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Virtual distillation with noise dilution
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Virtual distillation is an error-mitigation technique that reduces quantum-computation errors without assuming
the noise type. In scenarios where the user of a quantum circuit is required to additionally employ peripherals,
such as delay lines, that introduce excess noise, we find that the error-mitigation performance can be improved
if the peripheral, whenever possible, is split across the entire circuit, that is, when the noise channel is uniformly
distributed in layers within the circuit. We show that under the multiqubit loss and Pauli noise channels,
respectively, for a given overall error rate, the average mitigation performance improves monotonically as
the noisy peripheral is split (diluted) into more layers, with each layer sandwiched between subcircuits that
are sufficiently deep to behave as 2-designs. For both channels, analytical and numerical evidence show that
second-order distillation is generally sufficient for (near-)optimal mitigation. We propose an application of
these findings in designing a quantum-computing cluster that houses realistic noisy intermediate-scale quantum
circuits that may be shallow in depth, where measurement detectors are limited and delay lines are necessary to
queue output qubits from multiple circuits.
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I. INTRODUCTION

In principle, owing to the existence of universal quantum
gate sets [1–5] for computation, full-fledged quantum com-
puters [6–9] that obey the laws of quantum mechanics are
promising devices that permit universal fault-tolerant quan-
tum computation [10–16], with the possibility of surpassing
the performances of presently known classical algorithms. In
practice, however, numerous challenges remain to be resolved
before such a quantum vision can be realized. These include
the qualities of qubit sources, gates and detectors [17–19], and
the exponentially large number of components necessary to
construct arbitrary quantum circuits [20].

At present, one only has access to noisy intermediate-scale
quantum (NISQ) devices [21] that are capable of manipulating
less than 1000 qubits using noisy unitary gates and measure-
ments. These limitations motivated the development of several
kinds of NISQ algorithms [22–30]. Most notably, variational
quantum algorithms (VQAs) [31–36] perform computations
using both classical and NISQ devices in a hybrid fashion,
which find applications in variational quantum eigensolvers
designed for quantum-chemistry [37–39] and combinatorial
problems [40,41], and quantum machine learning [42–49].

Owing to noise accompanying any NISQ device, the out-
put state of its circuit will deviate from the target state of
interest to the computation procedure. Without resorting to
quantum tomography [50–54] to certify the circuit output
quality, the techniques of error mitigation may be consid-
ered as alternatives to directly reduce errors due to noise
channels. The names of specific error-mitigation procedures
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have grown rapidly in recent years, which makes it implau-
sible to cite them all. While interested readers may refer to
[23,55] for a comprehensive survey, we will highlight some
representative techniques. Methods such as Richardson or
zero-noise extrapolation and probabilistic error cancellation
[56–58] for estimating the circuit output in the near-noiseless
regime require knowledge about the noise model and pre-
cise control of the quantum-circuit parameters, the former
of which could be replaced by gate-set tomography [59–62],
which should be carried out prior to the quantum computa-
tion. Other methods such as the subspace reduction [63,64]
method demand additional ancillary qubits appended to the
main NISQ circuit, which can be very large especially when
the noise model is unknown. Iterative power-series-based or
perturbative methods hold promise to mitigate errors under
noise-agnostic situations. Nevertheless, such methods may
require a large number of measurements that may be reduced
by employing manipulative tricks for certain target measure-
ment observables [65] and in other cases may only work on
invertible noise channels without bias [66].

Virtual distillation [67–69] is yet another technique that
can mitigate noise of small error rates in a model-agnostic
manner. Moreover, mitigation happens on the fly either with
an external correcting circuit [68] or with efficient data post-
processing using shadow tomography [70] that requires only
randomized single-qubit unitary gates. Consequently, this
technique can cope with noise drifts, which is an attractive
feature in addition to its technical simplicity that permits
accessible analysis.

While it is true that noise can influence a NISQ device
anywhere in an uncontrollable way, in this work we fo-
cus on scenarios where, other than errors originating from
ambient environment, certain external peripherals employed
in addition to the main quantum-computation circuit could
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result in excess noise on the entire device. Examples of such
peripherals could be delay lines and active switches. In these
cases, one has the freedom of arranging peripherals within the
circuit, thereby altering the effective noise channel acting on
the device. This work investigates both the multiqubit loss and
Pauli noise channels, which describe photon losses [71–80]
and polarization disturbances [81–84], respectively, in optical
components. For small error rates, we analytically show that
virtual distillation can exponentially mitigate errors due to
the loss channel with increasing distillation order, whereas
mitigation improvement stagnates beyond the second distil-
lation order for the multiqubit Pauli channel. Furthermore,
virtual distillation can, on average, better mitigate errors when
the peripherals are split into more layers across the quantum
circuit. The former is equivalent to diluting the noise channel
into multiple layers within the circuit, where one such noise
layer (except for the last one) is sandwiched between two
subcircuits. All analysis is carried out under the assumption
that every sandwiching subcircuit is approximately a 2-design
[85].

Finally, we give a practical application to this main re-
sult by studying the performance of virtual distillation on
outputs of a quantum-computing cluster that contains several
hardware-efficient circuits and limited detectors. In this sit-
uation, delay lines are necessary to queue the output qubits
coming from concurrent circuits. According to the main re-
sult, under the same total delay time, it is evidently better to
transmit qubits of uniformly delayed unitary operations to the
detectors instead of delaying the transmission of qubits after
all unitary operations are performed quickly.

II. VIRTUAL DISTILLATION

Suppose that an effective noise channel �μ acts on a pure
state | 〉〈 | of Hilbert-space dimension d and is parametrized
by 0 � μ � 1, which quantifies the strength of �. Then the
resulting noisy state

ρ ′ = �μ[ρ] = |λ0(μ)〉λ0(μ)〈λ0(μ)|

+
d−1∑
k=1

|λk (μ)〉λk (μ)〈λk (μ)| (1)

possesses a spectral decomposition with eigenvalues ordered
according to λ0(μ) > λ1(μ) � λ2(μ) � · · · � λd−1(μ),
where for sufficiently small μ the eigenstate |λ0(μ)〉〈λ0(μ)|
is in general close to the target pure state | 〉〈 |. On the
other hand, ρ ′ deviates significantly from | 〉〈 | at maximal
channel noise (μ = 1). Since �μ is completely positive and
trace preserving, it may also be expressed as

ρ ′ =
∑

m

Km,μ| 〉〈 |K†
m,μ (2)

using a set of Kraus operators {K0,μ, K1,μ, K2,μ, . . .} of the
general property Km,μ=0 = δm,01. Using a Hermitian opera-
tor basis {�l}d2−1

l=0 such that �0 = 1/
√

d , tr{�l>0} = 0, and
tr{�l�l ′ } = δl,l ′ , we have the expansion

Km,μ = γ
(m,μ)

0√
d

1 +
d2−1∑
l=1

γ
(m,μ)

l �l (3)

in terms of complex coefficients γ
(m,μ)

l , where γ
(m,μ=0)

l =√
dδl,0δm,0. We may now group all nondominant terms to-

gether and give an equivalently exact representation for ρ ′,

ρ ′ = | 〉[1 − ε(μ)]〈 | + ε(μ)ρ̃err (μ, | 〉〈 |)︸ ︷︷ ︸
nondominant

, (4)

with ε(μ) = 1 − |γ (0,μ)
0 |2/d , so that ε(μ → 0) → 0. The

state ρ̃err (μ, | 〉〈 |) is the error component owing to
�μ = �ε of an error rate ε = ε(μ). Very generally,
ρ̃err (μ, | 〉〈 |) can be a nonlinear operator function of μ and
[ρ̃err (μ, | 〉〈 |), | 〉〈 |] �= 0.

A special case of (4) arises in the regime μ, ε � 1. In this
case, it can be deduced (see Appendix A) that

ρ ′ = | 〉(1 − ε)〈 | + ερerr (| 〉〈 |), (5)

where ρerr is an ε-independent error component, but could still
depend on | 〉〈 |. Apart from this approximation, Eq. (5) is
exact with any ε for many commonly known noise channels.

There exists a simple error-mitigation procedure that uti-
lizes a basic linear-algebraic principle. To illustrate such a
procedure, let us first recall, which we have earlier assumed
with a sleight of hand, that the dominant eigenvalue λ0(μ)
in Eq. (1) is nondegenerate, which is the typical case for
noisy environments, as the situation of coincidentally having
another dominant eigenstate of the same eigenvalue is un-
likely for small ε. Then, because λ0(μ) > λk>0(μ), it is clear
that

lim
M→∞

ρ ′M

tr{ρ ′M} = |λ0(μ)〉〈λ0(μ)|, (6)

that is, raising ρ ′ to a very large power M (the distillation
order) and normalizing the answer amplifies the dominant
eigenvalue λ0(μ), thereby asymptotically leading to the singly
dominant eigenstate. This method may be traced back to von
Mises and Pollaczek-Geiringer [86] and is a common numer-
ical technique for finding the largest eigenvalue of a matrix.
Hence, for a sufficiently small μ or ε, this dominant pure
state is close to the target state | 〉〈 | under such a simple
purification or distillation scheme.

In a VQA setting, one is generally interested in measuring
the expectation value 〈O〉 of a Hermitian observable O with
respect to some target | 〉〈 |. The use of such a distillation
scheme would therefore entail the corresponding measure-
ment of tr{ρ ′MO}/tr{ρ ′M}. Recipes to implement such a mea-
surement from multiple copies of ρ ′ using two-qubit entan-
gling gates have been proposed [67,68,87–92]. More recently,
a separate idea of using shadow tomography [70,93–96]
as an efficient postprocessing protocol for estimating
tr{ρ ′MO}/tr{ρ ′M} with only randomized single-qubit unitary
rotations in addition to the VQA circuit further enhances
the feasibility of this scheme. The name virtual distillation
is fitting, since all practical implementations never directly
generate the distilled state ρ ′M/tr{ρ ′M}, but only estimate the
corresponding observable measurements.
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III. NOISE MODELS

A. Multiqubit loss channel

Although virtual distillation is agnostic to any particular
noise model, for the purposes of analysis and discussion, we
will investigate two particular classes of noise channels. The
first class consists of the multiqubit loss channels. Let us start
with the simplest case, that is, the single-qubit loss channel de-
fined by the completely positive and trace-preserving (CPTP)
map

�loss
ε [ρqubit] = (1 − ε)ρqubit + |vac〉ε〈vac| (7)

for any state ρqubit , where |vac〉〈vac| is the vacuum state.
This map may be derived by solving for the response of the
polarization degree of freedom with respect to the master
equation [97]

∂ρ ′
qubit

∂t
= γ

1∑
j=0

(
a jρ

′
qubita

†
j − 1

2
a†

j a jρ
′
qubit

−1

2
ρ ′

qubita
†
j a j

)
, (8)

where a j is the annihilation operator on the polarization
ket | j〉 and ε = 1 − e−γ t relates to the evolution time period t

and decay rate γ (see Appendix B). The linearity of �loss
ε , or

any CPTP map for that matter, implies the following operator
actions:

�loss
ε [|0〉〈0|] = |0〉(1 − ε)〈0| + |vac〉ε〈vac|,

�loss
ε [|1〉〈1|] = |1〉(1 − ε)〈1| + |vac〉ε〈vac|,

�loss
ε [|0〉〈1|] = |0〉(1 − ε)〈1|,

�loss
ε [|vac〉〈vac|] = |vac〉〈vac|. (9)

In the multiqubit product basis, an n-qubit noiseless state ρ

may be written as

ρ =
1∑

l1,...,ln=0

1∑
l ′1,...,l ′n=0

|l1, . . . , ln〉ρl1,...,ln;l ′1,...,l ′n〈l ′
1, . . . , l ′

n|, (10)

where each qubit basis ket is now extended to the three-
dimensional space inasmuch as

|0〉 =̂
⎛⎝1

0
0

⎞⎠, |1〉 =̂
⎛⎝0

1
0

⎞⎠, |vac〉 =̂
⎛⎝0

0
1

⎞⎠. (11)

After subjecting each qubit to the loss channel in Eq. (7) under
a common small error rate ε, we arrive at the noisy state

ρ ′ = (1 − ε)nρ + ε(1 − ε)n−1
∑
l,l ′

ρl;l ′ (|vac〉δl1,l ′1〈vac| ⊗ |l2〉〈l ′
2| ⊗ · · · ⊗ |ln〉〈l ′

n|

+ |l1〉〈l ′
1| ⊗ |vac〉δl2,l ′2〈vac| ⊗ · · · ⊗ |ln〉〈l ′

n| + · · ·
+ |l1〉〈l ′

1| ⊗ · · · ⊗ |ln−1〉〈l ′
n−1| ⊗ |vac〉δln,l ′n〈vac|)

+ {vacuum-related terms of higher ε orders}
∼= (1 − nε)ρ + ε(|vac〉〈vac| ⊗ tr1{ρ} + · · · + trn{ρ} ⊗ |vac〉〈vac|), (12)

where we see that a photon-loss action on the jth qubit is
equivalent to a partial trace tr j{·} applied to that qubit fol-
lowed by a vacuum-state substitution. The set of summation
variables {l1, . . . , ln} and the primed ones are concisely rep-
resented by l and l ′, respectively. We emphasize here that
all vacuum-related terms are mutually orthogonal with each
other and the noiseless state ρ. Such mutual orthogonality will
prove advantageous in subsequent analysis for this channel.

B. Multiqubit Pauli channel

The second class of multiqubit Pauli channels not only
generates enormous interest in the fields of error correc-
tion and quantum computing [98–108], but is also relevant
in the discussion of noise models generated from common
quantum-optical peripherals such as polarization disturbances
in optical-fiber-based delay lines [81–83].

For a single qubit, the Pauli channel is defined by the four
Kraus operators K0 = √

1 − ε1, K1 = √
ε1X , K2 = √

ε2Y ,
and K3 = √

ε3Z , where 1 � ε = ε1 + ε2 + ε3, resulting in the
single-qubit CPTP map

�Pauli
ε [ρqubit] = (1 − ε)ρqubit + ε1XρqubitX

+ ε2Y ρqubitY + ε3ZρqubitZ. (13)

The Pauli channel is isotropically depolarizing when ε1 =
ε2 = ε3 = ε/3.

The multiqubit version naturally involves Kraus operators
that are tensor products. Given a pure target n-qubit state ρ,
the corresponding noisy state ρ ′ as a result of the multiqubit
Pauli noise channel with identical qubit error rates, up to first
order in ε j , is given by

ρ ′ ∼= (1 − nε)ρ + ε1

n∑
j=1

XjρXj + ε2

n∑
j=1

YjρYj

+ ε3

n∑
j=1

ZjρZj, (14)

where Xj , for instance, refers to the X operator for the jth
qubit. For this channel, the corresponding error component
ρerr ∝ ε1

∑n
j=1 XjρXj + ε2

∑n
j=1 YjρYj + ε3

∑n
j=1 ZjρZj

does not commute with ρ in general.

IV. NOISE DILUTION

Equations (12) and (14) are representatives of independent
and identically distributed (i.i.d.) noise models, namely, that
all qubit suffers from the same kind of noise of equal error
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rate ε, where the resulting noisy n-qubit state ρ ′ takes the
form

ρ ′
1 = �i.i.d.

ε [ρ] = (1 − ε)nρ + [1 − (1 − ε)n]ρerr (15)

for any 0 � ε � 1 and some error component ρerr. That �i.i.d.
ε

is the independent and identically distributed noise channel
due to a given quantum-circuit peripheral invites the concept
of noise dilution. Suppose that this peripheral is used in con-

junction with a quantum circuit that is described by the unitary
operator U and can be split into several smaller peripher-
als. The corresponding noiseless output state ρ = U |0〉〈0|U †,
where |0〉〈0| is some fixed initialized pure state. Given the
possible decomposition U = W1W2 · · ·WLerr in terms of the
unitary operators W1,W2, . . . ,WLerr , the user may choose to
distribute the peripheral across U so that the output state of
the circuit is given by

ρ ′
Lerr

= �i.i.d.
ε/Lerr

[
WLerr · · · �i.i.d.

ε/Lerr

[
W2�

i.i.d.
ε/Lerr

[W1|0〉〈0|W †
1 ]W †

2

] · · ·W †
Lerr

]
=
(

1 − ε

Lerr

)Lerrn

ρ +
[

1 −
(

1 − ε

Lerr

)Lerrn
]
ρ (Lerr )

err , (16)

where each of the Lerr independent and identically distributed
channels now acts with an error rate of ε/Lerr. An example
situation that is relevant for such a choice is the arrangement
of delay lines that are necessary in many circumstances for
the practical implementation of the NISQ device. In this situ-
ation, the user may choose to either use delay lines after the
computation with U [Eq. (15)] or distribute them uniformly
across U [Eq. (16)].

For small error rates ε,

ρ ′
1

∼= (1 − nε)ρ + nερerr,

ρ ′
Lerr

∼= (1 − nε)ρ + nερ (Lerr )
err , (17)

where we see that the noise level for both choices, measured
as the weight attributed to ρ, is the same and only the error
components differ [ρ (Lerr=1)

err = ρerr]. Figure 1 illustrates (17)
for Lerr = 1, 2, 4 with a four-qubit quantum circuit, where W1,
W2, W3, and W4 are unitary operators of subcircuits that make
up U . We will compare the performance of virtual distillation
on noisy output states for various values of Lerr.

There is a technical exception to (15)–(17), namely, with
the independent and identically distributed loss channels as
described in Sec. III A. For such a channel, it turns out that

ρ ′
Lerr

∼=
(

1 − ε

Lerr

)Lerrn

ρ + nε

Lerr

(
1 − ε

Lerr

)Lerrn−1

ρ (Lerr )
err (18)

for a small loss error rate ε [see also either (B15) or (D1)],
with a trace that is unpreserved even up to first order in ε

whenever Lerr > 1, unlike the second equality in (16). Upon

FIG. 1. Dilution of a peripheral independent and identically dis-
tributed noise channel �i.i.d.

ε in a four-qubit (d = 24 = 16) quantum
circuit that accepts the initialized input state |0〉〈0|. Here the number
of noise layers Lerr is chosen to be 1 (no dilution), 2, and 4.

a trace renormalization,

ρ ′
Lerr

∼=
(

1 − nε

Lerr

)
ρ + nε

Lerr
ρ (Lerr )

err . (19)

The reason for the trace-lossy form in (18) is that while the
trace of ρ ′ in (16) is preserved throughout the noise dilution
procedure under typical noise channels [even up to first-order
approximation in ε as in (17)], this is not the case for the
independent and identically distributed loss channel. If after
the measurement phase data corresponding to detector clicks
with missing qubits are to be discarded anyway, then the
effective action of the subcircuit Wl on a lossy state at every
dilution layer amounts to losing information about the error
component, unless Lerr = 1. In this sense, the vacuum state is
invisible to circuit operations in practice.

Physically, the noise dilution strategy outlined here is
equivalent to a redistribution of noisy peripherals such that
certain aspects of the peripherals are conserved. As a working
example that will be the main theme of this article, consider
a realistic physical situation where the lossy peripheral is a
delay line of a certain decay rate γ for which the error rate
ε = 1 − e−γ τ after some delay time period τ . For a small τ ,
we find that ε ∼= γ τ , so the Lerr-layered noise dilution scheme
outlined here is equivalent to splitting the delay line into Lerr

equal delay times τ/Lerr and distributing them evenly through-
out the quantum circuit while preserving the total delay
time τ .

V. FIGURE OF MERIT AND CIRCUIT AVERAGING

To compare the mitigative power of virtual distillation in
noise-diluted scenarios of various Lerr, we take the figure of
merit to be the Hilbert-Schmidt distance or mean-square er-
ror (MSE) [109] between a target pure state ρ = | 〉〈 | =
U |0〉〈0|U † and the mitigated state with respect to some noise-
channel map �i.i.d.

ε of error rate ε. This is defined as

D =
〈

tr

{(
ρ − ρ ′M

tr{ρ ′M}
)2
}〉

, (20)

where the average 〈·〉 is taken over all possible independent
circuit unitary operators. For instance, in Fig. 1, based on
that particular decomposition of circuit unitary U , the aver-
age is taken over all possible W1, W2, W3, and W4. Such a
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circuit-averaged figure of merit quantifies the average accu-
racy over all possible randomly chosen circuit parameters that
define U .

To obtain analytical formulas, we will assume that all
unitary operators Wj are 2-designs [110], that is, their
first- and second-moment averages, such as 〈WjO1W

†
j 〉 and

〈W ⊗2
j O2W

†⊗2
j 〉 with any operators O1 and O2 of appro-

priate dimensions, are those of the Haar measure over
the unitary group [111,112]. Useful identities that apply
for any d-dimensional 2-design unitary V , d-dimensional
observable O1, and d2-dimensional observables O2, A, B, and
C include [36,113]

〈V O1V
†〉 = tr{O1}

d
, (21)

〈V ⊗2O2V
†⊗2〉 =

(
tr{O2}
d2 − 1

− tr{O2τ }
d (d2 − 1)

)
1

+
(

tr{O2τ }
d2 − 1

− tr{O2}
d (d2 − 1)

)
τ, (22)

〈VAV †BVCV †〉 = tr{A}tr{C}B + tr{B}tr{AC}1
d2 − 1

− tr{A}tr{B}tr{C}1 + tr{AC}B
d (d2 − 1)

, (23)

where τ is the d×d bipartite SWAP operator. A popular
2-design distribution that we will adopt for more general
simulation runs is the Haar measure itself. According to [114],
one may generate random unitary operators (UHaar) of dimen-
sion d that are distributed according to this measure from the
following numerical recipe.

(i) Generate a random d×d matrix A with entries
independent and identically distributed standard Gaussian dis-
tribution.

(ii) Compute the matrices Q and R from the QR decompo-
sition A = QR.

(iii) Define Rdiag = diag{R}.
(iv) Define L = Rdiag  |Rdiag| ( refers to the Hadamard

division).
(v) Define UHaar =̂ QL.

VI. RESULTS

A. 2-design networks

1. Independent and identically distributed loss channel

Because the vacuum state |vac〉〈vac| resides in the Hilbert-
space sector that is orthogonal to that of ρ, for small error
rate ε, it is possible to obtain the complete expression for
the MSE between the target pure state ρ = | 〉〈 | and the
mitigated state ρ ′ using virtual distillation, which reads

Di.i.d. loss
M,Lerr

=
(

ε

Lerr

)2M
[

n〈tr{tr1{| 〉〈 |}2M}〉

+
〈⎛⎝ n∑

j=1

tr{tr j{| 〉〈 |}M}
⎞⎠2〉]

, (24)

where the two averages 〈tr{tr1{| 〉〈 |}2M}〉 and
〈{∑n

j=1 tr{tr j{| 〉〈 |}M}}2〉 would depend specifically on the

FIG. 2. Comparison between Monte Carlo simulations (markers)
and theoretical predictions (dashed curves) of Di.i.d. loss

M,Lerr
for ε = 0.02,

various numbers of qubits n and virtual-distillation order M, and
(a) Lerr = 1, (b) Lerr = 2, (c) Lerr = 3, and (d) Lerr = 4. For each value
of Lerr , 100 sets of Haar unitary operators {Wl}Lerr

l=1 are used to average
every plot marker. All graphs are plotted with a vertical logarithmic
scale.

kind of 2-design circuit ansatz employed in the application.
For M = 1, it can be shown that

Di.i.d. loss
M,Lerr

=
(

ε

Lerr

)2[n(d + 4)

2(d + 1)
+ n2

]
, (25)

which universally holds for all 2-design circuits (derived in
Appendix B).

We may now extract some key behaviors concerning
virtual distillation with peripheral noise dilution. The first
observation is that the MSE scales exponentially with M in
the error rate ε for a fixed Lerr. If the magnitude of ε is
about 0.01, say, then a second-order virtual distillation results
in an MSE that is about 10−8 in orders of magnitude. We
therefore see that for such error rates, M = 2 is typically
sufficient for practical purposes.

The next important finding is that for fixed ε and order M,
the MSE decreases with increasing Lerr according to a power
law. This verifies the intuition that buffering the peripheral
noise channel using the existing circuit components indeed
results in higher mitigative power at least with virtual dis-
tillation. Figures 2–4 graphically showcase the precision of
Eq. (24) relative to Monte Carlo simulations. In all simula-
tions, the circuit unitary operators are distributed according to
the Haar measure.

Moreover, for the independent and identically distributed
loss channel, both Eq. (24) and Fig. 2 tell us that virtual
distillation results in mitigated states that are asymptotically
unbiased. That is, in the limit of large M, Di.i.d. loss

M→∞,Lerr
→ 0.

One can understand this property by inspecting the structure
of ρ ′M/tr{ρ ′M} in (B17), which possesses only the target-
only term and the εM-dependent term, with no other cross
terms of lower ε orders. These cross terms are responsible
for a nonzero bias in limM→∞ ρ ′M/tr{ρ ′M}, which is miss-
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FIG. 3. Comparison between Monte Carlo simulations (markers)
and theoretical predictions (dashed curves) of Di.i.d. loss

M,Lerr
for ε = 0.02,

various numbers of qubits n and diluted layers Lerr , and (a) M = 1,
(b) M = 2, (c) M = 3, and (d) M = 4. For each value of M, 100
sets of Haar unitary operators {Wl}Lerr

l=1 are used to average every plot
marker.

ing for this channel, a consequence of the orthogonality
between |vac〉 and the circuit Hilbert-space sector.

2. Independent and identically distributed Pauli channel

The independent and identically distributed Pauli channel
takes on a very different structure than the independent and
identically distributed loss channel. Most notably, its action
described by (14) entails an error component that typically
does not commute with the target state ρ. Furthermore, the
nonorthogonality of this error component makes it persistent
regardless of the virtual-distillation order [see Eq. (C9)], that

FIG. 4. Comparison between Monte Carlo simulations (markers)
and theoretical predictions (dashed curves) of Di.i.d. loss

M,Lerr
for a virtual-

distillation order of M = 2, various numbers of qubits n and error
rate ε, and (a) Lerr = 1, (b) Lerr = 2, (c) Lerr = 3, and (d) Lerr = 4.
For each value of Lerr , 100 sets of Haar unitary operators {Wl}Lerr

l=1
are used to average every plot marker. All graphs are plotted with a
vertical logarithmic scale.

is, the error component of the distilled noisy state ρ ′M/tr{ρ ′M}
carries a coefficient that is always of the leading order
O(ε1, ε2, ε3).

More specifically, the respective MSE expressions of
distillation orders M = 1 and M � 2 for small ε and
arbitrary Lerr are

Di.i.d. Pauli
M=1,Lerr

= (nε)2

[
d3

(d + 1)(d2 − 1)
− d

Lerr (d + 1)(d2 − 1)

]

+ nd

Lerr (d + 1)

3∑
l=1

ε2
l , (26)

Di.i.d. Pauli
M�2,Lerr

= 2
3∑

l,l ′=1

εlεl ′

L2
err

n∑
j, j′=1

(〈
tr
{
ρT (l )

j T (l ′ )
j′
}〉

− 〈
tr
{
ρT (l )

j

}
tr
{
ρT (l ′ )

j′
}〉)

, (27)

T (l )
j = P(l )

j ρP(l )
j + WLerr P

(l )
j ρLerr−1P(l )

j W †
Lerr

+ · · ·
+ WLerrWLerr−1 · · ·W2P(l )

j ρ1P(l )
j W †

2 · · ·W †
Lerr−1W

†
Lerr

,

(28)

where P(l )
j is a single-qubit Pauli operator (see Appendix C).

For the same n and Lerr, the MSE therefore explicitly depends
on the asymmetry of the Pauli channel in the loss rates ε j

[115]. A significant departure from the independent and iden-
tically distributed loss channel is that the MSE for M � 2 is
independent of M. This may appear counterintuitive at first,
but a closer inspection establishes consistency with (C9), that
is, perfect error mitigation is not possible in the presence of
a persistent error component for any M, since it is always
accompanied by error coefficients of unit leading order re-
gardless of the value of M. Without loss of generality, we will
subsequently take the independent and identically distributed
Pauli channel to be depolarizing, or ε1 = ε2 = ε3 = ε/3.

Another observation we can make is that for fixed
ε � 1/n and very large circuits (n, d � 2), Di.i.d. Pauli

M=1,Lerr
→

n
∑3

l=1 ε2
l /Lerr, that is, the unmitigated distance increases

with n and asymptotically approaches a finite limit. On the
other hand, Fig. 5 shows that the mitigated MSE for M � 2
drops gradually with increasing n (excluding n = 2). As with
all simulations up to this section, all circuit unitary operators
are assumed to possess a Haar distribution. Figure 6 confirms
the mitigation improvement as Lerr increases. Figure 7 sup-
plies the MSE graphs with respect to different error rates while
fixing M and Lerr.

B. Eigenvalue distribution of the error component

To understand matters properly, let us for the moment
consider the special case [67] of a noise-channel map

ρ ′ = |λ0〉(1 − ε0)〈λ0| + ε0

d−1∑
k=1

|λk〉pk〈λk| (29)

that brings the ideal target pure state | 〉〈 | ≡ |λ0〉〈λ0| to a
noisy mixed state ρ ′, where the error component

ρerr =
d−1∑
k=1

|λk〉pk〈λk| (30)
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FIG. 5. Comparison between Monte Carlo simulations (markers)
and theoretical predictions (dashed curves) of Di.i.d. Pauli

M,Lerr
for ε = 0.02,

various numbers of qubits n and virtual-distillation order M, and
(a) Lerr = 1, (b) Lerr = 2, (c) Lerr = 3, and (d) Lerr = 4. The channel
is depolarizing with ε1 = ε2 = ε3 = ε/3. For each value of Lerr , 1000
sets of Haar unitary operators {Wl}Lerr

l=1 are used to average every plot
marker. All graphs are plotted with a vertical logarithmic scale.

resides in the orthogonal subspace of the target
(
∑d−1

k=1 pk = 1 and
∑d−1

k=0 |λk〉〈λk| = 1). Under a fixed error
rate ε0 and virtual-distillation order M, it is interesting to
search for the optimal distribution of p = (p1 p2 · · · pd−1) that
minimizes the MSE defined in (20) (without circuit averaging
for this situation). This finding would at least serve as a guide
towards the optimal noise-coping strategy under this special
case.

FIG. 6. Comparison between Monte Carlo simulations (markers)
and theoretical predictions (dashed curves) of Di.i.d. Pauli

M,Lerr
for ε =

0.02, various qubit numbers n and Lerr , and (a) M = 1, (b) M = 2,
(c) M = 3, and (d) M = 4. The noise channel is depolarizing. For
each M, 1000 sets of Haar unitary {Wl}Lerr

l=1 are used to average every
plot marker.

FIG. 7. Comparison between Monte Carlo simulations (markers)
and theoretical predictions (dashed curves) of Di.i.d. Pauli

M,Lerr
for a distilla-

tion order of M = 2, various n and ε, and (a) Lerr = 1, (b) Lerr = 2,
(c) Lerr = 3, and (d) Lerr = 4. The noise channel is depolarizing. For
each Lerr , 1000 sets of Haar unitary {Wl}Lerr

l=1 are used to average every
plot marker.

After some simple manipulation, upon defining NM,ε0 =
(1 − ε0)M + εM

0

∑d−1
k=1 pM

k , we find that for any 0 � ε0 � 1,

DM = tr

{(
ρ ′M

tr{ρ ′M} − | 〉〈 |
)2
}

=
[

1 − (1 − ε0)M

NM,ε0

]2

+ ε2M
0

N 2
M,ε0

d−1∑
k=1

p2M
k . (31)

Since {pk}d−1
k=1 is a discrete set of normalized probabilities, it

may be parametrized as pk = a2
k/
∑d−1

k′=1 a2
k′ , so the variation

δpk = 2∑d−1
k′′=1 a2

k′′

(
akδak − pk

d−1∑
k′=1

ak′δak′

)
(32)

implies that

δDM

δak
∝ ak

(
AM,k (p) −

d−1∑
k′=1

AM,k′ (p)pk′

)
,

AM,k (p) =
[

(1 − ε0)M − (1 − ε0)2M

NM,ε0

− ε2M
0

NM,ε0

d−1∑
k′=1

p2M
k′

]
pM−1

k + εM
0 p2M−1

k (33)

after some straightforward calculations. Upon setting
the gradient to zero and solving the extremal equa-
tion pk

∑d−1
k′=1 AM,k′ (p)pk′ = pkAM,k (p), it is easy to verify

that pk = 1/(d − 1) is the solution.1 So the optimal strategy

1The interested reader may even try taking the gradient in (33) to
set up a steepest-descent method and obtain the uniform probability
distribution after many iterations.
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should give a rank-(d − 1) ρerr that possesses a uniform
eigenspectrum.

The purpose of this section is to emphasize that, while the
special situation in which the user can freely change noise-
coping strategies, thereby varying the pk , and simultaneously
fix the error rate is an especially easy one to analyze, there
are practical scenarios where the error rate will also be in-
evitably varied as a consequence of such a strategy change. An
example is noise dilution on the independent and identically
distributed loss channel, as cautioned at the end of Sec. IV.
Increasing the number of diluted noise layers Lerr not only
changes the error component, but also alters the effective
error rate as a result of the non-trace-preserving character of
circuit operations on lossy states [see Eq. (19)]. Therefore, all
previous arguments leading to (33) are no longer valid with
this channel and so a better noise-coping strategy does not
necessarily lead to error components of eigenspectra closer to
a uniform distribution.

To systematically compare the difference between the
eigenspectrum λ of a d̃-dimensional error component ρerr and
the uniform distribution λunif = (1 1 · · · 1)�/d̃ , we take the
Hellinger distance [109]

H (λ,λunif ) = 1√
2

√√√√ d̃−1∑
k=0

(√
λk − 1/

√
d̃
)2

(34)

as the figure of merit. For n-qubit independent and identically
distributed Pauli channels, the dimension d̃ = d = 2n. On the
other hand, for n-qubit independent and identically distributed
lossy scenarios, the inclusion of the third vacuum sector as
in (11) as a way to account for losses is equivalent to d̃ = 3n.
If the noiseless n-qubit target ρ = | 〉〈 | is a product state
(| 〉 = |ψ1〉|ψ2〉 · · · |ψn〉), then the exact Hellinger distance is
given by

H i.i.d. loss
x =

{
1 + 1

2 × 3n
− (1 − x)n/2

3n/2
√

1 − (1 − x)n

×
[(

1 +
√

x

1 − x

)n

− 1

]}1/2

, x = ε

Lerr
.

(35)

One can refer to Appendix D for the derivation and verify
indeed that H i.i.d. loss

ε/Lerr
increases with increasing Lerr, which is

in direct contrast with the special case discussed previously.
Figure 8(a) shows very similar behaviors in the Hellinger

distances for general random states. On the other hand, the
independent and identically distributed depolarizing channel
[see Fig. 8(b)] yields distances that agree in trend with that for
the special case. An important distinction from the indepen-
dent and identically distributed loss channel is that the overall
error rate in (17) remains as nε for any Lerr, as opposed to that
in (19).

C. Quantum clusters of hardware-efficient networks

Finally, we give a practical application to virtual distillation
with noise dilution. Suppose one is interested in designing
a quantum-computer cluster (see Fig. 9) that houses several
independent quantum circuits that are accessible by the public

FIG. 8. Hellinger distance between the error-component eigen-
spectrum and uniform distribution for the independent and identi-
cally distributed (a) loss and (b) depolarizing channels, respectively.
All graphs are averaged over the respective numbers of Haar circuit-
unitary operators as stated in all previous simulation figures.

domain. At any given instance, a user may log in to the cluster
and use one such n-qubit circuit. Additionally, we assume
a limited number of detectors, so the output qubits need to
be queued with delay lines for the final measurement. In a
typical NISQ cluster, each unitary operator Wl describes a

FIG. 9. (a) Quantum-computing cluster consisting of four sepa-
rate NISQ circuits, where each circuit accepts a maximum of four
qubits and may be employed independently by a user at any given
instance. Delay lines are used to queue the output qubits for the final
measurement with a (limited) set of four qubit detectors. (b) Each
circuit unitary module Wl (θl ), with θl the trainable parameters for
the gate Wl , is made up of L layers of single-qubit rotations and
CNOT gates. (c) Noise dilution is done by splitting the delay lines
and distributing them equally among the circuit modules. For small
error rates, dividing the delay length by Lerr is equivalent to dividing
the unsplit error rate by Lerr in each diluted noise layer.
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FIG. 10. Virtual-distillation MSE curves for four-qubit
hardware-efficient circuits (L = 2) with respect to the total delay
time τ under the independent and identically distributed loss
channel. Performances for various M and Lerr are illustrated.

circuit comprising, say, L layers of passive components, which
are single-qubit and controlled-NOT (CNOT) gates. From [85],
randomized circuits of this kind are approximately 2-designs
if L = O(poly(n)).

We will illustrate the results of noise dilution under such
a practical situation by investigating two separate scenar-
ios. The first scenario is where photon loss is a dominant
source of noise in the delay lines, which could be the
case when the cluster is integrated into a photonic chip.
For more concrete simulations, we take the decay rate
γloss = 0.2 dB cm−1 [116] or equivalently γloss = 6 dB ns−1,
where εloss = 1 − 10−γlossτ/10 is related to the delay time τ

(in nanoseconds). The second scenario is where polarization
drifts occur more frequently in regular optical-fiber-based de-
lay lines [81–83] such that the depolarizing channel serves as
an appropriate noise model. As an example, we quote from
[117] the depolarizing rate of about γdepol = 1.3×10−4 s−1,
which is equivalent to a depolarization error rate of about 0.01
for a 400-m optical fiber. In other words, εdepol = 1 − e−γdepolτ .

To present the simulation findings, we study virtual distil-
lation performances on four-qubit hardware-efficient circuits,
where the number of single-qubit-CNOT layers L = 2 such that
a total of eight circuit layers is considered for each entire com-
putation circuit. Hence, Lerr = 2, for instance, implies that one
of the diluted noise layers is sandwiched between two unitary
subcircuits, each with 2L = 4 circuit layers [see Fig. 9(c)].
Figures 10 and 11 plot the virtual-distillation performances on
both independent and identically distributed channels based
on the aforementioned specifications.

An interesting conclusion out of these numerical findings
is that even though each circuit unitary operator Wl is shal-
low (L = 2), noise dilution can still effectively enhance error
mitigation as Lerr increases. Therefore, whenever the situa-
tion permits, the lesson here is that a uniform distribution
of peripherals can in practice improve the performance of
virtual distillation, at least for the independent and identically
distributed loss and Pauli channels. For the case where the pe-
ripherals are delay lines, within the same total delay time, our

FIG. 11. Virtual-distillation MSE curves for four-qubit
hardware-efficient circuits (L = 2) with respect to the total delay
time τ under the independent and identically distributed depolarizing
channel. Performances for various M and Lerr are illustrated.

results suggest that transmitting output qubits from uniformly
delayed circuit operations to the detectors is a better error-
mitigation strategy than delaying qubits from instantaneous
circuit operations.

VII. DISCUSSION

Virtual distillation is a technically easy-to-use technique
that mitigates errors in a noise-model-agnostic manner. Re-
cent developments have further enhanced the feasibility of
this error-mitigation technique. We applied this distillation
procedure to practical situations in which general quantum-
computing circuits are used in conjunction with additional
peripherals that could introduce excess noise.

Under the general 2-design assumption about quantum cir-
cuits, and multiqubit loss and Pauli channels as models for the
excess noise, we analytically showed (supported with numer-
ical simulations) that for the same total error rate, distributing
the peripherals homogeneously across the entire quantum cir-
cuit improves the quality of the error-mitigated output state
as opposed to collecting all peripherals at one place: The
more noise layers the peripheral excess-noise channel is di-
luted into, the better the mitigation results (Figs. 3 and 6).
Furthermore, it turns out that virtual distillation exponentially
reduces errors due to losses as the order increases, but gives
the same magnitude of error reduction under the Pauli channel
for all distillation orders greater than one up to the leading
order of the error rate (Figs. 2 and 5). These two different
behaviors stem from the types of error component generated
by each noise model, where the one from losses is orthogonal
to the multiqubit Hilbert-space sector and that from the Pauli
channel generally does not commute with the target state. The
latter error component is therefore persistent against virtual
distillation.

Such findings come in handy when designing a quantum-
computing cluster consisting of several noisy intermediate-
scale quantum-circuit networks, where having a huge number
of measurement detectors accommodating all these networks
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is economically difficult. In this case, delay lines are generally
used to queue output qubits for acquiring the final measure-
ment data set. Our results suggest that splitting the delay lines
homogeneously across the circuits can typically improve the
error-mitigative power with virtual distillation applied to such
situations, even when circuit depths are not deep.
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APPENDIX A: SMALL-ERROR REGIME

The error component ρerr, being a quantum state itself,
may be parametrized with the auxiliary complex operator Aerr

inasmuch as ρ̃err (μ, | 〉〈 |) = A†
μAμ/tr{A†

μAμ}. When μ � 1,
we have the Taylor expansion

Aμ
∼= 0 + μ1 (A1)

about μ = 0+, where 0 = A0+ and 1 = ∂Aμ/∂μ|μ=0+ , so
that

ρ̃err (μ, | 〉〈 |) ∼= 
†
00

tr{†
00}

+ μ

(


†
10 + 

†
01

tr{†
00}

−
†
00tr{†

10 + 
†
01}

tr{†
00}2

)
. (A2)

Similarly, by taking γ
(0,μ)

0 in (3) to be real without loss
of generality, γ

(0,μ)
0

∼=
√

d + μδ1, where we note that δ1 =
∂γ

(0,μ)
0 /∂μ|μ=0+ < 0. This gives us

ε(μ) ∼= −2μδ1√
d

≡ ε. (A3)

Upon defining the constant ρerr ≡ 
†
00/tr{†

00}, we obtain
Eq. (5).

APPENDIX B: VIRTUAL DISTILLATION UNDER
INDEPENDENT AND IDENTICALLY DISTRIBUTED

LOSS CHANNEL

As a brief review demonstration, the solution to (8) is given
by

ρ ′ = etL[ρ], L[ρ] = γ

1∑
j=0

(
a jρa†

j − 1

2
a†

j a jρ − 1

2
ρa†

j a j

)
.

(B1)

Now, taking the number ket |n0 = 1, n1 = 0〉 ≡ |1, 0〉 ↔ |0〉
for the zeroth (horizontal) polarization ket as the initial ket for
ρ at t = 0, it is easy to see that

L[|0〉〈0|] ↔ γ (a0|1, 0〉〈1, 0|a†
0 − a†

0a0|1, 0〉 1
2 〈1, 0|

− |1, 0〉 1
2 〈1, 0|a†

0a0)

= − γ (|0〉〈0| − |vac〉〈vac|),
L[|vac〉〈vac|] = 0. (B2)

The corresponding solution for the noisy state ρ ′ is therefore
given by

ρ ′ = |0〉〈0| +
∞∑

l=1

t l

l!
Ll [|0〉〈0|]

= |0〉〈0| +
∞∑

l=1

(−γ t )l

l!
(|0〉〈0| − |vac〉〈vac|)

= |vac〉〈vac| + e−γ t (|0〉〈0| − |vac〉〈vac|)
= |0〉(1 − ε)〈0| + |vac〉ε〈vac|. (B3)

The reader may feel free to go through the same exercise and
obtain all other actions stated in (9).

When Lerr = 1 and ρ = | 〉〈 | of dimension d = 2n,
Eq. (12) leads to

ρ ′M ∼= (1 − Mnε)ρ + εM (|vac〉〈vac| ⊗ tr1{ρ}M + · · ·
+ trn{ρ}M ⊗ |vac〉〈vac|) (B4)

so that

ρ ′M

tr{ρ ′M}
∼= ρ + εM

(
|vac〉〈vac| ⊗ tr1{ρ}M + · · ·

+ trn{ρ}M ⊗ |vac〉〈vac| − ρ

n∑
j=1

tr{tr j{ρ}M}
)

.

(B5)

The MSE for Lerr = 1 therefore reads

Di.i.d. loss
M,Lerr=1 = ε2M

[
n〈tr{tr1{ρ}2M}〉

+
〈⎛⎝ n∑

j=1

tr{tr j{ρ}M}
⎞⎠2〉]

. (B6)

A simplified expression is available for M = 1, namely,
beginning with

Di.i.d. loss
M=1,Lerr=1 = ε2{n〈tr{tr1{ρ}2}〉 + n2}, (B7)

we realize that

tr{tr1{ρ}2} =
1∑

m1,m′
1=0

2n−1−1∑
m2=0

tr
{
ρFm1,m′

1
ρGm1,m′

1,m2

}
, (B8)

with

Fm1,m′
1
= |m1〉〈m′

1| ⊗ 1n−1,

Gm1,m′
1,m2 = |m′

1〉|m2〉〈m1|〈m2|. (B9)
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Therefore, in order to average

tr
{
ρFm1,m′

1
ρGm1,m′

1,m2

}
= tr

{
U |0〉〈0|U †Fm1,m′

1
U |0〉〈0|U †Gm1,m′

1,m2

}
, (B10)

we make use of Eq. (23) for any 2-design unitary U and find
that〈

tr
{
ρFm1,m′

1
ρGm1,m′

1,m2

}〉 = 1

d (d + 1)

(
d

2
δm1,m′

1
+ 1

)
, (B11)

so that

〈tr{tr1{ρ}2}〉 = d + 4

2(d + 1)
(B12)

and

Di.i.d. loss
M=1,Lerr=1 = ε2

[
n(d + 4)

2(d + 1)
+ n2

]
(B13)

for M = 1.
For any Lerr � 1 the case is governed by the action

ρ ′
Lerr

= �
multiqubit loss
ε/Lerr

[
WLerr · · ·

× �
multiqubit loss
ε/Lerr

[
W2�

multiqubit loss
ε/Lerr

[W1|0〉〈0|W †
1 ]W †

2 ]

· · ·W †
Lerr

]
. (B14)

By recalling that the unitary operators Wl act on the
Hilbert-space sector that is orthogonal to |vac〉〈vac|, it is
straightforward to see that

ρ ′
Lerr

∼=
(

1 − ε

Lerr

)Lerrn

ρ + ε

Lerr

(
1 − ε

Lerr

)Lerrn−1

× (|vac〉〈vac| ⊗ tr1{ρ} + · · · + trn{ρ} ⊗ |vac〉〈vac|)
∼= (1 − nε)ρ + ε

Lerr
(|vac〉〈vac| ⊗ tr1{ρ} + · · ·

+ trn{ρ} ⊗ |vac〉〈vac|). (B15)

Then, as all vacuum-related terms and the noiseless state ρ are
mutually orthogonal to each other, raising ρ ′ to the Mth power
amounts simply to

ρ ′M
Lerr

∼= (1 − Mnε)ρ +
(

ε

Lerr

)M

(|vac〉〈vac| ⊗ tr1{ρ}M + · · ·

+ trn{ρ}M ⊗ |vac〉〈vac|), (B16)

along with its resulting normalized state

ρ ′M
Lerr

tr
{
ρ ′M

Lerr

} ∼= ρ +
(

ε

Lerr

)M
(

|vac〉〈vac| ⊗ tr1{ρ}M + · · ·

+ trn{ρ}M ⊗ |vac〉〈vac| − ρ

n∑
j=1

tr{tr j{ρ}M}
)

.

(B17)

Hence, one obtains the more general MSE expression for
small ε,

Di.i.d. loss
M,Lerr

=
(

ε

Lerr

)2M
[

n〈tr{tr1{ρ}2M}〉+
〈⎛⎝ n∑

j=1

tr{tr j{ρ}M}
⎞⎠2〉]
(B18)

TABLE I. Values of (tr{tr1{ρ}2M}) for various n and M. For
M > 1, Monte Carlo simulations with 10 000 samples are conducted
for each n-M pair. Random circuit unitary operators are assumed to
follow the Haar distribution.

n \ M 1 2 3 4 5

2 4
5 0.6283 0.5191 0.4490 0.3885

3 2
3 0.3934 0.2605 0.1808 0.1311

4 10
17 0.2648 0.1356 0.0754 0.0431

5 6
11 0.1940 0.0794 0.0352 0.0167

6 34
65 0.1604 0.0544 0.0201 0.0075

or

Di.i.d. loss
M=1,Lerr

=
(

ε

Lerr

)2[n(d + 4)

2(d + 1)
+ n2

]
. (B19)

This gives us the ratio Di.i.d. loss
M,Lerr

/Di.i.d. loss
M,Lerr=1 = O(L−2M

err ) for any
M. For completeness, we tabulate values of 〈tr{tr1{ρ}2M}〉 and
({∑n

j=1 tr{tr j{ρ}M}}2) in Tables I and II, which are used to
generate Figs. 2–4. To this end, all random unitary operators
are assumed to follow the Haar distribution for M > 1, which
is arguably the most common 2-design distribution.

APPENDIX C: VIRTUAL DISTILLATION UNDER
THE INDEPENDENT AND IDENTICALLY

DISTRIBUTED PAULI CHANNEL

The general MSE expression for arbitrary ε = ∑3
l=1 εl

and Lerr may be obtained from the map action in (14) by
sketching a flowchart of how ρ ′ evolves as noise dilution
proceeds for Lerr layers, each with a diluted error rate of ε/Lerr

(see Fig. 12). We therefore find the following general noisy
state ρ ′ ≡ ρ ′

Lerr
, with respect to the target ρ ≡ ρLerr , expanded

up to first order in all the error rates ε1, ε2, and ε3:

ρ ′ ∼= (1 − nε)ρ +
3∑

l=1

εl

Lerr

n∑
j=1

T (l )
j ,

T (l )
j = P(l )

j ρP(l )
j + WLerr P

(l )
j ρLerr−1P(l )

j W †
Lerr

+ · · ·
+ WLerrWLerr−1 · · ·W2P(l )

j ρ1P(l )
j W †

2 · · ·W †
Lerr−1W

†
Lerr

.

(C1)

TABLE II. Values of 〈(∑n
j=1 tr{tr j{ρ}M})2〉 for various n and

M. For M > 1, Monte Carlo simulations with 10 000 samples are
conducted for each n-M pair. Random circuit unitary operators are
assumed to follow the Haar distribution.

n \ M 1 2 3 4 5

2 4 2.6278 2.0963 1.7994 1.5547
3 9 4.0678 2.3808 1.5438 1.0734
4 16 5.5635 2.3935 1.1653 0.6196
5 25 7.4374 2.5432 0.9705 0.3969
6 36 9.8520 2.9229 0.9272 0.3104
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FIG. 12. Evolution flowchart of ρ ′ in an Lerr-layered dilution setting. Here ρl ≡ Wl · · ·W2W1|0〉〈0|W †
1 W †

2 · · ·W †
l and P(l )

j is one of the
single-qubit Pauli operators.

After raising ρ ′
Lerr

to the Mth power, upon a further trace
normalization, we get

ρ ′M

tr{ρ ′M}
∼= ρ +

3∑
l=1

εl

Lerr

n∑
j=1

[
ρT (l )

j + (M − 2)ρT (l )
j ρ

+ T (l )
j ρ − Mρ tr

{
ρT (l )

j

}]
. (C2)

Hence, unlike the loss channel, where the error term goes
as εM , the Pauli channel gives rise to a persistent error term
that does not go away by simply increasing M to infinity. This
implies the MSE expressions

Di.i.d. Pauli
M=1,Lerr

= (nε)2 − 2nε

3∑
l=1

εl

Lerr

n∑
j=1

〈
tr
{
ρT (l )

j

}〉

+
3∑

l,l ′=1

εlεl ′

L2
err

n∑
j, j′=1

〈
tr
{
T (l )

j T (l ′ )
j′
}〉

,

Di.i.d. Pauli
M�2,Lerr

= 2
3∑

l,l ′=1

εlεl ′

L2
err

n∑
j, j′=1

[〈
tr
{
ρT (l )

j T (l ′ )
j′
}〉

− 〈
tr
{
ρT (l )

j

}
tr
{
ρT (l ′ )

j′
}〉]

. (C3)

In other words, there is a difference in MSE in raising the
virtual distillation order from M = 1 to M = 2. However, up
to first order in error rates, carrying out virtual distillation
with orders beyond M = 2 offers no further reduction in MSE.
This is a manifestation of the noncommutativity between T (l )

j
and ρ.

The remaining task is the evaluation of circuit averages.
First, recall that T (l )

j is a sum of Lerr pure states. The average〈
tr
{
ρT (l )

j

}〉 = 〈
tr
{
ρP(l )

j ρP(l )
j

}〉 + · · · (C4)

consists of the term〈
tr
{
ρP(l )

j ρP(l )
j

}〉 = 〈tr{WLerr ρLerr−1W
†

Lerr
P(l )

j WLerr

× ρLerr−1W
†

Lerr
P(l )

j

}〉 = 1

d + 1
, (C5)

where we have put (23) to good use, and all other Lerr − 1
terms contribute precisely the same result, so〈

tr
{
ρT (l )

j

}〉 = Lerr

d + 1
. (C6)

The next average 〈tr{T (l )
j T (l ′ )

j′ }〉 would depend on
the indices j, j′, l , and l ′. Generally speaking, this
term consists of two types of averages, the self-terms
such as 〈tr{P(l )

j ρP(l )
j P(l ′ )

j′ ρP(l ′ )
j′ }〉, and cross terms like

〈tr{P(l )
j ρP(l )

j WLerr P
(l ′ )
j′ ρLerr−1P(l ′ )

j′ W †
Lerr

}〉. Since every term
of the same type gives the same result, we simply calculate
one of each. Starting with the latter, for any indices, the
combined use of (22) and (23) leads to〈

tr
{
P(l )

j ρP(l )
j WLerr P

(l ′ )
j′ ρLerr−1P(l ′ )

j′ W †
Lerr

}〉
= d

d2 − 1
− 1

d2 − 1

〈
tr
{
ρLerr−1P(l ′ )

j′ ρLerr−1P(l ′ )
j′
}〉

= d2 + d − 1

(d + 1)(d2 − 1)
. (C7)
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TABLE III. Values of 〈tr{ρT (l )
j T (l ′ )

j′ }〉 for various n and Lerr .
Monte Carlo simulations with 10 000 samples are conducted for each
n-Lerr pair. Random circuit unitary operators are assumed to follow
the Haar distribution.

n \ Lerr 1 2 3 4

l �= l ′, j = j ′

2 0.0000 0.0791 0.2422 0.4802
3 0.0000 0.0246 0.0739 0.1486
4 0.0000 0.0071 0.0204 0.0415
5 0.0000 0.0019 0.0054 0.0110
6 0.0000 0.0005 0.0014 0.0028

Any l and l ′, j �= j ′

2 0.0696 0.2090 0.4363 0.7526
3 0.0226 0.0703 0.1417 0.2336
4 0.0061 0.0201 0.0397 0.0679
5 0.0017 0.0053 0.0109 0.0175
6 0.0005 0.0014 0.0027 0.0044

For the former,

〈
tr
{
P(l )

j ρP(l )
j P(l ′ )

j′ ρP(l ′ )
j′
}〉 =

⎧⎨⎩1 for j = j′, l = l ′
1

d + 1
otherwise.

So

〈
tr
{
T (l )

j T (l ′ )
j′
}〉 = Lerr

dδ j, j′δl,l ′ + 1

d + 1

+ Lerr (Lerr − 1)
d2 + d − 1

(d + 1)(d2 − 1)
. (C8)

Equations (C6) and (C8) therefore supply the exact answer

Di.i.d. Pauli
M=1,Lerr

= (nε)2

[
d3

(d + 1)(d2 − 1)

− d

Lerr (d + 1)(d2 − 1)

]
+ nd

Lerr (d + 1)

3∑
l=1

ε2
l

(C9)

for any 2-design unitary operators Wl .
When M � 2, only certain averages are calculable

solely from the 2-design properties. For instance, the term
〈tr{ρT (l )

j T (l ′ )
j′ }〉 may again be found by considering different

index conditions. If j = j′ and l = l ′, then the same stepsas
before produce

〈
tr
{
ρT (l )2

j

}〉 = Lerr

d + 1
+ Lerr (Lerr − 1)

(d + 1)2
. (C10)

Otherwise, if l �= l ′, there exists an interesting analytical ob-
servation for 〈tr{ρT (l )

j T (l ′ )
j }〉, that is, when j = j′, one finds

TABLE IV. Values of 〈tr{ρT (l )
j }tr{ρT (l ′ )

j′ }〉 for various n and Lerr .
Monte Carlo simulations with 10 000 samples are conducted for each
n-Lerr pair. Random circuit unitary operators are assumed to follow
the Haar distribution.

n \ Lerr 1 2 3 4

l = l ′, j = j ′

2 0.0867 0.2560 0.5036 0.8145
3 0.0298 0.0862 0.1649 0.2715
4 0.0092 0.0268 0.0489 0.0809
5 0.0026 0.0070 0.0134 0.0217
6 0.0007 0.0018 0.0034 0.0056

l �= l ′, j = j ′

2 0.0295 0.1371 0.3296 0.5993
3 0.0101 0.0445 0.1027 0.1868
4 0.0030 0.0131 0.0301 0.0541
5 0.0009 0.0036 0.0080 0.0144
6 0.0002 0.0009 0.0021 0.0037

Any l and l ′, j �= j ′

2 0.0480 0.1744 0.3848 0.6821
3 0.0142 0.0518 0.1161 0.2021
4 0.0038 0.0144 0.0316 0.0559
5 0.0010 0.0038 0.0084 0.0150
6 0.0002 0.0010 0.0021 0.0038

that each of the Lerr self-terms, say,〈
tr
{
ρP(l )

j ρP(l )
j P(l ′ )

j ρP(l ′ )
j

}〉
= 〈 〈 ∣∣P(l )

j

∣∣ 〉 〈 ∣∣P(l ′ )
j

∣∣ 〉 〈 ∣∣P(l )
j P(l ′ )

j

∣∣ 〉 〉
= −〈 〈 ∣∣P(l )

j

∣∣ 〉 〈 ∣∣P(l ′ )
j

∣∣ 〉 〈 ∣∣P(l ′ )
j P(l )

j

∣∣ 〉 〉, (C11)

is purely imaginary owing to the anticommutativity of
the single-qubit Pauli operators. Apart from this, both
〈tr{ρT (l )

j T (l ′ )
j′ }〉 and 〈tr{ρT (l )

j }tr{ρT (l ′ )
j′ }〉 appearing in

Di.i.d. Pauli
M�2,Lerr

involve third moments that depend on the 2-design
distribution.

By assuming the Haar distribution for all circuit unitary op-
erators, we present some lists of values for these two averages
in order to compare the small-ε MSE analytical formulas with
the simulation result for M � 2 in Tables III and IV. These
are used to produce Figs. 5–7.

TABLE V. Eigenvalues of ρerr for the independent and identically
distributed loss channel acting on a product state and their multiplic-
ities. Note that the complete dimension of ρerr is 3n when the vacuum
sector is accounted for.

Eigenvalues of ρLerr Multiplicity

0 3n − 2n + 1
ε

Lerr
(1 − ε

Lerr
)
n−1 (n

1

)
( ε

Lerr
)
2
(1 − ε

Lerr
)
n−2 (n

2

)
...

...

( ε

Lerr
)
n−1

(1 − ε

Lerr
)

( n
n−1

)
( ε

Lerr
)
n (n

n

)
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APPENDIX D: HELLINGER DISTANCE FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED LOSSES
ON A PRODUCT STATE

If | 〉 = |ψ1〉|ψ2〉 · · · |ψn〉 is an n-qubit product ket, then recalling once again that |vac〉〈vac| is invisible to all circuit unitary
operators, the exact lossy state

ρ ′
Lerr

= | 〉
(

1 − ε

Lerr

)Lerrn

〈 | + ε

Lerr

(
1 − ε

Lerr

)Lerrn−1

(�1 + · · · + �n)︸ ︷︷ ︸(n
1

)
terms

+
(

ε

Lerr

)2(
1 − ε

Lerr

)Lerrn−2

(�1,2 + �1,3 + · · · + �n−1,n−2 + �n−1,n)︸ ︷︷ ︸(n
2

)
terms

+ · · ·

(
ε

Lerr

)n−1(
1 − ε

Lerr

)Lerrn−n+1

(�1,2,...,n−1 + �1,2,...,n−2,n + · · · + �2,3,...,n)︸ ︷︷ ︸( n
n−1

)
terms

+ |vac〉
(

ε

Lerr

)n(
1 − ε

Lerr

)Lerrn−n

〈vac|

= | 〉
(

1 − ε

Lerr

)Lerrn

〈 | +
(

1 − ε

Lerr

)(Lerr−1)n[
1 −

(
1 − ε

Lerr

)n]
ρerr (D1)

is a linear combination of orthonormal vacuum-substituted projectors �·, where �1,2 = |vac〉〈vac| ⊗ |vac〉〈vac| ⊗ |ψ3〉〈ψ3| ⊗
· · · ⊗ |ψn〉〈ψn|, for instance.

It is clear that tr{ρ ′
Lerr

} = (1 − ε/Lerr )(Lerr−1)n < 1 whenever Lerr > 1, since discarding noncoincidental data means that every
action by a subcircuit unitary operator Wl loses information about the error component at every dilution layer. From Eq. (D1),
the trace-normalized error component has degenerate eigenvalues according to the multiplicities listed in Table V. From the
definition of the Hellinger distance in Eq. (34), these eigenvalues and multiplicities lead to (35).
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Řeháček, Lecture Notes in Physics Vol. 649 (Springer, Berlin,
2004).

[51] Y. S. Teo, Introduction to Quantum-State Estimation (World
Scientific, Singapore, 2015).

[52] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J.
Eisert, Quantum State Tomography via Compressed Sensing,
Phys. Rev. Lett. 105, 150401 (2010).

[53] D. Ahn, Y. S. Teo, H. Jeong, F. Bouchard, F. Hufnagel, E.
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