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Quantum metrology with Bloch oscillations in Floquet phase space
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Quantum particles performing Bloch oscillations in a spatially periodic potential can be used as a very accurate
detector of constant forces. We find that similar oscillations that can appear in the Floquet phase space of a
quantum particle subjected to periodic temporal driving, even in the absence of a periodic lattice potential,
can likewise be exploited as detectors. Compared with their spatial Bloch analog, however, the Floquet-Bloch
oscillations provide significant added flexibility and open the way to a broad range of precision metrology
applications. We illustrate this property with the examples of a tachometer and a magnetometer.
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I. INTRODUCTION

It is well known that quantum particles confined in periodic
potentials and subjected to a constant force do not accelerate
uniformly in real space. Rather, they undergo Bloch oscil-
lations, which have been observed in a variety of systems,
including ultracold-atom gases trapped on optical lattices
[1–3] and optical waves in waveguide arrays [4,5]. Since the
Bloch oscillation frequency depends only on the lattice spac-
ing and the applied external force, it provides an accurate tool
for the measurement of weak forces and precise determination
of fundamental constants [6–9].

There is much interest in extending the study of these
systems to situations where they are also subjected to time-
periodic forcing [10,11]. This includes in particular the study
of “super-Bloch oscillations,” which can result in linear trans-
port in a lattice [12] and spatial oscillations of the system
even in the absence of a spatial lattice [13]. More generally,
time-periodic forcing is now exploited in the emerging area of
“Floquet engineering,” a powerful tool to control and modify
quantum systems, including for instance, the discovery of new
out-of-equilibrium phases (see, e.g., [14,15]), in particular,
the Floquet time-crystal phase [16,17]. Applications of these
techniques to enhance the precision of quantum metrology
have also been proposed (see, e.g., [18–20]).

The present work extends the Bloch measurement idea to
the Bloch-like oscillations that appear in the Floquet phase
space of a system subjected to a periodic temporal drive
rather than a spatially periodic potential. Just like in the case
of Bloch oscillations, the measurement of constant forces
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applied to systems undergoing such oscillations reduces to
frequency measurements, with the remarkable precision with
which they can be carried out. But as we shall show, the trans-
formation of the Hamiltonian of the “measuring apparatus” to
the phase representation brings to the fore two key features
of this approach compared to the familiar Bloch oscillations
approach: It is not limited to the measurement of constant
forces, and it applies to a variety of physical observables. We
will illustrate these points using the specific examples of the
realization of a tachometer and a magnetometer.

This paper is organized as follows: Sec. II presents the
analytical analysis of the underlying idea under a secular ap-
proximation, which is then revisited via numerical simulations
in Sec. III. Section IV then applies our proposed scheme ap-
proach to the examples of a tachometer and a magnetometer.
Finally, Sec. V is a summary and outlook. Some additional
details of the relevant action-angle transformations are given
in the Appendix.

II. BLOCH DYNAMICS IN FLOQUET PHASE SPACE

We consider a system described by the one-dimensional
Hamiltonian

H = H0 + H1 = p2

2m
+ U (x) + V (x) cos ωt, (1)

where U (x) is a conservative and nonperiodic potential and
H1 = V (x) cos ωt is a weak single-frequency perturbation os-
cillating at frequency ω.

Two common strategies can be used to reveal the lattice
structure of this system in Floquet phase space. The first one
is based on a perturbative approach combined with a specific
time-dependent canonical transformation [22–25], while the
second one relies on the use of Floquet quantum states and
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quasienergy theory [26,27]. We adopt the first method here,
as it is particularly convenient to discuss the various measure-
ment applications that we have in mind.

A. Lattice structure in Floquet space

Consider first the classical version of the unperturbed
Hamiltonian H0. For a given system energy H0 = E0 it is
always possible to introduce a pair of conjugate action-angle
variables (J0,�) with

J0 = 1

2π

∮
pdx = 1

2π

∮ √
2m[E0 − U (x)]dx, (2)

where the integral is over one period of motion, so that the
transformed Hamiltonian H0 depends on only the action vari-
able J0. The associated angle variable � evolves at a constant
angular frequency � in the range [0, 2π ), with Hamilton
equations of motion,

J̇0 = −∂H0(J0)

∂�
= 0, �̇ = ∂H0(J0)

∂J0
= �. (3)

In terms of these variables the perturbation potential
V (x) cos ωt is resolved into multiple components as a Fourier
series in �,

V (x) → V (J0,�) =
+∞∑

�=−∞
V�(J0)ei��, (4)

where V�(J0) are the Fourier components of V (x) evaluated
along the unperturbed classical trajectory of energy E0,

V�(J0) = 1

2π

∫ 2π

0
V (x)e−i��d�. (5)

For small perturbations the phase-space trajectories of the
perturbed dynamics will remain close to the unperturbed ones,
that is, � ≈ �t and �� − ωt ≈ (�� − ω)t . If the frequency
ω of the perturbation is a multiple of the unperturbed angular
frequency,

ω ≈ n�, n = 1, 2, 3, . . . , (6)

all components in that sum will oscillate rapidly and average
out to zero, except for the near-resonant term Vn cos[n(� −
�t )]. It would therefore seem reasonable to discard the fast-
oscillating terms in a familiar secular approximation [28]. We
proceed along these lines in the following analytical approach
but will return to this point in the next section to estimate via
a full numerical simulation the limitations of this approach.

Following Ref. [25], we then carry out a second time-
dependent canonical coordinate transformation involving the
slowly varying variable

ϑ = � − ωt

n
, (7)

so that the effective secular Hamiltonian becomes a time-
independent one in the new phase space (J, ϑ ),

H0 + H1 ≈ H0(J ) + Vn(J ) cos nϑ − ωJ

n
, (8)

where the last term, −ωJ/n, is the contribution of the
canonical momentum conjugate to time [29]. Because this
Hamiltonian is nothing but the classical analog of the quantum

Floquet Hamiltonian, we call the extended phase space (J, ϑ )
the Floquet phase space in the following.

For small Vn we perform a power expansion of the unper-
turbed Hamiltonian H0 + H1 about the resonant action J0,

H0 + H1 ≈ H0(J0) − ωJ0

n
+

(
∂H0

∂J

∣∣∣∣
J=J0

− ω

n

)

× (J − J0) + 1

2

∂2H0

∂J2

∣∣∣∣
J=J0

(J − J0)2 + Vn(J0) cos nϑ, (9)

where the constant zeroth-order term can be removed and the
first-order term is zero due to the fact that J0 is the action
corresponding to the resonant condition ω = n�. Introducing
a new “conjugate momentum”

P = J − J0 (10)

and the “effective mass”

M = (
∂2H0/∂J2

0

)−1
, (11)

it follows that H0 + H1 reduces to the Hamiltonian of a parti-
cle in a periodic lattice potential,

H0 + H1 ≈ P2

2M
+ Vn(J0) cos nϑ. (12)

Notice that the units of P and M are the same as the angular
momentum and moment of inertia, respectively, since the
Floquet phase space is based on the angle variable.

The transforms from (x, p) to (J0,�) and to (P, ϑ ) are all
canonical since their Poisson brackets are unity. However, in
the quantum counterpart of the action-angle transform, the
fact that P now has a discrete spectrum implies that the canon-
ical commutation relation [ϑ, P] = ih̄ holds only if the wave
function ϕ(ϑ ) is periodic with period 2π [30,31]. When quan-
tizing H (P, ϑ ) by promoting P to an operator, P → −ih̄∂ϑ , its
eigenfunctions will therefore be Bloch-like functions of the
form

ϕq(ϑ ) = Uq(ϑ )eiqϑ , (13)

where Uq(ϑ ) has the periodicity (2π/n) of the potential
Vn cos nϑ , but with the caveat that the effective “quasi-
momenta” q have to be dimensionless integers to meet
the periodicity requirement of the wave functions. Within
the secular approximation, these implicitly time-dependent
Bloch-like functions are the Floquet eigenstates [32].

In the first Brillouin zone, the quasimomenta q are integers
in the range [0, n), with dispersion relations εm,q, so that a
general state of the system takes the form

ψ (ϑ, t ) =
∞∑

m=1

n−1∑
q=0

cm,q(0)ϕm,q(ϑ )e−iεm,qt/h̄. (14)

Here m is the band index, and cm,q(0) = ∫
ψ (ϑ, 0)ϕ∗

m,q(ϑ ) dϑ

are the initial probability amplitudes of the Bloch-like func-
tions ϕm,q.

B. Measurements by Floquet-Bloch oscillations

We now discuss how systems undergoing such Floquet-
Bloch oscillations can be exploited as a measuring apparatus
that allows a broad range of conditions for the determination
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of forces via frequency measurements. We focus for simplic-
ity on the example of a weak force f linearly coupled to ϑ in
Floquet space via the interaction

Vprobe = f ϑ. (15)

As we shall see shortly, this does not imply that we limit
ourselves to linear interactions in physical space. As a result,
the quasimomentum q undergoes the evolution

q(t ) = q(0) − f t/h̄. (16)

Assuming that the system initially populates only the
first band and that Vprobe is weak enough that it does
not induce interband transitions, the state (14) becomes
approximately [33]

ψ (ϑ, t ) ≈
n−1∑
q=0

cq(0)ϕq(t )(ϑ )e− i
h̄

∫ t
0 εq(t )dt , (17)

where we ignore the band index m = 1 for notational con-
venience. The group velocity of this wave packet is vg ∼
∂ε(q)/h̄∂q, and its effective mass mg ∼ [∂2ε(q)/∂q2]−1, os-
cillating between positive and negative values. As a result, the
wave packet moves back and forth along ϑ in Floquet phase
space with the Bloch period

TB = h̄n

| f | , (18)

the time it takes q(t ) to propagate from q(0) to q(0) + n across
the Brillouin zone.

The amplitude of the Floquet-Bloch oscillations is W/2 f ,
where W is the bandwidth of the first band [34]. For large nor-
malized lattice depths s = Vn/En � 1, with En ≡ h̄2n2/2M,
that bandwidth can be estimated as [35]

W ≈ 4√
π

(8s)3/4e−4
√

2sEn, (19)

indicating that the amplitude of the oscillations is exponen-
tially suppressed for increasing lattice depth. A more precise
estimate that holds for shallower lattices can be obtained by
invoking a Wentzel-Kramers-Brillouin approximation [36].

Returning now to the original (P,�) picture, we have that
the system oscillates in addition at the unperturbed frequency
�. With ϑ = � − �t and ω = n� we find that �(t + TB) −
�(t ) = �TB = h̄ω/| f |. Therefore, after each Bloch period
ψ (�, t ) accumulates a drift h̄ω/ f in the angle variable �, so
that

ψ (�, t ) = ψ

(
� + h̄ω

f
, t + TB

)
= ψ

(
� + h̄ω

f
, t + h̄n

f

)
,

(20)

which shows that it is possible to exploit either the period of
oscillations or the phase shift of ψ (�, t ) to determine f . This
is the central result of this paper.

C. Implementation

One simple way to realize potentials of the form (15) is by
using a train of δ kicks separated by an interval TD = 2π/�.

This follows from the fact that we have then

Vprobe = f �
∞∑

�=−∞
TD δ(t − lTD)

= f

[
π −

∞∑
k=1

2 sin k�

k

] ∞∑
�=−∞

ei��t ≈ f ϑ, (21)

where the first summation in the second line is the Fourier
series of � for 0 < � < 2π , the second summation is the
Fourier series of the Dirac comb function, and the final ap-
proximate equality holds under the secular approximation.

Since the relationship between the phase coordinates � and
the physical coordinates (x, p) depends on the explicit form of
H0, it follows that the Hamiltonian Vprobe can describe many
physical processes, in contrast to the situation with Bloch
oscillations in a spatial lattice. Floquet-Bloch oscillations in
a phase lattice can therefore be exploited for the measurement
of a broader variety of observables by an appropriate design
of the conservative potential U (x) in H0.

III. NUMERICAL SIMULATIONS

Before illustrating this measurement technique on several
concrete examples we first need to revisit the assumptions and
limitations underlying Eq. (20), as they inform the range of
experimental situations achievable in practice. In particular,
we have seen that the amplitude of the Bloch oscillations is
exponentially suppressed by the lattice depth. This feature
needs to be reconciled with our assumption that only the first
band of the system is initially populated, which requires that
the band gap, roughly equal to Vn, be much larger than Vprobe,
which scales as (2π/n) f . In addition, the secular approxi-
mation holds only under the perturbation condition Vn 
 h̄�

since otherwise the off-resonant driving becomes significant
and can result in irregular dynamics.

To address these issues more quantitatively we have carried
out detailed numerical simulations for the case of a particle of
mass m trapped in an infinite square well U (x) of width L and
subjected to a single-frequency periodic driving at frequency
ω and a sequence of δ kicks in alternating directions, with the
Hamiltonian

H = p2

2m
+ U (x) + gx cos ωt + sgn(p)F0

+∞∑
l=−∞

δ(t − lTD)x.

(22)
For this square potential, the action-angle transformation be-
tween the position x and � is linear,

x = L|π − �|/π, (23)

and the angular frequency is � =
√

2π2E0/mL2, with E0 be-
ing the initial energy; see the Appendix for the details of the
transformation. For a Gaussian wave packet with a phase fac-
tor eip0x/h̄, which corresponds to a classical particle with initial
kinetic energy E0 = p2

0/2m, the angular frequency becomes
� = π p0/mL, the oscillation frequency of a wave packet in a
square well of width L.

As derived in the previous section, in the Floquet
phase space the periodic driving is resolved into multiple

022605-3



ZHANG, LIANG, MEYSTRE, AND ZHANG PHYSICAL REVIEW A 107, 022605 (2023)

components as a Fourier series in the angle �,

gx cos ωt =
+∞∑

�=−∞
V�ei�� cos n�t, (24)

so that, with the integral (5) and the transform (23), the
only nonvanishing amplitudes are for odd �, V� = 2gL/π2�2.
Under the secular approximation only the components � =
±n survive, resulting in an effective n-site lattice potential,
(2gL/π2n2) cos nϑ .

Similarly, in the Floquet phase space, the sequence of δ

kicks is resolved into multiple components,

sgn(p)F0

+∞∑
l=−∞

δ(t − lTD)x = LF0

π

∞∑
k=1

2 sin k�

k

×
∞∑

l=−∞

τ

TD
eil�t , (25)

where the kick duration τ 
 TD. The argument leading to
Eq. (21) shows that under the secular approximation, they act
effectively as the linear potential f ϑ due to a constant weak
force f = LF0τ/πTD, resulting in the Floquet-Bloch oscilla-
tions with the period TB = h̄nπTD/LF0τ . Then the amplitude
of the kick force can be determined by direct measurement of
the frequency of the Floquet-Bloch oscillations as

F0 = h̄nπ

τ

√
2m

E0

(
1

TB

)
. (26)

In our simulation, we used the original Hamiltonian (22)
in coordinate space instead of the perturbative Floquet space
lattice Hamiltonian obtained in the secular approximation.
We also accounted for the decoherence induced by thermal
motion by describing the evolution of the quantum state of the
particle via the master equation with quantum Brownian noise
[37,38],

dρ

dt
− = i

h̄
[H, ρ] − iγ

h̄
[x̂, [ p̂, ρ]+] − 2mγ

h̄2β
[x̂, [x̂, ρ]], (27)

with γ and β being the damping rate and the inverse tempera-
ture, respectively.

The results of the simulations with a fixed value of n =
�/ω and for several values of Vn are summarized in Fig. 1,
which compares the time evolution of the mean position 〈x(t )〉
without [Figs. 1(a)–1(c)] and with [Figs. 1(d)–1(f)] the sec-
ular approximation. For Vn 
 h̄�, the two solutions almost
overlap, confirming the validity of the secular approximation
in that regime. However, larger values of Vn result in an
increased discrepancy between the exact and approximate re-
sults, confirming that the approximation holds only provided
that H0 � H1. In particular, for Vn close to h̄�, 〈x̂(t )〉 exhibits
a disordered evolution completely absent from the secular
approximation behavior.

Figure 1 also illustrates that the Floquet-Bloch oscillations
evident in the periodic changes of the envelope of 〈x(t )〉 are
visible only for intermediate values of Vn. More specifically,
in Figs. 1(a) and 1(d) (Vn = 0.0009h̄�) we have Vn � Vprobe,
and the assumption underlying our analysis that Vprobe does
not induce interband transitions ceases to hold, even though

FIG. 1. Evolution of the expectation value 〈x(t )〉 of the position
of a quantum particle trapped in an infinite square well and sub-
jected to both periodic driving with frequency ratio n ≡ �/ω = 31
and a sequence of δ kicks at intervals TD = 2π/� in the absence
of dissipation. Here the effective force is f = F0Lτ/πTD = 1.6 ×
10−3 h̄�/2π , so the scale of Vprobe is (2π/n) f = 5 × 10−5 h̄�, and the
time is in units of 1/�. (a)–(c) show the exact evolution, without the
secular approximation, and (d)–(f) show the corresponding evolution
under the secular approximation. (a) and (d) Vn = 0.0009h̄�, (b) and
(e) Vn = 0.09h̄�, and (c) and (f) Vn = 0.9h̄�.

the secular approximation works well. This shows that the
proposed measurement scheme requires Vn to satisfy the
“Goldilocks condition” of being large enough that no inter-
band transition takes place but small enough that the secular
approximation holds approximatively.

The effects of dissipation are shown in Fig. 2, which
compares 〈x(t )〉 in the presence of dissipation resulting from
coupling to a Brownian reservoir to the case without dissipa-
tion. In these plots, Vn is kept constant, but the frequency ratio
n = �/ω takes increasing values n = 15, 21, and 31 from the
top to the bottom plot to illustrate both the dependence of the
oscillation frequency on n and the effects of the scaling of
Vprobe on (2π/n) f .

In the absence of dissipation, both the period and the
amplitude of the Floquet-Bloch oscillations increase with in-
creasing n, consistent with expression (18) for the oscillation
period and with Eq. (19), which shows that the decrease of
the normalized lattice depth s for increasing n results in an
increase of the width of the first band and hence an increase in
the amplitude of oscillations. In Fourier space the amplitude
of the Bloch frequency peaks at � ± 2π/TB therefore become
increasingly visible. Note also that for n = 15 [Figs. 2(a) and
2(d)], the oscillations in 〈x(t )〉 are strongly perturbed, a result
of the appearance of interband transitions for the relatively
large Vprobe associated with this small n.
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FIG. 2. Evolution of the mean position 〈x(t )〉 and its Fourier
spectrum |F (〈x〉)| of a quantum particle in an infinite square well
subjected to periodic driving for Vn = 0.09h̄� and δ kicks resulting
in an effective force f = 1.6 × 10−3 h̄�/2π and subject to quantum
Brownian noise with γ = 1.34 × 10−6� for several values of the
frequency ratio n = �/ω. (a)–(c) Time evolution of 〈x̂(t )〉 (dark red
curves) and (d)–(f) its Fourier spectrum (red solid curves) for (a) and
(d) n = 15, (b) and (e) n = 25, and (c) and (f) n = 31. The light blue
curves in (a)–(c) and the blue dashed curves in (d)–(f) are for the
cases in the absence of dissipation

Turning now to the effect of dissipation, we observe that
the damping of 〈x(t )〉 becomes faster as n increases. That
is because the noise broadens the frequency spectrum of the
system. For increased n a correspondingly larger number of
nonresonant low-frequency modes with |�| < n, which are
ignored in the secular approximation, come into play. While
they all have the same damping rate γ for Brownian noise,
their coupling to the resonant mode results in an increased
decoherence rate κ of the Floquet-Bloch oscillations. From
our numerical simulations we estimate it scales approximately
with n, κ ∼ nγ . As a result, for increasing n the frequency
peaks first broaden and eventually disappear.

Combined with the results summarized in Fig. 1, these
results illustrate that the frequency peaks of the Floquet-Bloch
oscillations in the displacement spectrum are only distinct
enough to determine f , and hence F0, when the system pa-
rameters satisfy the inequalities

h̄� � Vn � f 2π/n � h̄κ. (28)

With these limitations in mind, we now turn to a secular-
approximation discussion of several potentials U (x) appro-
priate for the Floquet-Bloch measurement of a variety of
observables.

FIG. 3. Tachometer based on Floquet-Bloch oscillations.

IV. EXAMPLES OF MEASUREMENT SCHEMES

We now briefly discuss Floquet-Bloch measurement
schemes based on other potentials U (x) and demonstrate how
they can be exploited, for instance, as tachometers or magne-
tometers.

We consider first the one-dimensional triangular well po-
tential

U (x) =
{
ηx, x � 0,

∞, x < 0,
(29)

in which case the position and momentum x and p are related
to the action-angle variables by [25]

x = η (2π� − �2)/2m�2, (30)

p = η (π − �)/�, (31)

where the angular frequency is � = ηπ/
√

2mE0 (see the Ap-
pendix). Importantly, it is now the momentum that is linear
in �, suggesting that this potential might find applications
in situations where Vprobe depends linearly on the momen-
tum p rather than x. We present two examples that exploit
such a situation, the first one resulting in the realization of
a tachometer, as shown in Fig. 3, and the second resulting in a
magnetometer.

A. Tachometer

The Hamiltonian for a particle of mass m in a rotating
frame of angular velocity 
w is

H (
r) = 1

2m
( 
p − m 
w × 
r)2 − m

2
( 
w × 
r)2. (32)

If 
w is along the z axis, in the presence of the triangular well
U (x) and of a small periodic Floquet perturbation V (x) cos ωt ,
the effective two-dimensional Hamiltonian for the particle is
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then

Hxy = p2
x + p2

y

2m
+ U (x) + V (x) cos ωt + wzypx − wzxpy.

(33)
One way to realize the one-dimensional Floquet Hamil-

tonian with a probe potential is by exerting control over the
y position of the particle. Considering in the rotating frame
py = mẏ + mwzx, Hxy gives the dynamical equations of x,

ẋ = px

m
+ wzy, (34)

ṗx = −dU

dx
− dV

dx
+ mwzẏ + mw2

z x, (35)

which can derive a reduced Hamiltonian for the x dimension
when y(t ) is arranged in time,

Hx = p2
x

2m
+ U (x) − mw2

z x2

2
+ V (x) cos ωt + wzypx

− wzmxẏ. (36)

We neglect the component −mw2
z x2/2 of the potential in the

following derivation by assuming that the triangular well U (x)
is tight enough.

In practice the particle’s y position is quickly adjusted from
zero to y0 and back in a short duration τ by optical or magnetic
trapping fields. If this adjustment is repeated every interval of
period TD, the position evolution y(t ) can be approximated as
a periodic Dirac function as long as τ 
 TD,

y(t ) ≈ y0τ

+∞∑
l=−∞

δ(t − lTD) = y0τ

TD

+∞∑
l=−∞

eil�t , (37)

and then the last two terms in Hx can be interpreted as a probe
potential Vprobe in the Floquet phase space. To see that this is
the case, we apply the transform (31) and invoke the secular
approximation to the first term, wzypx, giving

wzypx = wzy0τ

TD

+∞∑
l=−∞

eil�t η

�

∞∑
k=1

2 sin k�

k

≈ wzy0τη

2π
(π − ϑ ), (38)

with similar notation for the second term, −wzxmẏ,

−wzxmẏ = −wzy0τ

TD

+∞∑
l=−∞

il�eil�t η

2�2

(
8π2

3
−

∞∑
k=1

4 cos k�

k2

)

≈ wzy0τη

2π
(π − ϑ ), (39)

yielding the total probe potential

Vprobe = wz(ypx − xmẏ) ≈ f (ϑ − π ), (40)

with

f = −wzηy0τ

π
. (41)

As a result, the system operates as a tachometer, with the
Bloch frequency providing a direct measure of the angular
velocity wz via

wz = h̄n

2ηy0τ

(
2π

TB

)
. (42)

As a concrete example consider a tachometer aimed at
measuring angular velocities of the order of those of the
fastest demonstrated spinning objects, with wz ∼ 109 rad/s
[39–41]. For atomic-scale particles of mass m ∼ 10−27 kg
whose motion can be controlled at the nanoscale level, y0 ∼
10−9 m and τ ∼ 10−9 s, an applied perturbation frequency of
ω ∼ 100� ∼ 1010 Hz, and η ∼ 10−17 N, chosen to be much
larger than the centripetal force mw2

z y0 to ensure that Vprobe

is the weakest perturbation, we find from Eq. (42) that the
Floquet-Bloch period is TB ∼ 10−6 s, which is much shorter
than the typical spatial Bloch periods, of the order of 10−3 s,
demonstrated, for instance, in ultracold atoms [2]. Such short
periods present the considerable advantage of imposing mod-
est demands on the quantum coherence time of the observed
objects—we recall that the period of the usual Bloch oscil-
lations of electrons on solid-state lattices is typically much
longer than their quantum coherence time so that their demon-
stration has been limited so far to artificial superlattices
[42,43] and to ultracold atoms in optical lattices [2]. We
also note that the use of the proposed tachometer could be
extended to higher angular frequencies while arranging for TB

to still be of the same order of magnitude, but this would place
more severe constraints on the control of y0 and τ .

B. Magnetometer

Exploiting the formal analogy between inertial and elec-
tromagnetic forces implied by Larmor’s theorem immediately
leads to the possibility of also developing a magnetometer
based on the same formal measurement mechanism. As dis-
cussed in Refs. [44–46], the Hamiltonian of a particle of mass
m and charge Q in a magnetic field 
B can be obtained by the
substitution 
w → Q 
B/2m in Eq. (32).

More specifically, the Hamiltonian for a charged particle of
mass m and charge Q in an electromagnetic field with vector
and scalar potentials 
A and φ is

H = ( 
p − Q 
A)2

2m
+ Qφ, (43)

and if the electromagnetic field is a uniform magnetic field 
B
along the z direction, one has, in the symmetric gauge 
A =
−
r × 
B/2, ∇ · 
A = 0,

Q 
A = QBz(x
ey − y
ex )/2. (44)

Considering the same triangular potential and Floquet pertur-
bation as in the previous example, the effective Hamiltonian
H for the x dimension then simplifies to

Hx = p2
x

2m
+ U (x) + V (x) cos ωt + QBz

2m
(ypx − xmẏ), (45)

where we have neglected the potential Q2B2
z x2/8m, assumed

to be much weaker than U (x). This Hamiltonian is formally
identical to the Hamiltonian (36), with the Floquet-Bloch
driving force now taking the explicit form

f = −QBzηy0τ

2πm
. (46)

This demonstrates the possibility to exploit this system as a
magnetometer; the magnetic field strength is obtained from
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the Bloch period TB as

Bz = 2πmh̄n

ηy0τQTB
. (47)

For Bz ∼ 10−18 T, the highest measurement precision
obtained by superconducting quantum interference device
magnetometers [47], a particle with the charge at the single-
electron level, Q ∼ 10−19 C, and an atomic-scale mass, the
resulting weak driving force f results in a long period TB and
hence challenging quantum coherence time requirements. To
obtain TB ∼ 10−3 s with a perturbation frequency ω ∼ 106 Hz
and η ∼ 10−8 N, the motion of the particle along the y axis
must be controlled at the micron scale, with y0 ∼ 10−6 m and
τ ∼ 10−6 s.

Importantly, we note that the Floquet-Bloch driving force
f and the period TB are independent of the electromagnetic
gauge, as they should be. For instance, in the Landau gauge
we have

Q 
A = −QBzy
ex, (48)

resulting in the probe potential

Vprobe = QBz

m
ypx, (49)

which is different from its form in the symmetric Coulomb
gauge [see Eq. (44)]. However, the factor of 2 difference in
the QBz/m coefficient in the two gauges results, in the end, in
the same value of f .

C. Other potentials

In addition to the examples considered so far, measurement
schemes based on Floquet-Bloch oscillations can be extended
to other potentials as well, even to some unusual or singular
potentials, by following the same general approach. Examples
include the inverse potential Vprobe = −a/x corresponding to
the Coulomb and gravitational forces, the logarithmic po-
tential Vprobe = aln(x), and the square-root potential Vprobe =
a
√

x found in the bound motion of electrons [48] and quarks
[49,50]. Their amplitudes a, which are important in many
problems in nuclear physics and relativistic quantum mechan-
ics, could, in principle, be determined by that method.

In general, however, the action-angle transformation re-
sults in a form of the angle variable �(x, p) that is a
complicated function of both x and p. Still, we show below
that an appropriate design of the trapping potential U (x) in
H0 can result in an approximate angle variable �(x) of the
required form to achieve the desired measurement.

From the equations m∂2
t x = −∂xU (x) and � = �t , we

have that

U (x) = −m
∫

∂2x

∂t2
dx = −m�2

∫
∂2x

∂�2
dx. (50)

Keeping in mind that � ∈ [0, 2π ) imposes, in general, an
additional constraint on x to ensure that U (x) is a conservative
potential, this equation can be used to find the potential U (x)
that results in any desired relationship between � and x,

For the case of the potential Vprobe(x) = −a/x the deter-
mination of a from the Floquet-Bloch period TB requires an
action-angle transformation such that |� − π | = b/x, where

b is some positive constant. From Eq. (50) we must then have

U (x) =
{

−m�2
0x4

2b2 , b
π

< x < L,

∞, otherwise.
(51)

This is a one-dimensional infinite well with a negative quartic
bottom profile. When the quartic potential energy dominates
the total energy so that |E0| 
 m�2

0b2/(2π4), this gives (see
the Appendix for details)

a = h̄nb

τ�0

(
2π

TB

)
. (52)

V. CONCLUSION AND OUTLOOK

In this work, we have exploited Floquet engineering
techniques to extend the concept of Bloch-oscillation-based
precision measurements to the use of Floquet-Bloch oscil-
lations. Specifically, we showed that for a quantum system
trapped by some potential U (r), the addition of a weak single-
frequency perturbation, combined with a sequence of δ kicks,
results in the onset of Bloch-like oscillations in its Floquet
phase space. These oscillations present significant advantages
and flexibility over traditional Bloch oscillations for preci-
sion measurements, as a proper design of U (r) and kicking
interactions permit us to exploit them for the measurement
of a broad variety of observables, including rotation rates,
magnetic fields, and even the strengths of singular potentials.

Our proposed scheme requires, however, the efficient
continuous measurement of mean positions or momenta to
determine the precise frequency of the Floquet-Bloch oscilla-
tions, and the restriction of our analysis to the first quasienergy
band implies, in addition, that this approach is limited to the
detection of weak signals. For signals strong enough to excite
interband transitions, a measurement of the emission spectrum
of the Floquet system is possible (see, e.g., Ref. [21]) and
may be more advantageous. A quantitative comparison of the
relative benefits and limitations of both approaches will be the
subject of future work.

The present paper concentrated on single-particle physics.
Floquet-Bloch oscillations are vulnerable to dissipation-
induced decoherence, and this imposes, as we have seen,
limitations on the range of accessible Floquet-Bloch fre-
quencies. A possible way to circumvent this problem might
involve replacing the system with Floquet time crystals [16],
which can withstand dissipative environments [51–53]. We
will show in future work how measurement schemes similar
to those discussed here can be developed in such systems by
using appropriately modulated many-body interactions.
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APPENDIX: ACTION-ANGLE TRANSFORMATION

If H0 dominates over all other terms in the Hamiltonian and
H1,2 can be ignored, the motion of the system is periodic, and
the action-angle transform is realized by integration over one
period of the motion,

J0 = 1

2π

∮
pdx = 1

π

∫ xmax

xmin

√
2m(E0 − U (x))dx, (A1)

where E0 is the energy of the system and xmax,min represent
two peak positions of the periodic motion in the physical
coordinates. The angular velocity is given by

� = ∂H0

∂J0
, (A2)

and the relation between � and the physical coordinates is
given by the integral

� − �0 = ∂

∂J0

∫ x

x0

pdx, (A3)

where �0 and x0 represent their initial values.
For example, if the conservative potential in H0 is a one-

dimensional infinite square well,

U (x) =
{

0, 0 < x < L,

∞, otherwise, (A4)

from Eqs. (11), (A1), and (A2) we obtain

J0 = 1

π

∫ L

0

√
2mE0 = L

π

√
2mE0, (A5)

� = ∂E0

∂J0
= π2J0

mL2
= π

L

√
2E0/m, (A6)

M =
(

∂2E0

∂J2
0

)−1

= mL2

π2
. (A7)

The integral (A3) gives

� − �0 = ∂

∂J0

∫ x

0

√
2mE0dx = π

L
x. (A8)

Further taking into account that x ∈ [0, L] and � ∈ [0, 2π ),
we then obtain

x = L

π
|π − �|, (A9)

p = mẋ = −
√

2mE0 sgn(sin �), (A10)

which also gives

π − � = sgn(p)
πx

L
. (A11)

Similarly, if the conservative potential is a one-dimensional
triangular well

U (x) =
{
ηx, x � 0,

∞, x < 0,
(A12)

we obtain

J0 = (2E0)3/2√m

3ηπ
, (A13)

� = ηπ√
2mE0

, (A14)

M = −4mE2
0

η2π2
(A15)

and then the transforms

x = E0

η
− η(π − �)2

2m�2
, (A16)

p = η

�
(π − �). (A17)

As a final example, consider the infinite one-dimensional
well with a quartic bottom profile

U (x) =
{

−m�2
0x4

2b2 , b
π

< x < L,

∞, otherwise,
(A18)

with the boundary L � b/π > 0. For a small enough initial
energy, |E0| 
 m�2

0b2/(2π4), we find the approximate ex-
pressions

J0 =
√

2mE0

π

∫ L

b/π

√
1 + m�2

0x4

2b2E0

≈ m�0L3

3πb
+ E0

�0
− π4E2

0

10mb2�3
0

, (A19)

� = ∂E0

∂J0
≈ �0, (A20)

M =
(

∂2E0

∂J2
0

)−1

≈ 5mb2

π4
− 2E0

�2
0

(A21)

and then the approximate transforms

x ≈ b

|π − �| + b/L
, (A22)

p ≈ sign(sin �)

√
2mE0 + m2�2

0b2

(� − π )4 + b4/L4
. (A23)

It follows that in the case of a probe potential of the form
Vprobe(x) = −a/x, the inverse x dependence results in a linear
angular dependence in the phase space,

−a

x
≈ a

L
− a

b
|π − �|. (A24)

If the probe potential is modulated by a sequence of δ kicks
in alternating directions,

Vprobe(x, t ) = −a

x
sgn(p)

+∞∑
l=−∞

δ(t − lTD), (A25)
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in the Floquet phase space, under the secular approximation
(21), they act as a linear potential f ϑ with the force,

f = aτ

bTD
. (A26)

So the potential strength a can be obtained from the Bloch
period as

a = h̄nbTD

τTB
. (A27)
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