈

24
(G)4 ln(δ−1)

γ ε

⌉
.

(90)

For most AKLT states of practical interest, including those
defined on various lattices as illustrated in Fig. 3, 
(G) does
not increase with the system size. So these AKLT states can be
verified with constant sample cost that is independent of the
system size as long as the spectral gap γ has a nontrivial lower
bound that is independent of the system size. Our verification
protocols are much more efficient than protocols known in the
literature [33,36,38,69] and the sample costs have much better
scaling behaviors with respect to the system size, spectral gap
of the underlying Hamiltonian, and the precision as quantified
by the infidelity.

The next theorem follows from Lemma 3 and Theorem 3
in Sec. IV, and can be proved using a similar reasoning used
to prove Theorem 2 in Ref. [70], as shown in Appendix E.

Theorem 5. Suppose M in Theorem 4 is an edge coloring
of G and let p = (|M1|, |M2|, . . . , |Mm|)/|E |; then

ν(�(μ,M , p)) � νSE (μ)γ

|E | � 2νSE (μ)γ

n(n − 1)
. (91)

If μsym forms a spherical t-design with t = 2SE , then

ν(�(μ,M , p)) � 2γ

(2SE + 1)|E | �
4γ

n(n − 1)(2SE + 1)
.

(92)

The first inequality in Eq. (92) is saturated if Se is independent
of e ∈ E and M is the trivial edge coloring with |M | = |E |.

By virtue of Eqs. (5) and (92), we can derive another upper
bound on the minimum number of tests required to verify the
AKLT state |�G〉 within infidelity ε and significance level δ:

N �
⌈

(2SE + 1)|E | ln(δ−1)

2γ ε

⌉
. (93)

When G is a connected k-regular graph with n � 2 vertices,
we have |E | = nk/2 and Se = SE = 
(G) = k for all e ∈ E ,
so Eq. (91) implies that

ν(�(μ,M , p)) � 2νk (μ)γ

nk
. (94)

If in addition μsym forms a spherical t-design with t = 2SE =
2k, then we have νk (μ) = 2/(2k + 1), so the above equa-
tion [cf. Eq. (92)] means

ν(�(μ,M , p)) � 4γ

nk(2k + 1)
. (95)

This inequality is saturated if M corresponds to the trivial
edge coloring and p is uniform. In conjunction with Eq. (5),
it is straightforward to derive the number of tests required to
achieve a given precision.

VI. VERIFICATION OF 1D AKLT STATES

In this section we discuss in more detail the verification of
1D AKLT states, that is, AKLT states defined on the closed
chain (cycle) and open chain.

A. Verification of the AKLT state on the closed chain

1. Simplest verification protocols

Let G(V, E ) be the closed chain with n vertices. Given a
bond verification protocol specified by a probability distribu-
tion μ on the unit sphere, then a verification protocol of the
AKLT state |�G〉 is specified by a weighted matching cover of
G. The simplest matching cover, denoted by MT, corresponds
to the trivial edge coloring and consists of n matchings, each
of which consists of only one edge as illustrated in Fig. 4.
Accordingly, each test operator is associated with one edge.
Denote by Tj (μ) the test operator associated with the edge
{ j, j + 1} (here n + 1 is identified with 1 under the peri-
odic boundary condition). Note that test operators Tj (μ) for

FIG. 4. Trivial edge colorings of closed chains with five and six
vertices.
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FIG. 5. Spectral gap ν(�(μ, MT)) and number N of tests re-
quired to verify the AKLT state on the closed chain of n nodes with
precision δ = ε = 0.01. Each protocol is based on the trivial edge
coloring, and the underlying bond verification protocol is constructed
from a platonic solid or the isotropic distribution on the unit sphere
as discussed in Sec. IV C and indicated in the legend. The black dots
represent the asymptotic approximation presented in Eq. (102).

j = 1, 2, . . . , n are related to each other by cyclic permuta-
tions, so they should be performed with the same probability
to maximize the spectral gap. The resulting verification oper-
ator reads

�(μ,MT) = 1

n

n∑
j=1

Tj (μ). (96)

Figure 5 shows the spectral gap of �(μ,MT) with μ

constructed from the five platonic solids; in addition, the fig-
ure shows the number of tests required to verify the AKLT
state within infidelity ε = 0.01 and significance level δ =
0.01.

According to Theorem 5, the spectral gap of �(μ,MT)
satisfies

ν(�(μ,MT)) � ν2(μ)γ (H◦(n))
n

; (97)

here ν2(μ) denotes the spectral gap (from the maximum
eigenvalue 1) of the bond verification operator, while
γ (H◦(n)) denotes the spectral gap of the Hamiltonian (from
the minimum eigenvalue corresponding to the ground state).
By virtue of Theorem 2 and Eq. (97) we can further deduce
that

ν(�(μ,MT)) � ckν2(μ)

n
, n > 2k � 6, (98)

where ck is defined in Eq. (45). So the number of tests re-
quired to verify the AKLT state |�G〉 within infidelity ε and

significance level δ satisfies

N �
⌈

ln(δ−1)

ν(�(μ,MT))ε

⌉
�
⌈

n ln(δ−1)

ν2(μ)γ (H◦(n))ε

⌉

�
⌈

n ln(δ−1)

ck ν2(μ) ε

⌉
, n > 2k � 6, (99)

which is (approximately) linear in the number of spins.
The inequality in Eq. (97) is saturated when μ forms a

spherical 4-design (icosahedron and dodecahedron protocols
for example), in which case we have ν2(μ) = 2

5 and

ν(�(μ,MT)) = 2γ (H◦(n))
5n

, (100)

N �
⌈

5n ln(δ−1)

2γ (H◦(n))ε

⌉
�
⌈

5n ln(δ−1)

2ck ε

⌉
, (101)

where the inequality holds whenever n > 2k � 6. Although
Eq. (100) is derived under the 4-design assumption, calcula-
tion shows that it holds with high precision (with deviation
less than 5% for n � 10) for all protocols based on platonic
solids, as illustrated in Fig. 5. When n = 3 for example, we
have γ (H◦(n)) = 5

6 and ν(�(μ,MT)) = 1
9 for all protocols

based on platonic solids. This observation indicates that the
general lower bound in Eq. (97) is usually not tight when μ

does not form a 4-design. In other words, protocols based
on tetrahedron, octahedron, and cube are more efficient than
expected; the reason is still not very clear now.

In the large-n limit, the spectral gap γ (H◦(n)) is approxi-
mately equal to 0.350 [6,80]. If in addition μ forms a spherical
4-design, then we have

ν(�(μ,MT)) ≈ 0.140

n
, N ≈ 7.14 n ln(δ−1)

ε
. (102)

Numerical calculation shows that all protocols based on pla-
tonic solids can achieve a similar performance as illustrated in
Fig. 5.

2. Optimal matching protocols

More efficient verification protocols can be constructed
from better matching covers. For the cycle graph G with n
vertices, the chromatic index is given by

χ ′(G) =
{

2 if n is even,

3 if n is odd.
(103)

When n is even, there exist two maximum matchings, namely,

M1 = {{1, 2}, {3, 4}, . . . , {n − 1, n}},
(104)

M2 = {{2, 3}, {4, 5}, . . . , {n, 1}},
which form the matching cover M = {M1, M2} and also de-
fines an edge coloring of G. Given a probability distribution
μ on the unit sphere, then we can construct two test op-
erators TM1 (μ), TM2 (μ) according to Eq. (72). By symmetry
the two tests should be performed with the same probability
to maximize the spectral gap. According to Theorem 4 with
m = g = SE = 2 and s = 1

2 , the spectral gap of the resulting

022616-12



EFFICIENT VERIFICATION OF AFFLECK-KENNEDY- … PHYSICAL REVIEW A 107, 022616 (2023)

0.06

0.07

0.08

0.09

0.10

0.11

0.12

3 4 5 6 7 8 9 10
4000

5000

6000

7000

FIG. 6. Verification of the AKLT state on the closed chain based
on the matching cover composed of all maximum matchings with
uniform probabilities, which is optimal among all matching proto-
cols. Infidelity and significance level are chosen to be δ = ε = 0.01
as in Fig. 5; the choice of bond verification protocols is also the same.

verification operator satisfies

ν(�(μ,M )) � (
√

1+ γ − 1)ν2(μ)

2
√

1+ γ
� (

√
1+ ck − 1)ν2(μ)

2
√

1+ ck
,

(105)

where γ = γ (H◦(n)). Here the second inequality follows
from Theorem 2 and is applicable when n > 2k � 6. In the
large-n limit, we have γ (H◦(n)) ≈ 0.350 [6,80], so the above
equation implies that

ν(�(μ,M )) � 0.0697ν2(μ). (106)

If in addition μ forms a 4-design, then ν2(μ) = 2
5 and

ν(�(μ,M )) � 0.0279. (107)

Accordingly, the number of tests required to verify the AKLT
state within infidelity ε and significance level δ satisfies

N � 36 ln(δ−1)

ε
. (108)

Numerical calculation presented in Fig. 6 suggests that the
bounds in Eqs. (107) and (108) are tight within a factor of 3.

To construct optimal matching protocols, in principle we
need to consider all maximal matchings; see Table IV for the
number of maximal matchings when n = 3, 4, . . . , 10. Never-
theless, numerical calculation based on Eq. (78) suggests that
the above protocol is still optimal even in that case; in other
words, other maximal matchings do not help.

When n is odd, each matching of G can contain at most
(n − 1)/2 edges, so at least three matchings are required to
cover the edge set. Now, there exist n maximum matchings,
namely,

Mj = {{ j, j + 1}, { j + 2, j + 3}, . . . ,
{ j + n − 3, j + n − 2}}, j = 1, 2, . . . , n, (109)

where j and j + n denote the same vertex. All these maximum
matchings can be generated from M1 by cyclic permutations.
Let Mm = {Mj}m

j=1 for m = 3, 4, . . . , n. Then Mm are match-
ing covers of G and can be employed to construct verification
protocols for |�G〉. The resulting verification operators are de-
noted by �(μ,Mm). By virtue of Theorem 4 with g = SE = 2
and s = 1

2 we can deduce that

ν(�(μ,Mm)) � (
√

1 + γ − 1)ν2(μ)

m(
√

1 + γ + 1)

� (
√

1 + ck − 1)ν2(μ)

m(
√

1 + ck + 1)
, m = 3, 4, . . . , n,

(110)

where γ = γ (H◦(n)). Here the second inequality follows
from Theorem 2 and is applicable when n > 2k � 6. In ad-
dition, numerical calculation shows that

ν(�(μ,Mm+2)) � ν(�(μ,Mm)), m = 3, 4, . . . , n − 2.

(111)

The performances of these verification protocols are illus-
trated in Fig. 7.

By symmetry consideration we can deduce that

ν(�(μ,Mn)) � ν(�(μ,Mm)), m = 3, 4, . . . , n, (112)

which implies that

ν(�(μ,Mn)) � ν(�(μ,M3)) � (
√

1 + γ − 1)ν2(μ)

3(
√

1 + γ + 1)

� (
√

1 + ck − 1)ν2(μ)

3(
√

1 + ck + 1)
, (113)

where the third inequality follows from Theorem 2 and is
applicable when n > 2k � 6. This bound is slightly worse
than the counterpart in Eq. (105), but we believe that Eq. (105)
applies for both even n and odd n, and so do Eqs. (106)–
(108). Moreover, for a given bond verification protocol μ, the

TABLE IV. The matching numbers υ(G) and the numbers of maximal and maximum matchings (shown as triples) for closed chains and
open chains of 3 to 10 vertices.

n 3 4 5 6 7 8 9 10

Closed chain (1, 3, 3) (2, 2, 2) (2, 5, 5) (3, 5, 2) (3, 7, 7) (4, 10, 2) (4, 12, 9) (5, 17, 2)
Open chain (1, 2, 2) (2, 2, 1) (2, 3, 3) (3, 4, 1) (3, 5, 4) (4, 7, 1) (4, 9, 5) (5, 12, 1)
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FIG. 7. Verification of the AKLT state on the closed chain of nine
nodes based on the matching covers Mm = {Mj}m

j=1. Here Mj is the
maximum matching defined in Eq. (109), and m is the number of
maximum matchings and also the number of distinct tests employed.
Infidelity and significance level are chosen to be δ = ε = 0.01 as in
Fig. 5; the choice of bond verification protocols is also the same.

verification operator �(μ,Mn) has the largest spectral gap
among all verification operators based on maximum match-
ings. Numerical calculation based on Eq. (78) further suggests
that �(μ,Mn) is still optimal even if we consider all maximal
matchings. The performances of optimal matching protocols
are illustrated in Fig. 6.

B. Verification of the AKLT state on the open chain

Next, we turn to the AKLT state on the open chain, which
can also be verified following the general approach presented
in Sec. V.

1. Simplest verification protocols

Incidentally, when the open chain has two nodes (corre-
sponding to the only connected graph of two vertices), the
AKLT Hamiltonian coincides with the projector onto the sym-
metric subspace of two qubits and has spectral gap equal to 1.
The corresponding AKLT state coincides with the singlet. In
this case, each matching protocol is just a bond verification
protocol. The largest spectral gap is 2

3 , which is achieved
when the underlying distribution on the unit sphere forms a
spherical 2-design (which is the case for all protocols based
on platonic solids). Such protocols are also optimal among all
protocols based on separable measurements [37,45].

Many results on the closed chain are still applicable with
minor modification for the open chain. First, let us consider
verification protocols based on the trivial edge coloring as il-
lustrated in Fig. 8. In this case, Eqs. (96) and (97) are modified

0.2835 0.4330 0.2835

0.1893 0.3107 0.3107 0.1893

FIG. 8. Trivial edge colorings of open chains with four and five
vertices together with the optimal probabilities for performing the
tests associated with individual colors. Here the bond verification
protocol is built from the dodecahedron.

as follows:

�(μ,MT) = 1

n − 1

n−1∑
j=1

Tj (μ), n � 2, (114)

ν(�(μ,MT)) �
ν2(μ)γ (H 1

2 , 1
2
(n))

n − 1
, n � 2, (115)

where μ determines the bond verification protocol. When n =
3, ν2(μ) in Eq. (115) can also be replaced by ν3/2(μ), which
leads to a better lower bound. The performances of several
verification protocols based on platonic solids are illustrated
in Fig. 9. When μ forms a spherical 4-design (which holds
for the icosahedron and dodecahedron protocols), we have
ν2(μ) = 2

5 , so Eq. (115) reduces to

ν(�(μ,MT)) �
2γ
(
H 1

2 , 1
2
(n)
)

5(n − 1)
, n � 3, (116)

which is the counterpart of Eq. (100), but the equality cannot
be guaranteed in general.

When n � 4, in contrast with the closed chain, the optimal
probabilities associated with individual colors are not uniform
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FIG. 9. Verification of the AKLT state on the open chain based
on the trivial edge coloring with uniform probabilities. Infidelity and
significance level are chosen to be δ = ε = 0.01 as in Fig. 5; the
choice of bond verification protocols is also the same.
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FIG. 10. Verification of the AKLT states on the open chain and
closed chain based on the trivial edge coloring with uniform proba-
bilities and optimal probabilities. For the closed chain, the optimal
probabilities are uniform. Infidelity and significance level are chosen
to be δ = ε = 0.01 as in Fig. 5. The underlying bond verification
protocol is built from the dodecahedron.

as illustrated in Fig. 8, and the spectral gap can be increased
by optimizing the probabilities according to Eq. (78), as il-
lustrated in Fig. 10. This figure also shows that it is slightly
easier to verify the AKLT state on the open chain than the
counterpart on the closed chain.

2. Optimal coloring protocols

To improve the efficiency, we can consider verification
protocols based on the optimal coloring. Note that the edges of
every open chain can be colored using two colors as illustrated
in Fig. 11. When n is odd, the two matchings associated with
the optimal coloring read

M1 = {{1, 2}, {3, 4}, . . . , {n − 2, n − 1}},
(117)

M2 = {{2, 3}, {4, 5}, . . . , {n − 1, n}},
which contain the same number of edges. By symmetry the
two tests TM1 (μ), TM2 (μ) associated with the two matchings
should be performed with the same probability to maximize
the spectral gap. When n is even, the two matchings read

M1 = {{1, 2}, {3, 4}, . . . , {n − 1, n}},
(118)

M2 = {{2, 3}, {4, 5}, . . . , {n − 2, n − 1}}.

FIG. 11. Optimal edge colorings of open chains with five and six
vertices.
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FIG. 12. Optimal probabilities for performing the two tests
TM1 (μ), TM2 (μ) when the distribution μ is built from the tetrahedron
(t), octahedron (o), and dodecahedron (d). Here the two matchings
M1, M2 are defined in Eqs. (117) and (118).

In this case the optimal probabilities for performing the two
tests TM1 (μ), TM2 (μ) are different as illustrated in Fig. 12: they
are equal to 0.4900 and 0.5100 when n = 6 for example. How-
ever, as n increases, the difference gets smaller and smaller,
and the improvement brought by probability optimization
becomes negligible when n � 8. Let M = {M1, M2}; by
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FIG. 13. Verification of the AKLT states on the closed chain
and open chain with optimal matching protocols. Infidelity and
significance level are chosen to be δ = ε = 0.01 as in Fig. 5. The
underlying bond verification protocol is based on the dodecahedron.
For the even closed chain and odd open chain, the optimal matching
protocol is a coloring protocol with uniform probabilities. For the
even open chain, the protocol is a coloring protocol with optimized
probabilities. For the odd closed chain, the protocol is based on all
maximum matchings with uniform probabilities.
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Theorem 4 with m = g = SE = 2 and s = 1
2 , in both cases we

can deduce that

ν(�(μ,M )) � (
√

1 + γ − 1)ν2(μ)

2
√

1 + γ

� (
√

1 + ck − 1)ν2(μ)

2
√

1 + ck
, (119)

where γ = γ (H 1
2 , 1

2
(n)). Here the second inequality follows

from Theorem 2 and is applicable when n > 2k � 6. In the
special cases n = 3, 4, the above bounds can be improved
slightly since s is smaller (g and SE are also smaller when
n = 3). These bounds have the same form as the counterparts
in Eq. (105) for the even closed chain. In addition, Eqs. (106)–
(108) are also applicable for the open chain in the large-n limit
as long as γ (H 1

2 , 1
2
(n)) ≈ γ (H◦(n)) (see Table I).

Numerical calculation based on Eq. (78) further suggests
that the optimal coloring protocol is also optimal among all
matching protocols. Figure 13 shows the performance of the
optimal matching protocol in comparison with the counterpart
for the closed chain. For a given number of nodes, it is easier
to verify the AKLT state on the open chain than the one on the
closed chain.

VII. VERIFICATION OF AKLT STATES
ON GENERAL GRAPHS

To further illustrate the power of our general approach,
here we consider in more detail the verification of AKLT
states associated with general connected graphs G(V, E )
up to five vertices, that is, n = |V | � 5. Recall that there
are 1 connected graph of two vertices, 2 connected graphs
of three vertices, 6 connected graphs of four vertices,
and 21 connected graphs of five vertices up to isomor-
phism [83]. In Table V in Appendix F we have summarized
relevant basic information about the 30 graphs and the cor-
responding AKLT states, including the degree, matching
number, chromatic number, chromatic index, the dimension
of the underlying Hilbert space, and the spectral gap of the
Hamiltonian.

To construct a verification protocol for the AKLT state
associated with a given graph, it is essential to choose a
suitable bond verification protocol. Here we focus on the
protocol based on the distribution μ32, which corresponds to
the pentakis dodecahedron as described in Sec. IV C. This
bond verification protocol can achieve the largest bond spec-
tral gap (as the isotropic protocol) for all edges in graphs
up to five vertices since the corresponding distribution μ32

forms a spherical 9-design. Incidentally, for graphs up to four
vertices, the alternative bond verification protocol based on
the distribution μ24 (see Sec. IV C) can achieve the same
performance.

Given the bond verification protocol, a verification protocol
for the AKLT state |�G〉 is determined by a matching cover
of the underlying graph G. We are particularly interested
in coloring protocols, which correspond to matching covers
composed of disjoint matchings. The simplest protocol is
based on the trivial edge coloring: all edges have different
colors. The spectral gap of the resulting verification protocol
(with uniform probabilities for all colors) for each graph up to

FIG. 14. Connected graphs of three, four, and five vertices for
which the verification operators (based on optimized coloring proto-
cols) of the corresponding AKLT states have the largest spectral gaps
(up) and smallest spectral gaps (down).

five vertices is shown in Table V in Appendix F. For compar-
ison, the table also shows the spectral gaps of two verification
protocols associated with an optimal edge coloring: one pro-
tocol employs the uniform probabilities for all colors, while
the other one employs the optimized probabilities, which can
be determined by SDP according to Eq. (78). For each star
graph and the 3-cycle, all three protocols coincide with each

FIG. 15. Spectral gaps of verification operators of AKLT states
defined on star graphs with 3 to 10 vertices (upper plot) and complete
graphs with 3 to 6 vertices (lower plot). Every verification operator
is based on the optimal edge coloring (which coincides with the
trivial edge coloring for the star graph) with uniform probabilities
(which are also optimal). The bond verification protocols are based
on platonic solids, distributions μ24, μ32, and the isotropic distri-
bution defined in Sec. IV C as indicated in the legends. Note that
many different bond verification protocols lead to nearly identical
spectral gaps. For each star graph, the spectral gap of the verification
operator based on the isotropic distribution coincides with the first
lower bound in Eq. (91).
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other, and so do the corresponding spectral gaps. For most
other graphs, by contrast, the performance can be improved
by considering an optimal edge coloring together with the
optimized probabilities. For graphs with a given number of
vertices, calculation shows that the spectral gap is maximized
at the linear graph as shown in Fig. 14. We have not found a
general pattern for the graph that leads to the smallest spectral
gap.

Next, we discuss briefly verification protocols based on
different bond verification protocols as discussed in Sec. IV C.
Figure 15 illustrates the dependence of the spectral gap on
the bond verification operator for star graphs with 3 to 10
vertices and complete graphs with 3 to 6 vertices. Here each
verification protocol is based on the optimal coloring (which
coincides with the trivial coloring for each star graph) with
uniform probabilities (which are also optimal). The spec-
tral gap of the verification operator based on the octahedron
(�o) vanishes when n � 6 for both star graphs and complete
graphs. By contrast, the spectral gaps of verification operators
based on the icosahedron (�i), dodecahedron (�d), distribu-
tion μ24 (�(μ24)), distribution μ32 (�(μ32)), and isotropic
distribution (�iso) are close to each other in all the cases under
consideration.

VIII. SUMMARY

We proposed a general method for constructing efficient
verification protocols for AKLT states defined on arbitrary
graphs based on local spin measurements. Explicit expres-
sions for the AKLT states are not necessary to apply our
approach. Given an AKLT state, our verification protocols
can be constructed from probability distributions on the unit
sphere and matching covers (including edge colorings) of the
underlying graph, which have a simple geometric and graphic
picture. We also provided rigorous performance guarantee that
is required for practical applications. With our approach, most
AKLT states of wide interest, including those defined on 1D
and 2D lattices, can be verified with constant sample cost,
which is independent of the system size and is dramatically
more efficient than all approaches proposed before our study.
Our verification protocols will be useful to various tasks in
quantum information processing that employ AKLT states,
including measurement-based quantum computation in partic-
ular.
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APPENDIX A: PROOF OF LEMMA 1

Proof of Lemma 1. In the special case r = s, the proba-
bility pr,s(S1, m1; S2, m2) is independent of the unit vector r
and so can be abbreviated as p(S1, m1; S2, m2); to simplify
the computation, we can assume that r = ẑ. Let S = S1 + S2,
m = m1 + m2, and denote by |S, m〉 the eigenstate of Sz =

S1,z + S2,z with eigenvalue m. Then

p(S1, m1; S2, m2) = |〈S, m|S1, m1; S2, m2〉|2

=
(

2S

2S1

)−1( S + m

S1 + m1

)(
S − m

S1 − m1

)
� 1,

(A1)

where the second equality follows from the well-known for-
mula for the Clebsch-Gordon coefficients (see Chap. V in
Ref. [88] for example). In addition, the last inequality is
saturated iff m = ±S, which means either Eq. (56a) or (56b)
holds.

When r = −s, the inequality pr,s(S1, m1; S2, m2) � 1 is
saturated iff either Eq. (56c) or (56d) holds according to the
above analysis and following equalities:

pr,s(S1, m1; S2, m2) = p−r,s(S1,−m1; S2, m2)

= pr,−s(S1, m1; S2,−m2). (A2)

In general, |S2, m2〉s can be expanded as follows:

|S2, m2〉s =
S2∑

k=−S2

ak|S2, k〉r, (A3)

where the coefficients ak satisfy the normalization condi-
tion

∑S2
k=−S2

|ak|2 = 1. Since the projector PS commutes with
(S1 + S2) · r, it follows that

pr,s(S1, m1; S2, m2) =
S2∑

k=−S2

|ak|2 p(S1, m1; S2, k) � 1, (A4)

and the inequality is saturated iff

p(S1, m1; S2, k) = 1 ∀ ak �= 0, (A5)

which means ak = 0 whenever p(S1, m1; S2, k) < 1.
Recall that p(S1, m1; S2, k) � 1, and the inequality is sat-

urated iff m1 + k = ±(S1 + S2). Suppose the inequality in
Eq. (A4) is saturated, then m1 = ±S1. By symmetry, we also
have m2 = ±S2. If m1 = S1, then

|ak| =
{

1 k = S2,

0 otherwise, (A6)

which implies that |S2, m2〉s = |S2, S2〉r up to an overall phase
factor, so either Eq. (56a) or (56c) holds in view of Eq. (25).
If m1 = −S1, then either Eq. (56b) or (56d) holds according
to a similar reasoning. �

APPENDIX B: PROOF OF LEMMA 3

Proof of Lemma 3. To prove Lemma 3, it suffices to prove
Eq. (62). According to Eq. (60),

νS j (μ) = λmin(OSj ), j = 1, 2, (B1)

where

OSj = OSj (μ) = 2
∫

|S j〉r〈S j |dμsym(r), j = 1, 2 (B2)

by Eq. (61).
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Define

Wj :=2
∫ (∣∣∣∣12

〉
r

〈
1

2

∣∣∣∣
)⊗2S j

dμsym(r)

=2
∫ (

1 + r · σ

2

)⊗2S j

dμsym(r), j = 1, 2, (B3)

where σ = (σx, σy, σz ) is the vector composed of the three
Pauli operators. Then Wj for each j is a positive (semidefinite)
operator acting on the symmetric subspace of (C2)⊗2S j . Note
that this symmetric subspace has dimension 2Sj + 1, which
is the same as the Hilbert space associated with spin value
S j . In addition, W1 is the partial trace of W2 after tracing
out 2(S2 − S1) qubits. Moreover, Wj and OSj have the same
nonzero eigenvalues, including multiplicities.

Let �2S j be the projector onto the symmetric subspace of
(C2)⊗2S j ; then

νS j (μ) = λmin(OSj ) = max
λ

{λ|Wj � λ�2S j }. (B4)

Notably, we have

W2 � νS2 (μ)�2S2 . (B5)

Taking partial trace over 2(S2 − S1) qubits we can deduce that

W1 � νS2 (μ)
2S2 + 1

2S1 + 1
�2S1 , (B6)

which implies Eq. (62) and completes the proof of
Lemma 3. �

APPENDIX C: PROOF OF THEOREM 3

Proof of Theorem 3. From the definition in Eq. (59) we can
deduce that

tr[�S (μ)] = 2S − 1. (C1)

Suppose statement 1 holds; then

‖�S (μ)‖ = 2S − 1

2S + 1
= tr[�S (μ)]

2S + 1
(C2)

according to Eq. (60), so statement 2 must hold given that
�S (μ) is a positive operator acting on a Hilbert space of
dimension 2S + 1. The implication 2 ⇒ 3 is obvious.

Next, if �S (μ) is proportional to the identity operator, then
both statements 1 and 2 hold by Eq. (C1). It follows that
statements 1, 2, 3 are equivalent to each other.

To complete the proof, it remains to show the equivalence
of statements 2 and 4. If statement 2 holds, then

tr[�S (μ)2] = (2S − 1)2

2S + 1
. (C3)

So statement 4 holds according to Lemma 4 below.
Conversely, suppose μsym forms a spherical t-design with

t = 2S. By virtue of Lemma 4 below we can deduce

tr[�S (μ)2] = (2S − 1)2

2S + 1
= 1

2S + 1
[tr �S (μ)]2, (C4)

which implies statement 2 given that �S (μ) is a positive
operator acting on a Hilbert space of dimension 2S + 1. This
observation completes the proof of Theorem 3. �

In the rest of this Appendix we prove the following lemma,
which is employed in the proof of Theorem 3.

Lemma 4. Suppose μ is a probability distribution on the
unit sphere and S is a positive integer or half-integer. Then the
operator �S (μ) defined in Eq. (59) satisfies

tr[�S (μ)2] � (2S − 1)2

2S + 1
; (C5)

the inequality is saturated iff the distribution μsym forms a
spherical t-design with t = 2S.

Proof of Lemma 4. The inequality in Eq. (C5) follows from
Eq. (C1) and the fact that �S (μ) is a positive operator acting
on a Hilbert space of dimension 2S + 1. By virtue of Eqs. (59)
and (25) in the main text, we can deduce that

tr[�S (μ)2] = tr

{[
1 − 2

∫
|S〉r〈S|dμsym(r)

]2
}

= 2S − 3 + 4
∫∫

|r〈S|S〉s|2dμsym(r)dμsym(s)

= 2S− 3+ 4
∫∫ (

1+ r · s
2

)2S

dμsym(r)dμsym(s)

= 2S − 3 + 22−2S
�S�∑
j=0

(
2S

2 j

)
F2 j (μsym )

= 2S − 3 + 22−2S
�S�∑
j=0

(
2S

2 j

)
F2 j (μ), (C6)

where

Ft (μ) :=
∫∫

(r · s)t dμ(r)dμ(s) (C7)

denotes the t th frame potential of the distribution μ, assuming
that t is a non-negative integer. By convention F0(μ) = 1 for
any probability distribution μ.

When t is even, the frame potential Ft (μ) satisfies the
following inequality [85,86]:

Ft (μ) = Ft (μsym ) � 1

t + 1
, (C8)

and the inequality is saturated if μsym forms a spherical t-
design. Combining Eqs. (C6) and (C8) we can deduce that

tr[�S (μ)2] � 2S − 3 + 22−2S
�S�∑
j=0

(
2S

2 j

)
1

2 j + 1

= 2S − 3 + 22−2S

2S + 1

�S�∑
j=0

(
2S + 1

2 j + 1

)

= 2S − 3 + 4

2S + 1
= (2S − 1)2

2S + 1
, (C9)

which confirms the inequality in Eq. (C5) again.
Suppose the symmetrized probability distribution μsym

forms a spherical t-design with t = 2S, then we have

F2 j (μ) = F2 j (μsym ) = 1

2 j + 1
, j = 0, 1, . . . , �S�. (C10)
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Consequently, the inequality in Eq. (C9) is saturated, which
means the inequality in Eq. (C5) is also saturated.

To prove the other direction, suppose the inequality in
Eq. (C5) is saturated, so that the inequality in Eq. (C9) is
saturated. Then Eq. (C10) must hold, which means μsym forms
a spherical t-design with t = 2�S� since the distribution μsym

is symmetric under center inversion. Consequently, μsym also
forms a spherical t-design with t = 2S. �

APPENDIX D: PROOF OF THEOREM 4

Proof of Theorem 4. According to Theorem 6 below,

ν(�(μ,M )) � νE

m
f

(
γ

s2g2

)
� νEγ

6mg2
= νEγ

24m(SE − 1)2
,

(D1)

where

νE = min
e∈E

ν(�e(μ)) = min
e∈E

νSe (μ). (D2)

Note that the spectral gap of the bond verification operator
�e(μ) is completely determined by Se and μ according to
Sec. IV B. Thanks to Lemma 3, νS (μ) is nonincreasing in
S, which means νE = νSE (μ). Together with Eq. (D1), this
observation confirms Eq. (83).

If μsym forms a spherical t-design with t = 2SE , then
νSE (μ) = 2/(2SE + 1) thanks to Theorem 3. So Eq. (85) is
a simple corollary of Eq. (83). �

The following theorem is proved in Ref. [70]. Actually,
Ref. [70] proved a more general result that applies to
frustration-free Hamiltonians defined on hypergraphs, but it
suffices to consider Hamiltonians defined on simple graphs in
this paper.

Theorem 6. Suppose H is a frustration-free Hamiltonian
of the form H = ∑

e∈E Pe, where Pe are projectors labeled
by a graph G(V, E ). Let �(M ) be the verification operator
associated with the matching cover M = {Ml}m

l=1 of G(V, E )
and bond verification operators {�e}e∈E . Then

ν(�(M )) � νE

m
f

(
γ

s2g2

)
� νEγ

6mg2
, (D3)

where g = 2SE − 2, νE = mine∈E ν(�e) is the minimum
spectral gap of �e, and s = s(G) is defined in Eq. (82) with
s(PePe′ ) denoting the largest singular value of PePe′ that is not
equal to 1.

Here it is assumed that each projector Pe acts nontrivially
only on the two nodes connected by the edge e. Consequently,
Pe and Pe′ commute with each other whenever e and e′ are not
adjacent, so each projector Pe does not commute with at most
g = 2SE − 2 projectors. The parameter s = s(G) is defined for
the AKLT Hamiltonian HG in the main text, but generalization
to other Hamiltonians is straightforward.

APPENDIX E: PROOF OF THEOREM 5

Proof of Theorem 5. Note that all matchings Ml in M
are pairwise disjoint and their union is the edge set, that is,

∪l Ml = E . Let TMl (μ) be the test operator corresponding to
the matching Ml as defined in Eq. (72). Then we have

�(μ,M , p) =
m∑

l=1

plTMl (μ) =
m∑

l=1

pl

∏
e∈Ml

�e(μ)

�
m∑

l=1

pl
1

|Ml |
∑
e∈Ml

�e(μ) = 1

|E |
∑
e∈E

�e(μ)

� 1

|E |
∑
e∈E

(1 − νE Pe) = 1 − νE

|E |H, (E1)

where νE is defined as in Eq. (D2). The two inequalities in
Eq. (E1) follow from the following two equations, respec-
tively:

TMl (μ) =
∏
e∈Ml

�e(μ) � �e′ (μ) ∀ e′ ∈ Ml , (E2)

�e(μ) � 1 − ν(�e(μ))Pe � 1 − νE Pe. (E3)

According to Lemma 3, νS (μ) is nonincreasing in S, which
means νE = νSE (μ). By virtue of this observation Eq. (E1) can
be expressed as

�(μ,M , p) � 1 − νSE (μ)

|E | H, (E4)

which implies the first inequality in Eq. (91). The second
inequality in Eq. (91) follows from the simple fact that |E | �
n(n − 1)/2.

If μsym forms a spherical t-design with t = 2SE , then
νSE (μ) = 2/(2SE + 1) according to Theorem 3, so Eq. (92)
follows from Eq. (91). If in addition Se is independent of e ∈ E
and M is the trivial edge coloring with |M | = |E |, then both
inequalities in Eq. (E1) are saturated, and so is the inequality
in Eq. (E4). Therefore,

�(μ,M , p) = 1 − νSE (μ)

|E | H = 1 − 2H

(2SE + 1)|E | , (E5)

so the first inequality in Eq. (92) is saturated. �

APPENDIX F: VERIFICATION OF AKLT STATES
ON GENERAL GRAPHS

Verification protocols of AKLT states on general graphs of
two to five vertices are presented in Table V, which also shows
other relevant information, including the spectral gaps.
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TABLE V. Verification of AKLT states on general graphs of two to five vertices. The graphs [83] with optimal edge colorings are shown
in the second column. For each graph ν(�tri ) is the spectral gap of the verification operator based on the trivial edge coloring with uniform
probabilities; ν(�) is based on the optimal edge coloring (shown in the second column) with uniform probabilities; ν(�̃) is based on the
optimal edge coloring with optimized probabilities as shown in the last column according to the order: red (R), blue (B), green (G), orange (O),
and magenta (M). For graphs No. 1, 2, 3, 4, 7, 9, 10, 11, 18, 27, 30, the optimized probabilities are uniform due to symmetry; for graphs No.
6, 14, 22, 26, the optimized probabilities are uniform by coincidence. All bond verification protocols employed are based on the distribution
μ32, which corresponds to the pentakis dodecahedron as described in Sec. IV C. For completeness, the table also shows the vertex number |V |,
edge number |E |, degree 
(G), matching number υ(G), chromatic number χ (G), chromatic index χ ′(G) of the graph G; in addition, the table
shows the dimension dim H of the underlying Hilbert space and the spectral gap γ (HG) of the AKLT Hamiltonian.

No. Graph G |V | |E | 
(G) υ(G) χ (G) χ ′(G) dim H γ (HG) ν(�tri ) ν(�) ν(�̃) p(R, B, G, O, M)

1 2 1 1 1 2 1 4 1 2
3

2
3

2
3

(
1
)

2 3 2 2 1 2 2 12 2
3

1
6

1
6

1
6

1
2

(
1
1

)

3 3 3 2 1 3 3 27 5
6

1
9

1
9

1
9

1
3

⎛
⎝1

1
1

⎞
⎠

4 4 3 3 1 2 3 32 1
2

1
15

1
15

1
15

1
3

⎛
⎝1

1
1

⎞
⎠

5 4 3 2 2 2 2 36 0.5168 0.0755 0.1119 0.1134

(
0.4526
0.5474

)

6 4 4 3 2 3 3 72 0.5595 1
20

1
15

1
15

1
3

⎛
⎝1

1
1

⎞
⎠

7 4 4 2 2 2 2 81 1
3

1
30

1
15

1
15

1
2

(
1
1

)

8 4 5 3 2 3 3 144 1
2

1
30 0.0556 0.0618

⎛
⎝0.3708

0.3708
0.2583

⎞
⎠

9 4 6 3 2 4 3 256 7
10

1
30

1
15

1
15

1
3

⎛
⎝1

1
1

⎞
⎠

10 5 4 4 1 2 4 80 2
5

1
30

1
30

1
30

1
4

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

11 5 4 2 2 2 2 108 0.4539 0.0476 0.0941 0.0941 1
2

(
1
1

)

12 5 4 3 2 2 3 96 0.4117 0.0385 0.0511 0.0529

⎛
⎝0.3170

0.4018
0.2812

⎞
⎠

13 5 5 2 2 3 3 243 0.4540 0.0363 0.0597 0.0603

⎛
⎝0.3368

0.3368
0.3264

⎞
⎠

14 5 5 4 2 3 4 180 0.4295 2
75

1
30

1
30

1
4

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠
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TABLE V. (Continued.)

No. Graph G |V | |E | 
(G) υ(G) χ (G) χ ′(G) dim H γ (HG) ν(�tri ) ν(�) ν(�̃) p(R, B, G, O, M)

15 5 5 3 2 3 3 192 0.4796 0.0316 0.0527 0.0547

⎛
⎝0.2975

0.2975
0.4050

⎞
⎠

16 5 5 3 2 2 3 216 0.2871 0.0206 0.0344 0.0369

⎛
⎝0.3892

0.3892
0.2214

⎞
⎠

17 5 5 3 2 3 3 216 0.4396 0.0308 0.0511 0.0529

⎛
⎝0.3122

0.4018
0.2860

⎞
⎠

18 5 6 3 2 2 3 432 0.1931 0.0107 0.0214 0.0214 1
3

⎛
⎝1

1
1

⎞
⎠

19 5 6 3 2 3 3 432 0.3106 0.0172 0.0343 0.0347

⎛
⎝0.3130

0.3130
0.3740

⎞
⎠

20 5 6 4 2 3 4 360 0.42 0.0208 0.0312 0.0319

⎛
⎜⎜⎝

0.2470
0.2721
0.2134
0.2674

⎞
⎟⎟⎠

21 5 6 3 2 3 3 384 0.4036 0.0211 0.0422 0.0441

⎛
⎝0.2481

0.3760
0.3760

⎞
⎠

22 5 6 4 2 3 4 405 7
15 0.0222 1

30
1

30
1
5

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠

23 5 7 4 2 3 4 675 0.3236 0.0132 0.0231 0.0265

⎛
⎜⎜⎝

0.2873
0.2873
0.1382
0.2873

⎞
⎟⎟⎠

24 5 7 4 2 3 4 720 0.4263 0.0180 0.0315 0.0318

⎛
⎜⎜⎝

0.2657
0.2462
0.2387
0.2494

⎞
⎟⎟⎠

25 5 7 3 2 3 4 768 0.2501 0.0110 0.0192 0.0193

⎛
⎜⎜⎝

0.2625
0.2375
0.2625
0.2375

⎞
⎟⎟⎠

26 5 7 4 2 4 4 640 0.4877 0.0190 1
30

1
30

1
4

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

27 5 8 4 2 3 4 1280 0.2836 0.0100 0.0199 0.0199 1
4

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

28 5 8 4 2 4 4 1200 0.4053 0.0135 0.0269 0.0298

⎛
⎜⎜⎝

0.2818
0.2818
0.1687
0.2677

⎞
⎟⎟⎠
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TABLE V. (Continued.)

No. Graph G |V | |E | 
(G) υ(G) χ (G) χ ′(G) dim H γ (HG) ν(�tri ) ν(�) ν(�̃) p(R, B, G, O, M)

29 5 9 4 2 4 5 2000 2
5 0.0111 0.02 0.0203

⎛
⎜⎜⎜⎜⎝

0.1850
0.1965
0.1850
0.2372
0.1965

⎞
⎟⎟⎟⎟⎠

30 5 10 4 2 5 5 3125 3
5 0.0133 2

75
2
75

1
5

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠
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