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Modeling nonlinear activation functions on quantum computers is vital for quantum neurons employed
in fully quantum neural networks, however, remains a challenging task. We introduce an amplitude-based
implementation for approximating nonlinearity in the form of the unit step function on a quantum computer.
Our approach expands upon repeat-until-success protocols, suggesting a modification that requires a single
measurement only. We describe two distinct circuit types which receive their input either directly from a classical
computer or as a quantum state when embedded in a more advanced quantum algorithm. All quantum circuits
are theoretically evaluated using numerical simulation and executed on NOISY INTERMEDIATE-SCALE QUANTUM

hardware. We demonstrate that reliable data with high precision can be obtained from our quantum circuits
involving up to eight qubits and up to 25 CX-gate applications, enabled by state-of-the-art hardware-optimization
techniques and measurement error mitigation.
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I. INTRODUCTION

Identifying quantum algorithms that allow quantum
speedups for machine learning is a research area of rising
interest [1]. The integration of artificial neural networks with
quantum computation is typically referred to as quantum
neural networks [2–6]. A plethora of different construction
strategies for quantum neural networks was reported over the
last decade, a comprehensive review [7] of which, however, is
far beyond the scope of this article. A rough categorization can
be made between hybrid approaches that rely on variational
quantum algorithms [8–12] and fully quantum implementa-
tions. For the latter, a key ingredient is the development of a
quantum version for the Rosenblatt perceptron, involving the
calculation of a tensor product, based on which subsequently
a non-linear activation occurs [13]. While tensor calculus has
already been performed on quantum computers [14–16], the
implementation of nonlinear activation functions remains a
challenging task [17–25].

In principle, nonlinearities can be modeled using the unit
step function (USF), returning zero for negative function
inputs and one otherwise. The USF is also known as the
Heaviside (step) function or indicator function [26], originally
developed in operational calculus, or the positive part of a
function, commonly used in Fourier analysis [27] and finance
[28]. Recently, different approaches to implement nonlinear-
ity on a quantum computer were reported, involving phase
encoding and inverse quantum Fourier transform [20], Tay-
lor expansion [25], as well as bit-wise comparison [29–33].
Moreover, it has been known [17–19] that, specifically, the
USF can in theory be implemented on quantum computers
using repeat-until-success protocols [34–38]. However, a cor-
responding implementation has not been reported yet.

In this article, we suggest an approach that modifies the
repeat-until-success gearbox circuit [34,37] to avoid midcir-
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cuit measurements, allowing to encode an arbitrarily close
approximation of the USF on the amplitude of qubits. Specif-
ically, we construct a quantum circuit performing a unitary
transformation that, based on a given input, prepares a quan-
tum register to represent the corresponding output of the USF.
To this end, we structured the article as follows. First, we
briefly outline the theoretical aspects of our implementation
in Sec. II. We generally distinguish between passing the input
to the circuit either directly as a floating-point value from
a classical computer, referred to as classical input, or via
another quantum state, referred to as quantum-state input.
Therefore, we start with the simpler case of a classical input in
Sec. III, where we first demonstrate the basic implementation
for the USF, and subsequently augment the corresponding cir-
cuits for computing other nonlinear activation functions, e.g.,
the rectified linear unit (ReLU) [39]. Thereafter, in Sec. IV,
we extend the discussion to the more complex scenario of
a quantum-state input. There we first analyze input states
representing a single angle only, and thereafter include in
our analysis passing on quantum states representing multiple
angles simultaneously, e.g., for computing the average value
of the USF over a set of inputs.

The performance of all quantum circuits shown in this
article is not only evaluated by numerical simulation assuming
an ideal, noise-free quantum computer, but also tested on the
IBM Quantum device in Ehningen, Germany. For implement-
ing quantum circuits on Noisy Intermediate-Scale Quantum
(NISQ) hardware [40], we found the number of employed CX
gates to be the primary criterion for obtaining reliable results.
Therefore, in the following we will restrict the characteriza-
tion of quantum circuits on NISQ devices to the number of
required CX-gate applications.

II. THEORETICAL CONSIDERATIONS

Encoding the output of the USF on the amplitude of a qubit
can in principle be achieved by a transformation that takes as
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FIG. 1. A version of the gearbox circuit C(φ) suggested by
Wiebe et al. [34,37].

an input an angle θ and performs a rotation on a qubit such
that ideally

|0〉 �−→
{|0〉 for 0 � θ � π

4 ,

|1〉 for π
4 < θ � π

2 .
(1)

The task of implementing the USF might thus be restated as
using an input angle θ to create an effective rotation of the
target qubit about 0 or π (see Fig. 2). We can approximate
the transformation according to Eq. (1) with the help of the
so-called gearbox circuit C(φ) demonstrated in Fig. 1 that
was suggested by Wiebe et al. to synthesize an arbitrarily
small rotation [34,37]. The name stems from the fact that
the k input angles φ = φ1, . . . , φk applied to the k control
qubits c1, . . . , ck are used to produce a rotation involving a
much finer rotation angle θ applied to the target qubit, where
sin2(θ ) = sin2(φ1) · · · sin2(φk ). The entire transformation can
formally be written as

C(φ) |0⊗k〉c |0〉t = ρ(θ ) |0⊗k〉c e−i arctan [tan2 θ]X |0〉t

−
√

1 − ρ2(θ ) |∅⊗k〉c e−i π
4 X |0〉t , (2)

where we used the indices c and t to indicate the control
(qubit) register and target qubit, respectively. |∅⊗k〉c is a com-
pact notation representing the sum over all possible states
of the control register except for the all-zero state |0⊗k〉c.
Notably, a rotation involving θ , i.e., the transformation |0〉t �→
e−i arctan[tan2 θ]X |0〉t , is successfully applied to the target qubit
only if the control register is in |0⊗k〉c. The corresponding
success probability is given by

ρ2(θ ) := sin4(θ ) + cos4(θ ). (3)

Otherwise C(φ) transforms the target qubit according to
|0〉t �→ e−i π

4 X |0〉t . Without exactly determining the state of
the target qubit after circuit execution, measuring the control
register consequently allows to ascertain which transforma-
tion was performed on the target qubit. Repeating the circuit
C(φ) until the state |0⊗k〉c is measured in turn ensures that
the desired transformation |0〉t �→ e−i arctan[tan2 θ]X |0〉t has oc-
curred. This is known as the repeat-until-success principle
[17,35–38]. Moreover, Wiebe et al. theoretically showed that
a nested version of the gearbox circuit can be built up re-
cursively, i.e., the transformation on the target qubit from the
gearbox circuit of Fig. 1 serves itself as the input of an outer

FIG. 2. USF and its approximations S◦d (θ ) [see Eq. (5)] for
different levels d = 1, 2, and 3 on the input space used in this article.

gearbox circuit as shown in Fig. 3(b). The transformation
performed on the outermost target qubit of a d-times nested
gearbox circuit given all control qubits are found in |0〉c is

then given as |0〉t �→ e−i arctan[tan2d
θ]X |0〉t [34,37]. It is empha-

sized that generally the success probability ρ2(θ ) depends on
d , as detailed in the Supplemental Material (Sec. SI 1) [41].
However, in the following only the case for d = 1 as given in
Eq. (3) will be relevant.

For implementing an approximation of the USF we use the
square-wave property of the gearbox [37]. Therefore, the most
basic gearbox version is sufficient, involving only a single
control qubit, and likewise a single input angle φ1 = θ , as
shown in Fig. 3(a). It is emphasized that accordingly the entire
complex circuit shown in Fig. 1 reduces to a very basic circuit,
which is shown in Fig. 3(e) without measurements [18], in
the following referred to as a single-step gearbox Gb(θ ). The
transformation from Eq. (2) can then be expressed as

Gb(θ ) |0〉c |0〉t = ρ(θ ) |0〉c

(
cos[arctan[tan2 θ ]] |0〉t

+ sin[arctan[tan2 θ ]] |1〉t

)
− sin(θ ) cos(θ ) |1〉c (|0〉t + |1〉t ). (4)

Assuming the control qubit to be in the zero state |0〉c, the
probability of finding the target qubit in |1〉t is given by
S◦1(θ ) := sin2[arctan[tan2 θ ]]; the corresponding trajectory is
demonstrated in Fig. 2. Clearly S◦1(θ ) is reminiscent of a
sigmoid function [42] for θ ∈ [0, π/2], and thus an appro-
priate approximation for the USF. Extending this observation
to a d-nested gearbox circuit, in the following referred to as
a d-step gearbox, the probability of finding the target qubit
in |1〉t , provided all control qubits were previously found in
|0〉c , is accordingly given by

S◦d (θ ) := sin2[arctan[tan2d
θ ]]. (5)

Trajectories for d = 2 and 3 are likewise shown in Fig. 2.
Even though it is theoretically known that in such a way an
approximation of the USF is encoded in the amplitude of
the target qubit [17,37], to the best of our knowledge, an
exact protocol for exploiting this fact has not been reported
yet. Over the course of this article we will introduce two

022606-2



AMPLITUDE-BASED IMPLEMENTATION OF THE UNIT … PHYSICAL REVIEW A 107, 022606 (2023)

FIG. 3. Quantum circuits implementing the USF for different levels of approximation d . (a) Single-step gearbox with d = 1, (b) double-
step gearbox with d = 2 according to repeat-until-success protocols [34], (c) double-step gearbox with d = 2, and (d) triple-step gearbox with
d = 3 as suggested in this article. (e) Definition of the elementary gearbox-circuit element used in (b), (c), and (d), which does not comprise
any measurements. Numbers of the control qubits are given as subscripts to distinguish them from the control qubits shown in Fig. 1.

alternatives for retrieving S◦d (θ ) from the quantum states
produced by the d-step gearbox circuits. The application of
both is demonstrated for the two scenarios described above,
i.e., the classical input, where the input for the gearbox circuit
is a single angle θ ∈ [0, π/2] directly passed on by a classical
computer, based on which the target qubit is ideally trans-
formed according to Eq. (1) as demonstrated in Fig. 2 (USF).
Then the task is extended to passing a quantum-state input to
the gearbox circuit, where each eigenstate in the measurement
basis represents a different input angle θ j ∈ [0, π/2] used for
the transformation in Eq. (1).

III. CLASSICAL INPUT

A. Basic USF version

Consider the single-step gearbox circuit from Fig. 3(a),
where we wish the measurement to reflect S◦1(θ ). Evaluation
of Eq. (4), however, shows that measuring the probability for
the state |1〉t |0〉c yields ρ2(θ )S◦1(θ ). It is indeed possible to
remove the distortion ρ2(θ ) by combining the probabilities
measured for both states involving |0〉c : the probability of
measuring the target qubit in state |1〉t under the condition
that the control qubit is found in state |0〉c is given by

�(1 | 0) := P(|1〉t | |0〉c) = |(〈1|t 〈0|c) |τGb〉|2
|(〈0|t 〈0|c) |τGb〉|2 + |(〈1|t 〈0|c) |τGb〉|2

= ρ2(θ ) sin2[arctan[tan2 θ ]]

ρ2(θ ) cos2[arctan[tan2 θ ]] + ρ2(θ ) sin2[arctan[tan2 θ ]]
= sin2[arctan[tan2 θ ]] = S◦1(θ ), (6)

where |τGb〉 represents the state of both gearbox qubits be-
fore initiating the measurement. Unfortunately, this evaluation
cannot simply be extended to d-step gearbox circuits and
thus to higher levels of approximation d for the USF, as
they involve repeat-until-success protocols that rely on mid-
circuit measurements [17,34–38] [cf. Fig. 3(b)]. We propose
an alternative implementation by allocating each gearbox
element within a nested circuit to a new set of qubits, as
demonstrated in the circuit modification in Fig. 3(c) for the
double-step gearbox. In Fig. 3(d), the corresponding extension
of the triple-step gearbox is shown. We emphasize that our
implementation, combined with appropriate data evaluation
as given in Eq. (6), allows us to postpone all measurements
to the end of the circuit and with this to omit any intermediate
interaction with the involved qubits. Our approach scales with

the level of approximation d , which principally requires 2d

measurable qubits, and the application of 2d − 1 CX gates.
The corresponding generalization of Eq. (6) is given by

�(1 | 0⊗2d −1) = sin2[arctan[tan2d
θ ]] = S◦d (θ ). (7)

For a more thorough mathematical treatment, the reader is
referred to the Supplemental Material (Sec. SI 1) [41]. To
demonstrate the validity of this approach, we performed sim-
ulations of the quantum circuits shown in Figs. 3(c) and
3(d), implementing the approximation level d = 2 (double-
step gearbox) and d = 3 (triple-step gearbox) for the unit
step function, respectively. An ideal, noise-free quantum com-
puter with all-to-all connectivity was assumed, requiring four
qubits and three CX gates for d = 2, and eight qubits and
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FIG. 4. Results for the implementation of the USF at approximation levels d = 2 and 3 in (a) and (b), respectively. Analytical curves
are based on Eq. (5). Simulated data (green circles) were obtained by executing the quantum circuits shown in Figs. 3(c) and 3(d). For the
data obtained from IBMQ-27 Ehningen (blue stars), the respective circuits were optimized prior to execution. Optimum quantum circuits are
demonstrated in Fig. S3. For all circuit runs, the input space θ ∈ [0, π/2] was covered by 101 increments θ j = jπ/200, j = 0, . . . , 100, where
for each data point 105 circuit executions were conducted.

seven CX gates for d = 3. The input space θ ∈ [0, π/2] was
covered by 101 increments, where each data point repre-
sents an estimate for �(1 | 0⊗3) and �(1 | 0⊗7), obtained
from 105 circuit executions. The results (green circles) are
compared to S◦2(θ ) and S◦3(θ ) in Fig. 4. Clearly, the nu-
merical simulations are in excellent agreement with their
respective analytical form, confirming Eq. (7). To assess the
applicability of the implementation on NISQ devices, both
quantum circuits were optimized for the 27-qubit IBM Quan-
tum system in Ehningen, Germany (IBMQ-27 Ehningen). The
hardware-optimization procedure is detailed in Appendix B,
the characteristics of IBMQ-27 Ehningen are summarized
in Appendix C. It should be emphasized here that, due to
the restricted connectivity based on the heavy-hexagon qubit
architecture, state-swapping was required for the triple-step
gearbox circuit, resulting in an overhead of four CX gates,
and thus, in 11 CX-gate applications in total. The results
are likewise shown in Fig. 4 (blue stars). Again, 105 circuit
executions were performed for each input angle θ . In general,
the data reflects the simulated behavior with high precision.
Yet deviations do occur for input angles at about the step
θ ≈ π/4, where the values obtained from IBMQ-27 Ehningen
systematically remain below the numerical prediction. Even
though this effect becomes more pronounced for the triple-
step gearbox, it does not qualitatively affect the approximation
of the USF.

B. Variations

We emphasize that the evaluation strategy described above
for retrieving S◦d (θ ) can be incorporated into more advanced
quantum circuits. For instance, consider a unitaryU requiring
as an input the (approximated) USF S◦d (θ ), which performs a
transformation on an additional input state |�〉, and maps the
result to an output qubit o. A schematic representation of this
type of circuit involving the double-step gearbox is suggested
in Fig. 5(a). It is important to highlight that only the state
of the target qubit t must be passed to U. Eventually, data

evaluation is done analogously to Eq. (7), however, replacing
the target qubit t with the output qubit o, i.e.,

�̃(1 | 0⊗2d −1) := P(|1〉o | |0⊗2d −1〉c). (8)

As a primitive example for U requiring no additional input
|�〉, assume we wish to modify the transformation given in
Eq. (1) and instead encode

|0〉o �−→
{

cos κ |0〉o + sin κ |1〉o for 0 � θ � π
4 ,

|1〉o for π
4 < θ � π

2 ,
(9)

on the output qubit o. This effectively allows shifting the
first plateau from 0 to sin2 κ . In Fig. 5(b) we demonstrate
a quantum circuit approximating this transformation using
a double-step gearbox, such that we expect to observe the
function S̃◦2(θ ) := sin2(θ )κ (1 − S◦2(θ )) + S◦2(θ ). Another
important transformation that can be generated from the USF
is the so-called ReLU activation function [39], commonly
defined as ReLU(x) := max(0, x). Here, the output of the
USF is multiplied with the identity f (x) = x. Note that the
unit step must necessarily coincide with the root of f (x).
For the implementation on a quantum computer this requires
synchronization of the gearbox input θ and the function input
x. A variety of strategies could be used for this purpose. For
simplicity, here we rigorously encode f (x) on a single input
qubit q1 using an Ry(x) gate with

x = x(θ ) = arcsin

⎛
⎝√∣∣∣∣2θ

π
− 1

2

∣∣∣∣
⎞
⎠, (10)

where we make use of the fact that for all x � π/4 the corre-
sponding gearbox output S◦d (θ ) evaluates to zero. We thereby
guarantee that f [x (θ )] ∈ [0, 1/2] and f [x (π/4)] = 0. The
entire ReLU transformation, formally written as

|0〉o �−→
{

|0〉o for 0 � θ � π
4 ,√

f (x (θ )) |1〉o for π
4 < θ � π

2 ,
(11)

is approximated by the quantum circuit demonstrated in
Fig. 5(d), employing a double-step gearbox. The expected
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FIG. 5. (a) Schematic representation for combining an arbitrary unitary transformationU with the double-step gearbox from Fig. 3(c). (b),
(d) Quantum circuits approximating the transformations given in Eqs. (9) and (11), respectively. The black boxes indicate the additional unitary
transformationsU as generally introduced in (a). (c), (e) Data obtained from executing the quantum circuits shown in (b), (d) are compared to
the respective analytical forms. All conditions are identical to those reported for Fig. 4. Optimum quantum circuits on IBMQ-27 Ehningen are
shown in Figs. S1 and S2.

output is then given by C◦2(θ ) := S◦2(θ ) f [x (θ )]. Using
identical conditions as described in Fig. 4, we tested the
performance of the quantum circuit from Fig. 5(b) for κ =
arcsin

√
1/4, i.e., expecting a first plateau at 1/4, and the

quantum circuit from Fig. 5(d) on an ideal, noise-free quantum
computer as well as on IBMQ-27 Ehningen. The correspond-
ing data are compared to the analytical forms in Figs. 5(c) and
5(e), respectively, and again found in excellent agreement.

IV. QUANTUM-STATE INPUT

The results discussed in the previous section generally
demonstrate the ability to approximate the USF on a quan-
tum computer. However, directly passing an input angle θ to
the gearbox circuit requires communication with a classical
computer. For many future applications, and in particular
for designing a fully quantum neural network, we rather
assume gearbox circuits to receive a quantum state |
〉 as
an input, with each eigenstate of the measurement basis
|ψ j〉 representing a different input angle θ j . In this section,
we therefore demonstrate results for a single-step gearbox
capable of considering four arbitrarily chosen input angles
θ/π := (0.15, 0.2, 0.4, 0.45)T , where each entry is denoted
as θ j/π, j = 0, . . . , 3. These angles are represented by a
two-qubit state register s, i.e., by the amplitudes of |ψ j〉 ∈
{|00〉 , |01〉 , |10〉 , |11〉}, respectively. An efficient approach
for passing input angles to the gearbox circuit based on the
state of s are uniformly controlled rotations [43,44]. This
generally requires 2p CX-gate applications, where p indicates
the number of qubits in the state register. The correspond-
ing circuit element for a two-qubit state register is shown in
Fig. 6(a). Note that the angles ϑ j involved in the depicted
sequence of rotations can be obtained from the θ j , the exact
conversion is detailed in [43]. The incorporation of uniformly

controlled rotations into the single-step gearbox, as demon-
strated in Fig. 6(b), generally requires nine CX gates.

A. Single angle

At first we consider a situation where the state-qubit reg-
ister is in one of the eigenstates of the measurement basis,
i.e., |
〉 = |ψ j〉, such that only one of the four angles θ j is
passed to the gearbox circuit. In fact, this is not fundamentally
different from the case of a classical input discussed in the
previous section; data evaluation can be performed accord-
ing to Eq. (6) to obtain S◦1(θ j ). In Fig. 7, S◦1(θ ) is again
shown for the entire input space θ ∈ [0, π/2]. The results

FIG. 6. (a) Uniformly controlled rotations involving two state
qubits. For eventually implementing the correct rotation accord-
ing to θ j/π ∈ {0.15, 0.2, 0.4, 0.45}, angles must be converted as
described in [43]. The corresponding angles here are given by
ϑ j/π ∈ {0.3, −0.025, 0, −0.125}. (b) Uniformly controlled rota-
tions as shown in (a) embedded in the single-step gearbox. The state
register is represented by |
〉 = ∑

j α j |ψ j〉.
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FIG. 7. Results for the quantum-state input passed to the single-
step gearbox as shown in Fig. 6(b). The state register is represented
by |
〉 ∈ {|00〉 , |01〉 , |10〉 , |11〉} as indicated, corresponding to the
input angles θ j/π ∈ {0.15, 0.2, 0.4, 0.45}. The curve for S◦1(θ ) is
based on Eq. (5). Simulated data, illustrated as green circles, stem
from executing the quantum circuits shown in Fig. 6(b) 105 times
assuming an ideal, noise-free quantum computer with all-to-all con-
nectivity. For data obtained from IBMQ-27 Ehningen, the circuits
were again optimized. One hundred hardware runs were performed,
each comprising 105 circuit executions. The blue stars represent
the respective averages. The optimum quantum circuit for |00〉 on
IBMQ-27 Ehningen is shown in Fig. S4(a).

for executing the quantum circuit from Fig. 6(b) 105 times
for each |
〉 = |ψ j〉 assuming an ideal, noise-free quantum
computer are represented by the green circles. Additionally,
the respective states of the state register are indicated. Clearly,
the analytical and simulated data are in excellent agreement.
For assessing its performance on a NISQ device, the quan-
tum circuit from Fig. 6(b) was again optimized for IBMQ-27
Ehningen (resulting in nine CX-gate applications with no
overhead), and executed 105 times for each input state. Each
of these runs was then repeated 100 times, from which the
resulting average values for �(1 | 0) are indicated by the blue
stars in Fig. 7. Notably, the data obtained from IBMQ-27
Ehningen do not achieve the level of precision we expect
from the results demonstrated in Fig. 4: while for θ j < π/4
estimators for �(1 | 0) are found slightly above the expected
values, for θ j > π/4 results remain below the analytical and
numerical prediction. We assign this to the diminished preci-
sion of θ j passed to the gearbox. Here θ j is generated by the
uniformly controlled rotations, involving four CX-gates and
several single-qubit-gate applications, and is thus significantly
more prone to error when compared to the classical input θ

from the previous section. Since the individual data obtained
from IBMQ-27 Ehningen (100 hardware runs not shown here
for clarity) have sufficiently small confidence intervals (3σ

levels lie within the size of the symbol), this error seems to
be rather systematic than random. Nevertheless, the overall
behavior according to S◦1(θ ) is generally well reflected by
these results.

B. Multiple angles

A more complex situation occurs when the state regis-
ter s is no longer in one of the four eigenstates |ψ j〉. Here

FIG. 8. (a) Results for the average output of the single-step
gearbox from Fig. 6(b). (b) Inset indicated with the red box in
(a). Analytical values are given by �(1 | 0) ≈ 0.644 according to
Eq. (12) and S◦1(θ ) = 0.567 for �(10). Data for �(1 | 0) are based
on executing the circuit from Fig. 6(b) with the state register rep-
resented by |
〉 = |+〉 |+〉. Data for �(10) stems from executing
the subcircuits �0, �2, �4, and �6, and postprocessing the results
as detailed in the main text. For all (sub)circuits, 100 hardware
runs (gray circles) with 105 executions each were conducted. The
respective averages and 3σ levels are indicated by the blue circles
and error bars. The optimum quantum circuits on IBMQ-27 Ehningen
for �(1 | 0) and �(10) can be found in Fig. S4.

we are particularly concerned with the state qubits in an
equal superposition of all four eigenstates |
〉 = |+〉 |+〉 =
1/2

∑3
j=0 |ψ j〉, i.e., the average output of the gearbox. Un-

fortunately, the success probability ρ2(θ j ) is state dependent,
such that S◦1(θ ) := 1/4

∑3
j=0 S◦1(θ j ) cannot simply be re-

trieved by using the evaluation strategy suggested in Eq. (6).
Instead, this yields

�(1 | 0) =
∑3

j=0 ρ2(θ j ) sin2[arctan[tan2 θ j]]∑3
j=0 ρ2(θ j )

, (12)

where j is the integer representation of the two-bit string
in the computational basis. For the chosen input angles θ ,
Eq. (12) evaluates to �(1 | 0) ≈ 0.644, while we wish to
find S◦1(θ ) ≈ 0.567. To confirm this bias, we repeated the
procedure described for Fig. 7 with the state register given
by |
〉 = |+〉 |+〉. All data are demonstrated in the left panel
of Fig. 8(a). Here, we additionally showed the individual 100
hardware runs in IBMQ-27 Ehningen as small gray circles.
Blue circles and error bars indicate the average and 3σ levels,
respectively. The inset indicated by the red box is shown in
Fig. 8(b). For clarity, analytical and simulated data are shifted
horizontally with respect to the data obtained from IBMQ-
27 Ehningen. Generally, these results are in agreement with
Eq. (12). The estimator for �(1 | 0) based on data obtained
from IBMQ-27 Ehningen remains slightly below the predicted
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value, which, however, is in accordance with the observations
from Fig. 7.

It should be reiterated here that, following Eq. (6), for the
single-step gearbox the probability of measuring |0〉c |1〉t with
a state register in equal superposition is given by

|(〈1|t 〈0|c) |τGb〉|2 = 1

4

3∑
j=0

ρ2(θ j ) sin2[arctan[tan2 θ j]], (13)

with |τGb〉 representing the state for the two involved gearbox
qubits. Aiming to obtain S◦1(θ ) from this result, a trans-
formation must be found performing a state-wise amplitude
encoding for ρ−1(θ j ), which is then appended to the gearbox
circuit. Then, a measurement yields

�(10) := 1

4

3∑
j=0

D(θ j ) ρ2(θ j ) sin2[arctan[tan2 θ j]] = S◦1(θ ),

(14)
where D(θ j ) := ρ−2(θ j ). Since ρ−1(θ j ) is a periodic func-
tion [cf. Eq. (3)], a corresponding transformation may be
approximated using its Fourier series, a strategy which was
suggested for similar purposes before [45]. However, due to
the structure of the problem, here we chose a different ap-
proach than previously reported. Each term from the series
expansion is encoded on a different qubit. Eventually, the full
transformation can be constructed by adding up all of these
terms using amplitude addition [31]. Note that this approach
requires an approximation of D(θ j ) instead of ρ−1(θ j ) and
likewise the consideration of probabilities instead of ampli-
tudes in the Fourier series expansion, where the latter can
be accounted for by employing squared sinusoidal functions.
Using simple trigonometric identities, the first four terms of
the corresponding approximation are given by

D(θ j )

2
≈ 0.915 − 0.485 cos2(2θ j ) + 0.083 cos2(4θ j )

− 0.014 cos2(6θ j ). (15)

The factor 1/2 must be included to ensure normalization.
The error that results from the approximation given in Eq. (15)
is significantly smaller than the error due to current NISQ

hardware. A more detailed description is provided in the Sup-
plemental Material (Sec. SI 6). In principle, it is possible to
construct a quantum circuit that entirely computes Eq. (15) on
the amplitude of a single qubit and multiply it to the gearbox
output according to Eq. (14), i.e.,

�(10)

2
≈ 1

4

3∑
j=0

D(θ j ) ρ2(θ j ) sin2[arctan[tan2 θ j]]

︸ ︷︷ ︸
circuit �

. (16)

After multiplying the result of the measurement for � with the
factor of 2, indeed S◦1(θ ) is obtained. The construction of the
quantum circuit � including amplitude subtraction is detailed
in the Supplemental Material (see Sec. SI 4 and following).
Before proceeding, we note that the magnitude of the bias,
i.e., the deviation between �(1 | 0) and S◦1(θ ) depends on
the set of chosen angles θ , which, however, does not affect the
performance of the outlined procedure.

The implementation of � theoretically requires 238 CX-
gate applications and is far beyond what we expect to be
reasonably implementable on state-of-the-art NISQ hardware.
Therefore, in the remaining part of this section we present
a strategy for obtaining reliable results for � on IBMQ-27
Ehningen regardless. The decisive advantage from our ap-
proach for implementing the Fourier sSeries expansion of
D(θ j ) can be demonstrated by rewriting Eq. (16) as

�(10)

2
≈

3∑
k=0

(−1)k 1

4

3∑
j=0

D2k (θ j ) ρ2(θ j ) sin2[arctan[tan2 θ j]]

︸ ︷︷ ︸
subcircuit �2k

,

(17)
where D2k (θ j ) = a2k cos2(2kθ j ) and a2k stemming from
Eq. (15). Accordingly, instead of performing the full transfor-
mation by a single, complex circuit �, we are able to split �

into four subcircuits �2k , implementing the D2k (θ j ) elements
separately. After execution, the individual results are then
postprocessed as � = �0 − �2 + �4 − �6 to eventually ob-
tain S◦1(θ ). Each subcircuit �2k begins with the single-step
gearbox as shown in Fig. 6(b) with the state register repre-
sented by |
〉 = |+〉 |+〉. Since subcircuit �0 constitutes a
specifically simple case, which only includes rescaling the
gearbox result by a0 [cf. Eqs. (15) and (17)], its discussion
is postponed for the moment. The �λ, λ = 2, 4, 6 subcircuit
family is more elaborate: an additional uniformly controlled
rotation is required to encode the respective term cos2(λθ j ),
which is subsequently rescaled by aλ, and finally multiplied
to the gearbox result. The corresponding quantum circuit is
demonstrated in the top row of Fig. 9(a). In the lower row, the
corresponding topological requirement for a quantum com-
puter is schematically shown using color codes and lines for
indicating direct communication between the involved qubits.
Assuming all-to-all connectivity, a �λ subcircuit requires 25
CX gates. Considering the typical heavy-hexagon architecture
of IBMQ devices, even the most efficient hardware realization
found for �λ involves 44 CX-gate applications and thus still
remains too technically demanding. The last resource avail-
able for further simplifying the �2k subcircuits remains in
externalizing the multiplication by aλ to a classical computer.
The corresponding quantum circuit, shown in the upper panel
of Fig. 9(b), solely rescales the gearbox result with the respec-
tive cos2(λθ j ) term and stores the value in a qubit t�λ. The
final result is then obtained postmeasurement by classically
computing �λ = t�λ aλ. This modification in turn allows
further simplifying the last multiplication step implemented
by the Toffoli gate T [46] (green-colored box in Fig. 9):
even the most efficient implementation requires 6 CX-gate
applications and all-to-all connectivity of the three involved
qubits [47,48]. However, a phase-equivalent version T̃ was
reported, performing the identical transformation as T , but
additionally flagging the |101〉 state (referring to the three
involved qubits) with a negative amplitude (phase shift by π )
[49,50]. This version can be implemented using only three
CX gates, and additionally does not require communication
between the two control qubits. Both hardware implementa-
tions for the Toffoli gate and the phase equivalent version can
be found in the Supplemental Material (Fig. S6). Since T in
Fig. 9(b) is immediately followed by a measurement, T̃ can
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FIG. 9. The upper row shows quantum circuits for different variants of the �λ subcircuit family. (a) Full subcircuit, (b) subcircuit
with externalized multiplication by aλ, and (c) as in (b) but with the phase-equivalent version of the Toffoli gate. Generally, following
the gearbox procedure, all values are encoded in the amplitude for the |1〉 state of each qubit, i.e., qubits fλ, cλ, and f cλ store the values
for the coefficient

√
aλ, the cosine term cos(λθ j ), and their product

√
aλ cos(λθ j ), respectively. Qubits �λ and t�λ represent final circuit

results, where the second term indicates that a further postprocessing step is required. Coefficients
√

aλ are encoded using a Ry(a′
λ) gate

with a′
λ = arcsin(

√
aλ). Topological maps in the lower row demonstrate the respectively required connectivity on a quantum computer. Lines

indicate direct communication between the involved qubits. Subcircuit elements are identified using color coding. The number of CX gates are
summarized in Table I.

be employed regardless. This is demonstrated in Figure 9(c),
and ultimately allowed us to reduce the number of CX gates
to 16 assuming all-to-all connectivity, and to 25 consider-
ing the architecture of IBMQ-27 Ehningen. All requirements
for the quantum circuits from Fig. 9 are summarized in
Table I.

Note that multiplying aλ postmeasurement can likewise be
employed for �0, leaving the circuit at the same complexity as
described in Fig. 7 (nine CX-gate applications, no overhead).
In Fig. 8(a), right panel, the analytical value S◦1(θ ) ≈ 0.567
is compared to the estimators for �(10) according to Eq. (14).
Data for �(10) were obtained by performing runs of the four
subcircuits �λ, λ = 0, 2, 4, 6 in their most simplified version
on an ideal, noise-free quantum computer assuming all-to-all
connectivity, and on the IBMQ-27 Ehningen device using the
optimum hardware realizations. The inset indicated by the red
box is again given in Fig. 8(b). The overall procedure is iden-
tical to the one reported for �(1 | 0), shown in the left panel.
Notably, the simulated result for �(10) (green diamond) is

TABLE I. Hardware requirements for the different variants of the
�λ subcircuits shown in Fig. 9.

�λ-subcircuit CX-gate applications

variant Qubits All-to-all IBMQ-27 Overhead

(a) 8 25 44 19
(b) 7 19 29 10
(c) 7 16 25 9

slightly larger than the analytical value (black cross). This is in
accordance with stopping the series expansion of D(θ j ) after
a negative term, leaving the approximation below the exact
value. Regarding the 100 individual results for �(10) (small
gray circles) obtained from individual hardware runs, a wider
scattering can be observed when compared to the correspond-
ing data for �(1 | 0) (left panel); the standard deviation (blue
error bar) was found to be about three times larger, which
is expected considering the significant increase in CX-gate
applications. Nevertheless, the overall estimator for �(10)
(blue circles) is in good agreement with the analytical and
simulated values and is clearly distinguishable from the data
for �(1 | 0) obtained from IBMQ-27 Ehningen.

V. CONCLUSION

In this article, we introduced an amplitude-based encoding
for an approximation of the USF. This involved a quantum cir-
cuit that, based on a given input, prepared a quantum register
to reflect the corresponding USF output. Two circuit variations
were suggested receiving the input either directly from a clas-
sical computer or via a quantum state when incorporated into a
larger circuit. For the first variation, we demonstrated different
levels of approximation and furthermore showed small circuit
extension allowing to approximate other nonlinear functions.
For the second variation we likewise presented a circuit ex-
tension for quantum-state inputs in superposition, e.g., when
computing the average output of the USF. Supported by
analytical and simulated data, the performance for all quan-
tum circuits was evaluated on the IBM Quantum device in
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Ehningen, Germany. Reliable results were presented, ob-
tained from quantum circuits that included up to eight qubits,
and up to 25 CX-gate applications, clearly demonstrating
the applicability of our approach on state-of-the-art Noisy
Intermediate-Scale Quantum devices available to date. We
emphasize that only very recently the activation of a quantum
neuron was successfully implemented by incorporating the
single-step gearbox based on the RUS protocols, [51] and we
are convinced that the concepts presented herein will be of
significant influence for the future design of quantum neural
network architectures. Finally, the amplitude-based encoding
of nonlinearity may likewise be useful in quantum algorithms
applied in different research areas, e.g., mathematical finance
[52].
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APPENDIX A: SIMULATION

The PYTHON code for constructing, optimizing, and ex-
ecuting the quantum circuits discussed in this article was
written using the QISKIT framework [53]. All simulations
were performed using the AERSIMULATOR included in QISKIT.
Throughout, an ideal, noise-free quantum computer with all-
to-all connectivity was assumed. We would like to emphasize
that the number of circuit executions for each input angle or
state has been set to 105 for maintaining comparability to the
data obtained from IBMQ-27 Ehningen. However, sufficiently
small confidence intervals were already observed for a signif-
icantly lower amount of repetitions, ranging between 210 to
214.

APPENDIX B: HARDWARE-OPTIMIZATION PROCEDURE

Optimizing the quantum circuits demonstrated in this ar-
ticle on IBMQ-27 Ehningen requires transpilation prior to
execution. Within QISKIT terminology, transpilation can be
understood as a pipeline consisting of four steps: (1) rewriting
the circuit in terms of the basis gate library of the backend; (2)
mapping the virtual qubits to the physical qubits of the device
(initial layout); (3) incorporating swap operations necessary
due to the restricted connectivity of the involved physical
qubits; and (4) optimizing the employed gates. Throughout we
chose transpilation using the highest diligence (optimization
level 3) that relies on the SWAP-based bidirectional heuris-
tic search algorithm (SABRE) for finding the optimum initial

FIG. 10. Heavy-hexagon architecture of the IBMQ-27 Ehningen
device.

layout and swapping strategy [54] and additionally perform
full single- and double-qubit-gate optimizations. Due to its
stochastic nature, we repeated transpilation 50 times, and
saved the resulting transpiled circuit with the lowest number
of CX gates. Note that the corresponding virtual-to-physical
qubit mapping is optimum in terms of CX-gate applications,
but does not consider the quality of the involved qubits. Since
we only use 8 of the 27 qubits available on IBMQ-27 Ehningen
at most, typically this transpiled circuit can be reconstructed
using different qubit subsets. The MAPOMATIC package [55]
allows to evaluate all of these different subsets regarding their
individual error rates. In such a way we eventually identified
the optimum hardware-realization of the circuit with respect
to the CX-gate applications and the quality of the involved
qubits. It is emphasized that the full procedure is only required
once for a distinct circuit and does not need to be repeated
when changing an input angle or state. Postmeasurement,
error mitigation using the matrix-free measurement mitigation
(M3) package was applied throughout [56]. Every circuit was
executed 105 times, corresponding to the current maximum
number of repetitions on the IBMQ-27 Ehningen. It should
be noted that all hardware runs were conducted shortly after
(typically less than 30 minutes) calibration of the device.

APPENDIX C: HARDWARE CHARACTERISTICS

At the time of circuit execution, the IBMQ-27 Ehningen
device was equipped with a Falcon r5.11 processor type. The
average single gate error was about 2.9 × 10−4, the average
CX-gate error was determined to be about 10−2. Average
relaxation times were found at about 140μs (T1 ∼ 160μs
and T2 ∼ 110μs). Readout assignment errors had an average
value of about 10−2. Average CX-gate times were 300 ns. The
exact characteristics of all employed qubits are detailed in the
Supplemental Material in Table TS1. In Fig. 10, the typical
heavy-hexagon architecture of the 27 qubits for IBMQ-27
Ehningen is demonstrated.
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