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Purity decay rate in random circuits with different configurations of gates
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We study purity decay—a measure of bipartite entanglement—in a chain of n qubits under the action of
various geometries of nearest-neighbor random two-site unitary gates. We use a Markov chain description of
average purity evolution, using further reduction to obtain a transfer matrix of only polynomial dimension in
n. In most circuits, an exception being the brick-wall configuration, purity decays to its asymptotic value in
two stages: the initial thermodynamically relevant decay persisting up to extensive times is ∼λt

eff , with λeff not
necessarily being in the spectrum of the transfer matrix, while the ultimate asymptotic decay is given by the
second largest eigenvalue λ2 of the transfer matrix. The effective rate λeff depends on the location of bipartition
boundaries as well as on the geometry of applied gates.
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I. INTRODUCTION

Entanglement [1] is considered one of the characteristic
traits of quantum mechanics [2], and is responsible for some
seemingly counterintuitive predictions [3]. As years passed,
entanglement went from being a subject of philosophical
debates to a quantum resource [4–6]. Studies of entangled
systems became a central aspect of research in quantum
information. Understanding entanglement growth in chaotic
many-body systems is important because complex systems
may manifest new phenomena not present in simpler sys-
tems [7]. Moreover, chaotic systems may be used to generate
entanglement quickly and robustly [8–10]. Unfortunately, an-
alytical solutions of complex systems are usually impossible
to obtain, so solvable toy models are often utilized to repro-
duce certain properties of more complex many-body systems.

Random quantum circuits [11,12] are a widely used
toy-model used to describe certain properties of chaotic
systems [13,14], or, ultimately, that of completely random
unitaries as in t designs [15–19]. Regarding entanglement,
random quantum circuits allowed for many analytical re-
sults or simplifications [20–22]; some examples are Markov
chain reductions [23–28], statistical mechanical descriptions
[14,29–31] and solvable results in dual-unitary circuits
[32–34]. In this article, we explore how average bipartite
entanglement of a qubit chain evolves in different random
quantum circuits composed of random two-site gates. Pre-
vious research mostly focused on the so-called brick-wall
(BW) [14,24,26,29,35,36], and more recently also staircase
(S) [26,27,29] circuits (see Fig. 2 for illustration). For a
single-cut bipartition and open boundary conditions it is
known that, in a brick-wall circuit composed of Haar random
gates, purity decays towards its asymptotic value as ∼(4/5)2t

[14,24,29,35,37], whereas it goes as (2/3)t for a staircase
configuration of gates [26,27]. We shall extend those results
to more general circuit geometries and bipartitions, finding
that the entanglement growth, i.e., purity decay, can be much
richer and is essentially given by a product of the above two
factors.

We work with the simplest entanglement quantifier, purity
IA(t ) = trAρ2

A(t ). As the entanglement in the system grows
in time, purity decays to its asymptotic value I (∞). Using
purity instead of some other quantity simplifies analytical
and numerical calculations. Namely, purity, averaged over all
possible choices of the random gates in the quantum circuit,
can be evolved using a Markov chain [23,24,36]. With the
help of this Markov chain purity calculation reduces to an
iteration of a transfer matrix on a vector. If we calculate the
transfer matrix following the procedure from Refs. [24,25],
the dimension of the transfer matrix is 2n × 2n, where n is
the number of qubits, however, it was recently shown [27]
that, for S circuits, the dimension can be reduced to n × n,
greatly simplifying analysis. We extend this reduction method
to other circuit geometries.

Recently it was noted that purity dynamics under the ac-
tion of random quantum circuits can exhibit counterintuitive
features [26,27]. Namely, up to times extensive in the number
of qubits, t ∼ n, the exponential purity decay to I (∞) is not
always determined by the second largest eigenvalue λ2 of the
Markov chain transfer matrix (note that the largest eigenvalue
is equal to 1) as one could expect. Purity instead can decay to
I (∞) as

|IA(t ) − I (∞)| ∼ λt
eff , (1)

where the effective decay λeff is not equal to λ2. In fact, it
can be either smaller or, surprisingly, greater than λ2—in such
a case λeff has been dubbed [26] a phantom “eigenvalue” be-
cause it is not in the spectrum of any finite transfer matrix (see
Fig. 1 for an example). The peculiarity of this phenomenon
lies in the fact that the behavior determined by λeff persists up
to times ∼n, which makes λeff the correct and relevant decay
in the thermodynamic limit (TDL) n → ∞. For S circuits with
Haar random gates such phantom decay has been numerically
observed in Ref. [26] and analytically explained in Ref. [27].
The discrepancy between λeff and λ2 was also observed in out-
of-time-order correlators (OTOC) [38], which are more easily
measured in experiments, see Ref. [39] for a measurement
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FIG. 1. Decay of purity for a bipartition separating the first half
of qubits from the rest in a random quantum circuit composed of
a brick-wall (BW) like section acting on the first 50 qubits and a
staircase (S) section acting on the remaining 150, n = 200 and open
boundary conditions (OBC). The circuit protocol used is schemat-
ically depicted in the panel (c), where the orange (light gray) line
denotes the extend of the BW part of the circuit. Meanwhile the
blue (dark gray) line shows the region under the S part. The picture
(b) shows the instantaneous decay rates of purity, the exponent of the
slopes of lines in panel (a), compared with λeff (red dotted line) and
λ2 (green dashed line). The decay to I (∞) is (2/3)t (red dotted line)
until the time t ≈ n; afterward, it is given by |λ2| = 16/25 (green
dashed line).

in a random circuit. The reason for the discrepancy between
λ2 and the true decay λeff still needs to be fully understood.
It is worth mentioning, though, that recently a number of
phenomena has been found whose origin can similarly be
traced back to odd effects that non-Hermiticity can have, and
that perhaps have a related origin. Examples are relaxation
rates under Lindblad evolution [40–44], nondiagonalizability
and Jordan blocks [45] in, e.g., integrable circuits [46].

To understand how is it possible that the asymptotic decay
is not given by λ2, one must look at the spectral decompo-
sition of the transfer matrix. In our case, the transfer matrix
is non-Hermitian, so its right (and left) eigenvectors are not
orthogonal between each other; the only condition one has is
biorthogonality 〈lk|r j〉 = δ j,k . If we choose to normalize all
right eigenvectors |rk〉 to 1, then the norm of left eigenvectors
〈lk| can grow exponentially large with n (this can be seen
explicitly for the exact solution in Ref. [27]), delaying the
appearance of λt

2 to extensive times. See also Refs. [47–49] for
related phenomena caused by an explosion of coefficients. If
the transfer matrix would be Hermitian, the triangle inequality
would bound the expansion coefficients and the asymptotic
decay would be given by λ2, therefore the effect could not
happen.

Studying different circuits and different bipartitions we
find that one has λeff �= λ2 rather generically, and not just
for the S configuration. The BW circuit where λeff = λ2 is
therefore special. Based on our results we make a conjecture
that λeff depends on the number of bipartition boundaries that
fall in the S and in the BW section of a circuit.

t=0

t=1

t=2

t=3

t=0

t=1
(a) (b)

FIG. 2. (a) The brick-wall (BW) protocol and (b) the staircase (S)
protocol on a qubit chain with n = 8 qubits and periodic boundary
conditions (PBC). Blue boxes represent independent random two-site
gates Ui,i+1, and red dotted lines mark integer times.

Section II of the paper is dedicated to the formalism that
we use to describe average purity in random quantum circuits.
In section II A we give a description of the circuits that we
use and talk about the Markov chain description of purity
evolution. In the section II B we describe the method from
Ref. [27] used to reduce the dimensionality of the problem. In
Sec. III we analyze purity for bipartitions that cut the first k
qubits from the others, i.e., single-cut bipartitions. We derive
the reduced transfer matrix for different random quantum cir-
cuits and calculate the effective decay λeff . Lastly, in Sec. IV
we generalize the results obtained in Sec. III to arbitrary
bipartitions.

II. REDUCED TRANSFER MATRIX DESCRIPTION
OF AVERAGE PURITY

A. Purity in random quantum circuits

The random quantum circuits that we focus on are de-
fined as a product of independent identically distributed Haar
nearest neighbor two-site gates Ui,i+1 (in this notation Ui,i+1

couples the qubits i and i + 1). By Haar gates we mean unitary
operators distributed according to the unique unitary invariant
Haar measure on U(4) [50]. When dealing with qubits on
a chain with open boundary conditions (OBC), the unitary
propagator U for a single time step will consist of n − 1 dif-
ferent gates (acting on different nearest-neighbor qubit pairs).
Similarly, in the case of periodic boundary conditions (PBC),
the total number of gates in a single time step is n. In both
cases one can vary the order of the two qubit gates in U ,
thereby obtaining a factorial number of different protocols
(i.e., configurations or geometries). The most studied config-
uration of two-site gates is the brick-wall (BW) configuration
[Fig. 2(a)], while the staircase (S) configuration [Fig. 2(b)]
also plays a prominent role. In this work we also study other
configurations, showing that changing the configuration and
the bipartition can greatly influence the decay of purity.

Entanglement will be quantified using purity. Let A and
B be two complementary subsets of the set of our n qubits,
namely A ∪ B = {1, . . . , n}. Purity for the bipartition A/B is
defined as

IA(t ) = trAρ2
A(t ), (2)

where ρA(t ) = trB|ψ (t )〉〈ψ (t )| and trA denotes the partial
trace over the subset A. The evolved pure state |ψ (t )〉 at
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integer t is obtained simply as |ψ (t )〉 = Ut |ψ (t = 0)〉. Each
application of U evolves the state by one unit of time, and even
though we used a short notation Ut this does not mean that
we repeat the same gates Ui,i+1 in every period—all two-qubit
gates Ui,i+1 at each time step are independent Haar random.

We are interested in how purity of an initially separable
state, which has IA(t = 0) = 1, evolves towards its long-time
asymptotic value I (∞). Under the action of random quantum
circuits one has I (∞) = (2|A| + 2|B|)/(1 + 2n) (|C| denotes
the number of elements of the set C) [51]. Note that a de-
crease in purity means an increase in bipartite entanglement.
Averaging over random gates Ui,i+1 composing our random
quantum circuit, it is possible to map the evolution of average
purity to a Markov chain [23,24]. Following the procedure
explained in Ref. [24] we end up with a transfer matrix M
propagating a vector 
I (t ), whose coefficients are purities of a
state |ψ (t )〉 for all 2n possible bipartitions of n qubits. Writing

I = ([
I ]0, [
I ]1, . . . , [
I ]2n−1), the “bipartition” index α, i.e.,
[
I ]α , encodes the bipartition by prescription α = ∑

j∈A 2 j−1.
In other words, if α is written in a binary representation, its
bits that are set to 1 mark qubits that are in the subsystem
A. For instance, for n = 8 and the bipartition A = {1, 2, 5, 7},
the corresponding bit string is 11001010, i.e., decimal α = 83
(bits are ordered from left to right, for qubits 1 to n). To obtain
average purities at time t + 1 from purities at time t we simply
have to multiply 
I (t ) by a matrix M,


I (t + 1) = M 
I (t ). (3)

In this paper we will not explain how to obtain M, we instead
just state the result [24,25,36]. Similarly as U , M is also a
product of two-site gates Mi,i+1 multiplied in the same order
(protocol) as gates in U . For example, for the random quan-
tum circuit in the BW configuration [Fig. 2(a)] on 8 qubits
with PBC we have U = U8,1U6,7U4,5U2,3U7,8U5,6U3,4U1,2, and
therefore

M = M8,1M6,7M4,5M2,3M7,8M5,6M3,4M1,2, (4)

with the two-site matrix Mi,i+1 being for our Haar random
two-qubit gate

Mi,i+1 =

⎛
⎜⎜⎝

1 0 0 0
a 0 0 a
a 0 0 a
0 0 0 1

⎞
⎟⎟⎠, (5)

where a = 2/5 for qubits, however, Eq. (5) works also for
arbitrary qudits, i.e., local Hilbert space of dimension d with
a = d/(d2 + 1). All our results presented in the following
sections therefore hold for any d , although numerical results
will be presented for qubits.

For an initial state that is separable with respect to any
bipartition, i.e., a product state of single-qubit states, the initial
vector of purities is 
I (t = 0) = (1, 1, . . . , 1). To get purities
at a later time one must propagate it with the 2n × 2n matrix
M. Due to an exponentially large dimension, however, such
iteration is not efficient. In the next section we explore a new
method that in certain cases allows us to reduce the dimension
of the transfer matrix M from 2n down to a dimension that is
only linear in n.

B. Reduction of the transfer matrix

In this section we describe the procedure found in Ref. [27]
to reduce the relevant dimension of the transfer matrix from
2n to just ∼n in the case of the S or BW configuration with
OBC. It was observed that, for a single-cut bipartition, i.e.,
a bipartition where the first k qubits are in A and all others
are in B, one must keep track of only n other single-cut
bipartition purities instead of all 2n purities—correspondingly,
the relevant reduced transfer matrix for single-cut bipar-
titions and the S (or BW) configuration of gates was of
dimension n × n.

To simplify notation we denote by Ik (t ) purity at time t
for the single-cut bipartition in which the first k qubits are
in A, the other in B (note that in previous section we used
[
I ]α to denote a specific component—a generic bipartition
α, now we use Ik to denote a single-cut bipartition, i.e., in
Ik = [
I ]α=2k−1). We want to compute Ik (t ), k = 1, . . . , n − 1
and we analyze which bipartitions at the previous time t − 1
can contribute to Ik (t ). It is convenient to work with the bit-
string representation of bipartitions. In the bit-string notation
the basis for the matrix Mi,i+1 from Eq. (5) is {00, 10, 01, 11},
so Mi,i+1 maps the bits at positions i and i + 1 in the bit string
as

00
1←− 00,

01
a←− 00, 11,

10
a←− 00, 11,

11
1←− 11, (6)

meaning that we can get 00 only from 00, 11 from 11, and 01
or 10 from either 11 or 00. These rules have a simple interpre-
tation [36]: if the gate is applied across a bipartition boundary
one has Ik (t + 1) = aIk−1(t ) + aIk+1(t ), whereas purities do
not change, Ik (t + 1) = Ik (t ), if the gate acts within one sub-
system. Using this set of rules we can work backward from the
last gate Mn−1,n of the S configuration to the first M1,2, and get
all bipartitions that contribute to Ik (t ). For instance, taking n =
4 and looking at the bipartition 1100, i.e., Ik=2, the relevant
bipartitions on previous steps are sketched in Fig. 3. Reading
the figure from top to bottom, we first look for purities (bipar-
titions) that contribute to I2(t ) before the gate M3,4 is applied.
Looking at the rules from Eq. (6) we see that only I2 can be
mapped to I2(t ) (we can reach 00 on bits 3 and 4 only from
00). Continuing by M2,3, we now have two possibilities: we
can obtain I2 from either I1 or I3, in both cases with a prefactor
a [see Eq. (5)]. Lastly, see that I1 is obtained after M1,2 from I0

and I2, while I3 can be obtained only from I3 after application
of M1,2. Summarizing, one S iteration on n = 4 qubits results
in I2(t ) = a2I0(t − 1) + a2I2(t − 1) + aI3(t − 1). Crucial is
that at all steps only bipartitions with consecutive qubits in
A appear, i.e., only single-cut bipartitions Ik . With the above
example we obtain one row of our reduced transfer matrix.
To calculate the whole matrix, we have to repeat the same
procedure for every bipartition that appears in the iteration
(for the example with n = 4 this means 0000 and 1110), until
we end up with a closed subset of bipartitions (0000, 1100,
1110, and 1111 for the example above). As a side remark,
the closed subset that we obtain is the smallest subset S
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JAŠ BENSA AND MARKO ŽNIDARIČ PHYSICAL REVIEW A 107, 022604 (2023)
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0000 1100 1110
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FIG. 3. Illustrating the propagation of single-cut purities Ik (t −
1) on n = 4 qubits and the S protocol, M = M3,4M2,3M1,2. Shown
are contributions to I2(t ) (top bit string). At each node of the graph
we apply one two-site Mi,i+1 (orange or light gray gate in circuits
on the right acting on two bits highlighted in orange or light gray),
beginning with M3,4 and sequentially moving down to M1,2 (read
from top to bottom). The arrows connect bit strings that contribute
to them after gate application, with the coefficients written at a side.
For more details see the main text.

containing 1100, which is invariant under the multiplication
from the right with M; SM ⊆ S . Generalizing this procedure
for arbitrary system size n we learn that the subset is com-
posed of all single-cut bipartitions, except for the k = 1. With
this we obtained an n-dimensional reduced transfer matrix,
which can be used to propagate purities with the S OBC
protocol for single-cut bipartitions.

In the following section we generalize this simplification to
more complicated configurations. Namely, our analysis covers
the dynamics of purity of an arbitrary bipartitions (not just
a single cut) and for a selection of n/2 OBC and n/2 PBC
canonical protocols. By canonical protocols we mean random
quantum circuits with gates ordered in a BW manner on the
first 2p qubits and as an S configuration for the rest [52], see
Fig. 4 for a depiction of all canonical protocols for n = 8.
The extreme cases are the S protocol for p = 1, and the BW
protocol for p = n/2.

III. SINGLE-CUT BIPARTITIONS

A. Transfer matrix

Let us first consider canonical protocols and the simplest
bipartition, namely one with a single-cut (automatically im-
plying also OBC). For the S protocol we have seen that
iteration by M mixes only Ik , k = 0, 2, . . . , n − 1, n. Writ-
ing these single-cut bipartition purities into an n-dimensional
vector I(t ) = (1, I2(t ), I3(t ), . . . , In−1(t ), 1) [53], where one
can think of the first and last components representing trivial
I0 = In = 1, we can write the time evolution of average puri-
ties with a reduced transfer matrix as I(t + 1) = A(n)

S I(t ) [27],
where

A(n)
S =

⎛
⎝ 1 0 0

aS S(n) bS

0 0 1

⎞
⎠, (7)

p=1 p=2

p=3 p=4

FIG. 4. Canonical configurations for n = 8. Different configura-
tions are labeled with an integer p = 1, . . . , n/2, so that the BW
section has 2p − 1 gates. For OBC (shown) one has in total n − 1
gates, for PBC (not shown) an additional gate between qubits n and
1 is added at the end.

and aS = (a2, a3, . . . , an−1)T , and bS = (0, 0, . . . , a)T are
n − 2 dimensional column vectors, whereas S(n) is a (n − 2) ×
(n − 2) Toeplitz matrix,

S(n) =

⎛
⎜⎜⎜⎜⎜⎝

a2 a 0 . . . 0
a3 a2 a . . . 0
...

...
. . .

. . .
...

an−2 an−3 . . .
. . . a

an−1 an−2 . . . a3 a2

⎞
⎟⎟⎟⎟⎟⎠

. (8)

The superscripts (n) of A(n)
S and S(n) refer to the number of

qubits (qudits).
The BW OBC protocol has a reduced form, too [27]. The

derivation of the reduced transfer matrix follows the same
logic as for the S OBC case. If one wishes to study a single-
cut bipartition with even k in a system with even number
of qubits, then one notices that the closed subspace consists
of all single-cut bipartition purities with even qubits in A,
i.e., Ik with even k. The size of the subspace is n/2 + 1 and
the vector containing purities that are propagated is I(t ) =
(1, I2(t ), I4(t ), . . . , In−2(t ), 1). The reduced transfer matrix
that evolves I(t ) is

A(n)
BW =

⎛
⎝ 1 0 0

aBW B(n) bBW

0 0 1

⎞
⎠, (9)

where aBW = (a2, 0, . . . , 0)T , bBW = (0, 0, . . . , a2)T and the
tridiagonal matrix B(n) of size (n/2 − 1) × (n/2 − 1) is

B(n) = a2

⎛
⎜⎜⎜⎜⎝

2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

⎞
⎟⎟⎟⎟⎠. (10)

A crucial difference between the BW and S protocols is that
B(n) is symmetric, causing purity decay to be given by λ2 =
4a2 [14,24,29,35,37], i.e., no surprises, while on the other
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hand for the S protocol S(n) is nonsymmetric, resulting in
the decay not being given by λ2 = 4a2 (surprising phantom
decay) [26,27].

We now generalize the reduced transfer matrix propaga-
tion to arbitrary OBC canonical protocols labeled by p. The
procedure to obtain the reduced dynamics follows the same
rules that were described for S OBC, so here we state only
the result. Let us focus on the case where the cut is in the
S section, i.e., k > 2p, or the cut is in the BW part and one
has an even k (for a qualitatively similar case of a cut in
the BW section and odd k see Appendix A). Purities for the
relevant subset of bipartitions can be put into the vector I(t ) =
(1, I2(t ), I4(t ), . . . , I2p(t ), I2p+1(t ), I2p+2, . . . , 1), which con-
tains single-cut bipartitions with even k for all k � 2p (BW
part of the canonical protocol) and all Ik for k � 2p (S part).
The reduced transfer matrix that propagates I(t ) turns out to
be

A(n)
p =

⎛
⎝ 1 0 0

aBW R(n)
p bS

0 0 1

⎞
⎠, I(t + 1) = A(n)

p I(t ), (11)

with

R(n)
p =

⎛
⎜⎜⎜⎝

B(2p)

0 . . . 0
...

. . .
...

a2 . . . 0

0 . . . 0 cp S(n−2p+2)

⎞
⎟⎟⎟⎠, (12)

where cp = (a2, a3, . . . , an−2p+1)T , S(n−2p+2) is of dimension
(n − 2p) × (n − 2p), and B(2p) of dimension (p − 1) × (p −
1). We see that the matrix R(n)

p contains an upper-left block
describing the BW part, and a lower-right block for the S part.
Both parts are “coupled” by the coefficients present in the
vector cp and a sole a2 in the lower part of the upper right
block. For example, for n = 14 and p = 5 we have I(t ) =
(1, I2(t ), I4(t ), I6(t ), I8(t ), I10(t ), I11(t ), I12(t ), I13(t ), 1) and

R(14)
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a2 a2 0 0 0 0 0 0
a2 2a2 a2 0 0 0 0 0
0 a2 2a2 a2 0 0 0 0
0 0 a2 2a2 a2 0 0 0
0 0 0 a2 a2 a 0 0
0 0 0 a3 a3 a2 a 0
0 0 0 a4 a4 a3 a2 a
0 0 0 a5 a5 a4 a3 a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)
Using the propagation I(t + 1) = A(n)

p I(t ), the upper-left 4 ×
4 block of R(14)

5 “propagates” (I2, I4, I6, I8), while the lower-
right 4 × 4 is responsible for (I10, I11, I12, I13).

B. Spectral properties

In Ref. [26] it was proven that full transfer matrices M
for all possible permutations of n − 1 gates under OBC (e.g.,
all canonical protocols p) share the same spectrum. Here we
ask ourselves whether all reduced transfer matrices A(n)

p also
share the same spectrum. Namely, the spectrum of A(n)

p is only
a subset of the spectrum of the nonreduced matrix M and it
could happen that the second largest eigenvalue of A(n)

p would
be different (smaller) than the second largest eigenvalue of M.

In Appendix B we prove that this is not the case. The nonzero
part of the spectrum of A(n)

p is the same for all canonical pro-
tocols, specifically also λ2, which is also equal to the second
largest eigenvalue of the full M. Based solely on the spectrum
the dynamics of purity would then be expected to decay as
|λ2|t . We shall show that this is not the case and that purity
asymptotically decays at a different rate.

More in detail, from the calculations found in Appendix B
we find that the nonzero eigenvalues λ j of R(n)

p are given by
the zeros of the Chebyshev polynomial of the second kind

Un/2−1

(
1 − λ j

2a2

)
= 0, (14)

that is

λ j = 4a2 cos2

(
jπ

n

)
, j = 1, . . . , n/2 − 1. (15)

The nonzero spectrum of A(n)
p is then obtained by adding to

this a doubly degenerate eigenvalue 1. The kernel of A(n)
p is

on the other hand a Jordan block of size n/2 − p. The second
largest eigenvalue of A(n)

p is the largest eigenvalue of R(n)
p and

is therefore equal to λ2 = 4a2 cos2(π/n), is independent of p,
and equal to the second largest eigenvalue of the nonreduced
transfer matrix M.

C. Effective purity decay λeff

Here we shall compute the true asymptotic decay of purity
in the thermodynamic limit for a single-cut bipartition, which
is given by Eq. (1) with

λeff = 2
3 , k > 2p, (16)

if the bipartition cut is in the S part of the configuration, while
it is

λeff = λ2 = 16
25 , k < 2p, (17)

if the cut is in the BW part.
In Ref. [27] three different methods were used to compute

λeff for S OBC circuits (i.e., p = 1): (a) by finding the exact
solution Ik (t ), (b) with the help of the spectrum of the operator
in the TDL, and (c) by computing the pseudospectrum [54]
of the reduced transfer matrix. While those methods were
feasible for the very simple structure of the S reduced matrix
(8), for our more complicated protocol there are difficulties:
for (a) we are not able to get an exact solution, for method
(b) it is not always clear how to define the operator in the
TDL, e.g., in the case of transfer matrices should one take
p/n = const. or p = const., etc., and, moreover, the com-
putation of the operator spectrum could be challenging, (c)
the pseudospectrum converges slowly with n. We therefore
present a new method to compute λeff , which overcomes the
above-mentioned difficulties.

The idea is to construct a new modified (perturbed) transfer
matrix Ã(n)

p that obeys two conditions: (i) norms of left eigen-
vectors do not diverge in the TDL, and (ii) purity dynamics
obtained by A(n)

p and the dynamics obtained by Ã(n)
p match up

to times t ∼ n. The first condition assures that the decay of
purity is not slower than the decay given by the second largest
eigenvalue λ̃2 of Ã(n)

p after times t∗ ∼ ln n (see Appendix C).
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Thus it excludes a possible phantom decay with λ̃eff > λ2 at
times t ∼ n. In such a situation one would typically expect that
the decay under Ã(n)

p will be correctly given by λ̃t
2 already at

nonextensive times larger than t1 ≈ O(1). In Appendix D we
numerically check that this is indeed the case, except in cases
where the initial vector is orthogonal to corresponding eigen-
vectors, a situation that happens for k < 2p. In a nutshell, Ã(n)

p
behaves essentially like a Hermitian matrix, even though it is
not. Finally, the second condition (ii) then guarantees that the
second largest eigenvalue of the perturbed matrix λ̃2, which
we calculate, will be equal to λeff of the original unperturbed
A(n)

p (for k > 2p).
Let us construct such a matrix. We note that purity In−1

affects purity Ik only after times t ≈ n − k, so any change in
the last row of R(n)

p will influence the dynamics of Ik (t ) only
after ∼n iterations, provided k �= n − const. We define R̃(n)

p by
changing the bottom leftmost value of the S block in Eq. (12)
from an−2p+1 to a, as can be seen below for R(14)

5 :

R̃(14)
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a2 a2 0 0 0 0 0 0
a2 2a2 a2 0 0 0 0 0
0 a2 2a2 a2 0 0 0 0
0 0 a2 2a2 a2 0 0 0
0 0 0 a2 a2 a 0 0
0 0 0 a3 a3 a2 a 0
0 0 0 a4 a4 a3 a2 a
0 0 0 a5 a a4 a3 a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)
The choice of such perturbation was made after trying dif-
ferent values at the bottom leftmost value of the S block and
taking the choice that makes the norm of left eigenvectors of
the new transfer matrix converge in the TDL. The new trans-
fer matrix Ã(n)

p is defined as A(n)
p in Eq. (11) by substituting

R(n)
p with R̃(n)

p . Remember that the largest eigenvalue of R̃(n)
p

corresponds to the second largest eigenvalue of Ã(n)
p .

Let us numerically calculate norms of left eigenvectors of
R̃(n)

p in order to check whether they diverge. We normalize all
right eigenvectors to 1. Computing the largest norm of left
eigenvectors, maxk ||lk|| = maxk

√〈lk|lk〉, for various system
sizes n and p = n/5 we observe that limn→∞ maxk ||lk|| ≈ 1
[55], specifically, it does not diverge with system size as is the
case for R(n)

p . Therefore both conditions (i) and (ii) are fulfilled
for the new transfer matrix.

We now compute the largest eigenvalue λ̃2 of R̃(n)
p . The

derivation of the spectrum of R̃(n)
p follows almost the same

steps as the procedure to calculate the spectrum of R(n)
p (see

Appendix B), so we omit the details and state only the result.
The eigenvalues λ̃ of the new transfer matrix R̃(n)

p are solutions
to the equation

(an−2p − 1) U2p−1(
√

λ̃/2a) + (−1)nλ̃n/2−pUn−1(
√

λ̃/2a)

= 0. (19)

We are not able to solve the equation above analytically,
so we used standard numerical methods to find the roots
of Eq. (19), i.e., the spectrum of R̃(n)

p , which are plotted in
Fig. 5 for n = 100 and p = 20. The largest eigenvalue of
the modified matrix is λ̃2 ≈ 2/3 − 3 × 10−10, which is almost
equal to λeff = 2/3, see red triangle in Fig. 5. The unperturbed

FIG. 5. Calculating λeff via a perturbed transfer matrix. Compar-
ison between the spectrum of R(100)

20 , see Eq. (12) (orange squares),
R̃(100)

20 , obtained from Eq. (19) (green circles), and the pseudospec-
trum of R(100)

20 (“ps,” blue triangles). The largest pseudo-eigenvalue
is, despite large ε = 10−5, at 0.642 still closer to the unperturbed
eigenvalue λ2 ≈ 0.639, than to the correct λeff = 2/3 (red triangle).

matrix has on the other hand λ2 ≈ 0.639 (i.e., a finite-size
value of 16/25 = 0.64). As mentioned, another possibility to
compute λeff would be with the pseudospectrum of R(n)

p . The
pseudospectrum for matrices A of finite size n is approximated
with the ε pseudospectrum, spε(A). The ε pseudospectrum
is defined as the spectrum of A + εE , where E is a matrix
of univariate random Gaussian numbers. The pseudospectrum
of A is obtained by limiting limn→∞ spε(A) while holding ε

fixed. Applications of pseudospectrum can be found in the
context of the skin effect [56–58] and metastability [49]. From
Fig. 5 we see that using the pseudospectrum of R(n)

p as a proxy
for λeff , like in Ref. [27], does not work well. Convergence of
the ε pseudospectrum with n is slow and at n = 100 the norm
of the ε pseudospectrum is still closer to λ2 than to λeff . For
example, to obtain λeff within the absolute error ±10−5 with
the pseudospectrum one must take n = 20 000, meanwhile
the spectrum of R̃(n)

p yields the same precision already with
n ≈ 40.

We now compare the conjectured λeff = λ̃2 = 2/3 with the
actual purity decay of Ik=n/2 for arbitrary canonical protocol
p. In Fig. 6 we plot the exact effective rate λeff obtained from
full numerically calculated I (t ) (11) at large times, and λ̃2,
for all possible values of p. The largest eigenvalue of R̃(n)

p
correctly predicts purity dynamics up to parameters p ≈ n/4.
For p > n/4, the actual decay is given by an eigenvalue of
R̃(n)

p which is not the largest one. Comparing data for n = 100
and n = 200 suggests that in the TDL λeff equals to 2/3 when
p < n/4 and to 16/25 for p > n/4. Remembering that we
are showing purity decay data for k = n/2 this corresponds
exactly to a cut being either in the S, or the BW part of the
circuit, respectively. Mathematically, the reason why λ̃2 fails
to predict the actual purity decay for 2p > k can be found
by looking at the right eigenvectors of Ã(n)

p . Purity can be
expressed using the spectral decomposition of Ã(n)

p as

Ik=n/2(t ) =
∑

j

λ̃t
j〈en/2|r j〉〈l j |(1, 1, . . . , 1)〉, (20)
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FIG. 6. The largest eigenvalue of R̃(n)
p (blue triangles), compared

with the actual purity decay λeff computed numerically (orange cir-
cles), Eq. (11), all shown for n = 100, 200 and all possible p. The
red and green line (upper and lower horizontal line, respectively) are
set at 2/3 and λ2 = 16/25, which seems are the only two values that
λeff and λ̃2 take in the TDL.

where 〈l j | and |r j〉 are the left and right eigenvectors of Ã(n)
p

and the vector 〈en/2| has a sole nonzero component at the posi-
tion where In/2(t ) is found in I(t ) [see the text above Eq. (11)].
Note that, for p > n/4, this position is n/4, otherwise it is
greater than n/4 and maximally equal to n/2 for p = 1. For
every eigenvalue λ̃ j of R̃(n)

p of modulus larger than ≈0.64
all components i < p of the corresponding right eigenvector
are almost zero, which results in extremely small expansion
coefficients 〈en/2|r j〉 in Eq. (20). The largest contribution for
p > n/4 thus comes from the eigenvalue λ̃ j ≈ 16/25. Note
that the discrepancy between λ̃2 and λeff in this case is not
surprising because it is due to the peculiarity of the initial con-

dition and eigenvectors and could happen also in Hermitian
systems.

We have also looked at other single-cut bipartitions, i.e.,
k �= n/2. The form of right eigenvectors of R̃(n)

p suggests that
the actual purity decay in the TDL depends on k and p: if k >

2p then λeff = 2/3, otherwise λeff = λ2 = 16/25. The condi-
tion k > 2p coincides with the fact that the boundary between
the subsystem A and B lies in the S region of the canonical
protocol; on the contrary, when k < 2p, the boundary lies in
the BW region. This gives the announced asymptotic purity
decay with λeff in Eqs. (16) and (17).

Equipped with understanding of single-cut bipartitions we
next generalize this conjecture to bipartitions with multiple
cuts, which also allows us to treat systems with PBC where
one has at least two cuts.

IV. MULTICUT BIPARTITIONS

Reduced transfer matrices for bipartitions that are not sin-
gle cut are more complicated and are constructed numerically.
The algorithm to compute reduced transfer matrices is the
same as the one that we used for canonical OBC protocols
and single-cut bipartitions: we begin with the bipartition that
we want to observe and obtain all purities at previous time
that contribute to the wanted quantity. We continue recursively
with the newly obtained bipartitions until we obtain a closed
set of bipartitions α. We numerically found that transfer ma-
trix sizes depend on the number of boundaries b between the
subsystems A and B and scale as ∼nb.

Figure 7 shows purity dynamics obtained by numerically
iterating the transfer matrix for various bipartitions and pro-
tocols. At each boundary between A and B, we have two
neighboring qubits, one in A and the other in B. On these
qubits we act with either the S part or the BW part of the
canonical protocol. We label the number of boundaries in the
BW part with cBW and the number of boundaries under the S
part with cS. Based on numerical simulations (also other not
shown) we conjecture that λeff depends only on cBW and cS.

(a) p=4

p=8

(b) p=17 (c) p=14 (d) p=4

A B A A B A B A B A B A A B A

FIG. 7. Purity evolution for different protocols p and different bipartitions with multiple cuts. We use n = 40 qubits bipartitioned into
subsystems A and B as indicated above each figure, where also the thick orange and blue (or light and dark gray) curves indicate the extend
of the BW and S protocol sections, respectively. For instance, in panel (a) we have a canonical protocol with p = 4 (blue curve), i.e., 8 gates
in BW are followed by 31 gates in the S configuration, with the subsystem A containing first 14 and last 13 qubits. Panel (a) also shows data
for n = 80, p = 8 (orange curve). Comparing data for n = 40 and n = 80 we find that the time until λeff persist is t ≈ n/2. Red dotted lines
show the theoretical decay given by λeff , Eq. (21) [λeff equal to (2/3)2, (16/25)3, (16/25)3(2/3) for panels (a)–(c), respectively], whereas
green dashed lines are given by λ2 of the reduced transfer matrix calculated by exact diagonalization. For panels(a)–(c) we use OBC so that
λ2 ≈ 0.64, while for panel (d) we use PBC where λ2 ≈ 0.430, which is very close to λeff = (2/3)2.
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n=20

n=40

n=80

A B A B

FIG. 8. Purity decay for a bipartition composed of four regions
(ABAB) of equal length for n = 20, 40, 80, all for OBC, which
demonstrates that, in the TDL, the transition from the rate given by
λeff to the rate given by λ2 is discontinuous. The circuit geometries
used are p = 9, 17, 34 for n = 20, 40, 80, respectively, so the bipar-
tition always cuts the BW section three times and never cuts the S
part (see the cartoon picture above the plot). All red and green dotted
lines have slopes λeff = (16/25)3 and λ2 ≈ 16/25, respectively, even
though the slopes seem different because of the scaled time t/n.

Namely,

|I (t ) − I (∞)| ∼ λt
eff , λeff =

(
16

25

)cBW
(

2

3

)cS

. (21)

For cases where it is not clear whether the boundary lies
in the BW or in the S part, see Ref. [59]. The time until
this conjecture holds, and when the decay λt

2 starts, is pro-
portional to the length of the smallest contiguous region of
qubits from one of the subsystems. Therefore, provided all
contiguous parts composing A and B are extensive, the decay
λt

eff also holds up to an extensive time and therefore gives
the relevant decay in the TDL. For example, see Fig. 7(a)
for a comparison between two similar systems with n = 40
and n = 80. Note that by changing the size of A or B parts
in finite systems does not change the initial effective decay
λeff or the asymptotic decay λ2. Changes in the sizes of A
and B parts reflect themselves only in the time until λeff

persists. As can be seen from Fig. 7(c), there can be a sub-
stantial crossover time when the decay is neither λt

eff nor λt
2. In

Fig. 8 we plot the time evolution of purity for circuits of same
type for different system sizes to show that this crossover time
vanishes in the TDL. In the limit of infinite systems we expect
the decay rate of purity to have a discontinuous transition from
λeff to λ2 at time scaling as t ∼ n.

We also numerically computed λ2 of the reduced trans-
fer matrices for the protocols and bipartitions studied as
well as for noncanonical protocols with OBC and PBC. In
all cases we found that the second largest eigenvalue al-
ways coincides with the second largest eigenvalue of the full
nonreduced transfer matrix M. For OBC this λ2 does not
depend on the configuration and was conjectured [37] to be
λ2 = [4/5 cos(π/n)]2. In the TDL the case with cBW = 1

and cS = 0 is therefore the only protocol where λeff = λ2.
Moreover, cBW = 0 and cS = 1 is the only case in OBC
where λeff = 2/3 > λ2 = 16/25, meaning that this is the
only instance of a phantom eigenvalue where the decay is
slower than any true eigenvalue of the transfer matrix. In
PBC circuits λ2 does depend on p [26] and the only known
conjectures are for the BW protocol (p = n/2) where λ2 =
[4/5 cos(π/n)]4, giving the TDL result (16/25)2 [60], and
for the S (p = 1) where in the TDL λ2 = 4/9. Different than
for OBC, with PBC one has λeff = λ2 for both S and BW
protocols.

V. DISCUSSION

In the paper we studied purity decay, i.e., bipartite entan-
glement growth, in random quantum circuits composed of
two-site random Haar gates in a so-called canonical configura-
tion that consists of an initial BW section acting on 2p qubits
and a S part on the remaining n − 2p qubits. Average purities
for different bipartitions can be propagated by a Markovian
transfer matrix, which can be reduced down to a dimension
that is only polynomial in the number of qubits. This allowed
for some quasi exact results as well as for an efficient numer-
ical study.

We observed that purity in finite systems decays in two
stages: initially, up to times t ∼ n, the exponential decay
is λt

eff , afterwards it is given by the second largest eigen-
value of the transfer matrix λt

2. In the thermodynamic limit
n → ∞ the relevant decay is therefore given by λeff , and not
λ2, and furthermore λeff is in a generic situation different
than λ2. The decay is therefore not given by the Markovian
gap, as one would naively expect. The reason lies in a non-
symmetric nature of the transfer matrix. Based on results
from Ref. [26], we expect other entanglement quantifiers,
e.g., von Neumann entropy and Renyi entropy, to behave
with a similar two-step relaxation. However, a Markovian
description is available only for purity. Similar phenomena
are expected also for other quantities like OTOC, as already
observed in specific situations [38], as well as in nonrandom
systems.

In systems with open boundary conditions and a single
boundary between subsystems the reduced transfer matrix is
relatively simple. The value of λeff depends on the location of
the boundary: if it cuts across the staircase part of the protocol
it is λeff = 2/3, while it is λeff = λ2 = 16/25 if it cuts across
the brick-wall part of the protocol. Therefore, if the cut is
across the staircase part the decay of purity is slower than any
true eigenvalue of the transfer matrix, i.e., it looks as if there
would be a phantom “eigenvalue” λeff = 2/3 in the spectrum.
If a system has multiple boundaries between subsystems, as
is, e.g., the case for periodic boundary conditions, the transfer
matrix is more complicated and we studied it numerically. We
conjecture that λeff depends only on two numbers, the number
of cuts or boundaries across the brick-wall and the number of
cuts across the staircase sections of the protocol, provided all
subparts are of extensive length. The usually discussed brick-
wall circuit with a single-cut bipartition, where λeff = λ2, is
therefore special. As a side remark, note that for OTOC the
finite-size asymptotic decay is equal to purity’s decay λ2 [38];
however, λeff can be different.
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While mathematically the discrepancy between λeff and
λ2 comes from the nonorthogonality between eigenvectors
of the transfer matrix, the physical interpretation behind this
phenomenon is still unclear. One can argue that λ2 cannot al-
ways be a physically relevant decay, because it can depend on
boundary conditions, even though we expect purity decay to
be independent of boundary conditions up to extensive times.
A simple example can be found in BW circuits for OTOC,
which exhibit a finite Lieb-Robinson velocity, which makes
OTOC clearly insensitive to boundary conditions before times
t ≈ n [38], λ2 on the other hand is different for OBC and PBC.
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APPENDIX A: REDUCED TRANSFER MATRIX FOR
SINGLE-CUT BIPARTITIONS WITH ODD k IN THE

BRICK-WALL SECTION

In the main text, when constructing reduced transfer ma-
trices for single-cut bipartitions and arbitrary protocols, we
always constructed the subset of purities by beginning with a
bipartition with an even number k of qubits in the subsystem
A. When p �= 1, the resulting subset S of purities, i.e., the
basis in which A(n)

p is written, does not contain all single-cut
bipartition purities. Namely, all purities Ik , k odd and k < 2p,
are left out. In this Appendix we explain how to change A(n)

p
in order to propagate also these odd k purities. For the sake of
clarity, we shall label purity Ik , k odd and k < 2p with Ik∗ .

First, we calculate all purities at time t − 1 that contribute
to Ik∗ . Following the procedure explained in the main text we
see that Ik∗ = aIk∗+1 + aIk∗−1. Note that both Ik∗+1 and Ik∗−1

are elements of S, so the new closed subset of purities will be
S′ = S ∪ {Ik∗+1}. We order S′ by increasing k and denote the
position of Ik∗ in this ordered set by j. Because S′ is obtained

from S just by adding the elements Ik∗ , the new transfer matrix
can be derived by adding a new row and a new column to A(n)

p
at position j. The row that should be added to the transfer
matrix is (0, . . . , a, 0, a, . . . , 0), where the coefficients a are
on positions j − 1 and j. How about the column? We already
know that purities in the set S do not depend on Ik∗ , otherwise
they would not form a closed set. This means that in order to
accommodate Ik∗ we should add a column of zeros.

For instance, if we wish to propagate purity I5 in a system
with n = 14 with the canonical protocol p = 5, we propagate
the vector I = (1, I2, I4, I5∗ , I6, I8, I10, I11, I12, I13, 1) with the
transfer matrix A(n)

p from Eq. (11), where

R(14)
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a2 a2 0 0 0 0 0 0 0
a2 2a2 0 a2 0 0 0 0 0
0 a 0 a 0 0 0 0 0
0 a2 0 2a2 a2 0 0 0 0
0 0 0 a2 2a2 a2 0 0 0
0 0 0 0 a2 a2 a 0 0
0 0 0 0 a3 a3 a2 a 0
0 0 0 0 a4 a4 a3 a2 a
0 0 0 0 a5 a5 a4 a3 a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)

APPENDIX B: SPECTRUM OF THE REDUCED TRANSFER
MATRIX FOR SINGLE-CUT BIPARTITIONS AND OPEN

BOUNDARY CONDITIONS

In this Appendix we present a proof of the spectral equiv-
alence of all reduced transfer matrices A(n)

p . Let us denote
with 	(C) the spectrum of a matrix C. First, we note that
	(A(n)

p ) = 	(R(n)
p ) ∪ {1, 1}, so that we shall focus on 	(R(n)

p )
from now on. The largest eigenvalue in the spectrum of R(n)

p
will be denoted as λ2 and corresponds to the second largest
eigenvalue of the reduced transfer matrix A(n)

p . To compute the
spectrum, we present a computation done for fixed n and p, the
generalization to general matrix size and canonical protocol
will then be straightforward. That said, let us take n = 14 and
p = 5. We wish to compute det(R(14)

5 − λ) = 0, i.e.,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2a2 − λ a2 0 0 0 0 0 0
a2 2a2 − λ a2 0 0 0 0 0
0 a2 2a2 − λ a2 0 0 0 0
0 0 a2 2a2 − λ a2 0 0 0
0 0 0 a2 a2 − λ a 0 0
0 0 0 a3 a3 a2 − λ a 0
0 0 0 a4 a4 a3 a2 − λ a
0 0 0 a5 a5 a4 a3 a2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (B1)

We continue by using Laplace expansion around the fourth row [in general that would be the (p − 1)st row]. By using
elementary properties of determinants [such as det(A ⊕ B) = det A det B] we get

det
(
R(14)

5 − λ
) = − a4

∣∣∣∣2a2 − λ a2

a2 2a2 − λ

∣∣∣∣

∣∣∣∣∣∣∣∣

a2 − λ a 0 0
a3 a2 − λ a 0
a4 a3 a2 − λ a
a5 a4 a3 a2 − λ

∣∣∣∣∣∣∣∣
+ (2a2 − λ)

∣∣∣∣∣∣
2a2 − λ a2 0

a2 2a2 − λ a2

0 a2 2a2 − λ

∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣

a2 − λ a 0 0
a3 a2 − λ a 0
a4 a3 a2 − λ a
a5 a4 a3 a2 − λ

∣∣∣∣∣∣∣∣
− a2

∣∣∣∣∣∣
2a2 − λ a2 0

a2 2a2 − λ a2

0 a2 2a2 − λ

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

a2 a 0 0
a3 a2 − λ a 0
a4 a3 a2 − λ a
a5 a4 a3 a2 − λ

∣∣∣∣∣∣∣∣
.

(B2)

In the equation above we see a sum of products of two de-
terminants. We recognize five out of these six determinants as
determinant of either det(S(6) − λ) [see Eq. (8)], det(B(6) − λ)
or det(B(8) − λ) [Eq. (10)]. In the next step, we find a relation
between the last determinant and det A(k)

1 . Let us denote with
O(k) determinants of the form

det O(k) = det(S(k) − λ + λE1,1), (B3)

where E1,1 is a matrix having 1 at position (1,1) and 0 else-
where. We see that det O(6) is present in the last term of
Eq. (B2). Laplace expanding det O(k) and det S(k) around the
first row we get two recursive relations:

det O(k) = a2 det S(k−1) − a2 det O(k−1), (B4)

det S(k) = (a2 − λ) det S(k−1) − a2 det O(k−1). (B5)

Combining the two recursions above we finally get
det O(k) = det(S(k) + λS(k−1)). Plugging this in Eq. (B2) we
arrive at

det
(
R(14)

5 − λ
) = − a4 det(B(6) − λ) det(S(6) − λ)

+ (a2 − λ) det(B(8) − λ) det(S(6) − λ)

− a2λ det(B(8) − λ) det(S(5) − λ). (B6)

The generalization from Eq. (B6) to an arbitrary n and p is
straightforward:

det
(
R(n)

p − λ
) = − a4 det(B(2p−2) − λ) det(S(n−2p+4) − λ)

+ (a2 − λ) det(B(2p) − λ) det(S(n−2p+4) − λ)

− a2λ det(B(2p) − λ) det(S(n−2p+3) − λ).
(B7)

In the next step, we link det(B(k) − λ) to det(S(l ) − λ). An
easy calculation shows that

det(B(k) − λ) = ak−2Uk/2−1[1 − λ/(2a2)], (B8)

where Um(x) is the Chebyshev polynomial of the second kind,
explicitly given by Um(cos φ) = sin{[(m + 1)φ]/ sin φ}. The
characteristic polynomial det(S(k) − λ) was found to be equal
to (−1)kak−1λ(n−3)/2Uk−1(

√
λ/2a) [61]. Using the fact that

Uk/2−1(1 − x) = Uk−1(
√

x/2)(−1)k/2−1/(2
√

x/2) we arrive,
after a rearrangement of the terms, at

det
(
R(n)

p − λ
) = (−1)n+3pλn/2−p−1[anU2p−5(

√
λ/2a)Un−2p+1

× (
√

λ/2a) + anU2p−3(
√

λ/2a)Un−2p+1

× (
√

λ/2a) − λan−2U2p−3(
√

λ/2a)Un−2p+1

× (
√

λ/2a) + an−1λ1/2U2p−3(
√

λ/2a)Un−2p

× (
√

λ/2a)]. (B9)

The equation above can be simplified by considering the
recursive relation for Chebyshev polynomials Uk+1(x) =
2xUk (x) − Uk−1(x):

det
(
R(n)

p − λ
) = (−1)n+3pλn/2−p−1/2an−1[U2p−4(

√
λ/2a)

× Un−2p+1(
√

λ/2a) + U2p−3(
√

λ/2a)

× Un−2p+2(
√

λ/2a)]. (B10)

Finally, we exploit the relation Uk (x)Ul (x) =∑l
i=0 Uk−l+2k (x) (for k � l) to get

det
(
R(n)

p − λ
) = (−1)n+3p+1λn/2−p−1/2an−1Un−1(

√
λ/2a)

(B11)

= (−1)n/2+3pλn/2−pan−2Un/2−1

(
1 − λ

2a2

)
, (B12)

where we used the identity above Eq. (B9) to get from
Eq. (B11) to Eq. (B12). The nonzero part of 	(R(n)

p ) thus
equals to zeros of the Chebyshev polynomial Un/2−1[1 −
λ/(2a2)]. This polynomial is independent of p, so we con-
clude that reduced transfer matrices for all canonical protocols
in OBC for single-cut bipartitions share the same nonzero part
of the spectrum. The number of zero eigenvalues differs for
different p, being the largest for p = 1 and zero for p = n/2.

APPENDIX C: THE PERTURBED TRANSFER MATRIX
HAS NO PHANTOM EIGENVALUE

In this Appendix, we prove that a matrix Ã(n)
p , of which

left eigenvector norms converge in the TDL, has no phan-
tom eigenvalue, i.e., the effective decay λeff cannot be larger
than the second largest eigenvalue λ̃2 of Ã(n)

p after times
t > t∗ ∼ ln n.

Suppose the largest eigenvalue of Ã(n)
p is equal to λ̃1 = 1

and the second largest one is λ̃2 < 1. We study the conver-
gence of quantities Ĩ j (t ) = 〈e j |(Ã(n)

p )t |(1, 1, . . . , 1)〉, [e j]k =
δ j,k , to their asymptotic value Ĩ j (∞). The quantity Ĩ j (t ) was
chosen to resemble purity from the main text [see Eq. (20)].

The expression Ĩ j (t ) can be rewritten in terms of the spec-
tral decomposition of Ã(n)

p = ∑
k λ̃k|rk〉〈lk|, where λ̃k are its

eigenvalues and |rk〉 and 〈lk| the corresponding right and left
eigenvectors, respectively. We get

Ĩ j (t ) =
∑

k

λ̃t
k〈e j |rk〉〈lk|(1, 1, . . . , 1)〉. (C1)

The asymptotic value Ĩ j (∞) is equal to
〈e j |r1〉〈l1|(1, 1, . . . , 1)〉. By using the triangle inequality
and the fact that |λ̃2| � |λ̃k|, k �= 1 we get an upper bound on
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the convergence rate

|Ĩ j (t ) − Ĩ j (∞)| = |
∑
k �=1

λ̃t
k〈e j |rk〉〈lk|(1, 1, . . . , 1)〉|

� |λ̃2|t
∑
k �=1

|〈e j |rk〉〈lk|(1, 1, . . . , 1)〉|

= c2|λ̃2|t , (C2)

where c2 = ∑
k �=1 |〈e j |rk〉〈lk|(1, 1, . . . , 1)〉|. In many cases

studied in the main text, the decay rate towards the asymptotic
value of purity differs from the one given by λ̃2, instead one
could have

|Ĩ j (t ) − Ĩ j (∞)| ≈ ceffλ
t
eff , (C3)

where λeff > λ̃2. The effective decay λeff cannot persist in-
finitely long, because at one point in time it will cross the
upper bound from Eq. (C2) and we would get ceffλ

t∗
eff =

c2|λ̃2|t∗ . If t∗ would scale as ∼n or faster with n, then λeff

would be a phantom eigenvalue of Ã(n)
p . We shall see that this

is not possible.
Now, we present an argument for the claim t∗ ∼ ln n. The

time t∗ can be expressed as

t∗ = ln(c2/ceff )

ln(λeff/|λ̃2|)
. (C4)

The ratio λeff/|λ̃2| converges to a value >1 in the TDL, so
it will not contribute to the dependence of t∗ on the system
size. Next, we assume that ceff does not vanish in the TDL,
so limn→∞ ceff = K > 0. This assumption is motivated by the
fact that we expect the effective decay λeff to be present in the
TDL. This argument shows that ln ceff will not contribute to

the n dependence of t∗. The only contribution left is that of
ln c2.

Next, we bound ln c2. If Ã(n)
p would be Hermitian, the

left and right eigenvectors would be equal and could be
normalized simultaneously; however, here we deal with a
more general case, where rk �= lk and 〈lk|r j〉 = δ j,k . We can
still normalize all right eigenvectors to 1. Note that the left
eigenvectors are not normalized and that their norms could be
arbitrary large. Being right eigenvectors normalized, we get
the bound |〈e j |rk〉| � 1, so

c2 �
∑
k �=1

|〈e j |rk〉||〈lk|(1, 1, . . . , 1)〉| �
∑
k �=1

|〈lk|(1, 1, . . . , 1)〉|

� n max
k

∑
j

|[lk] j | � n3/2 max
k

||lk||, (C5)

where ||lk|| = √〈lk|lk〉 denotes the norm of the kth left eigen-
vector. At the beginning of the Appendix, we assumed that
norms of left eigenvector of the matrix Ã(n)

p converge with
n, so limn→∞ maxk ||lk|| = C < ∞. In turn, this means that
c2 ∼ n3/2 and

t∗ ∼ ln n. (C6)

Note that the obtained bound on t∗ will not be of much help if
we iterate matrices of size exponential in n as in Refs. [26,38].
However, in this paper we deal with matrices of size polyno-
mial in n.

APPENDIX D: EMERGENCE OF THE ASYMPTOTIC
DECAY WITH λ̃2

We know that, for any finite size at a sufficiently
large time t1, Ĩn/2(t ) will eventually decay as ∼λ̃t

2. In this

FIG. 9. Determining t1 when the decay of Ĩn/2 becomes λ̃t
2. The instantaneous decay rate of Ĩn/2 (blue or dark curves) is compared with

that of In/2 (orange or light curves), seeing that the two agree up to times ∼n. Furthermore, in panels (a) and (c) where 2p < k, this decay
rate is immediately equal to λ̃2 = 2/3 (red dotted line) and therefore t1 ≈ 1. On the other hand, in panels (b) and (d) where 2p > k, it is equal
to λ2 = 16/25 (green dashed line) up to times ≈3n/2, so that t1 in the TDL is formally infinite due to the initial state being orthogonal to
respective eigenvectors.
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Appendix we are interested in the value of this t1 when such
asymptotic decay kicks in. Recall that Ĩn/2(t ) is defined as
Ĩn/2(t ) = 〈en/2|(Ã(n)

p )t |(1, 1, . . . , 1)〉 (see Appendix C), where
Ã(n)

p is the perturbed transfer matrix from the main text. Quan-
tities Ĩ (t ), obtained numerically with iterations of Ã(n)

p , are
represented in Fig. 9. As expected, the dynamics of Ĩ (t ) and
I (t ) match up to extensive times. Generalizing the results
from Fig. 9 (see also Fig. 6), when p < n/4, λeff equals the

second largest eigenvalue λ̃2 immediately, meaning t1 = 1.
On the other hand, when p > n/4 one has λeff = λ̃2 only
after times t1 ≈ 3n/2, meaning that t1 diverges with n. In this
case computing the second largest eigenvalue of the perturbed
transfer matrix does not help us to get the effective decay
λeff of purities In/2. In the main text we give a mathematical
explanation for why in this case the finite-size asymptotic
decay kicks in so late.
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[26] J. Bensa and M. Žnidarič, Fastest Local Entanglement Scram-
bler, Multistage Thermalization, and a Non-Hermitian Phan-
tom, Phys. Rev. X 11, 031019 (2021).
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