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Control-enhanced quantum metrology under Markovian noise

Yue Zhai,1,2,3 Xiaodong Yang ,1,2,3,* Kai Tang,1,2,3 Xinyue Long,4,1,3 Xinfang Nie,4,1,3 Tao Xin,1,2,3

Dawei Lu,4,1,2,3 and Jun Li1,2,3,†

1Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2International Quantum Academy, Shenzhen 518055, China

3Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

4Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

(Received 3 November 2022; accepted 17 January 2023; published 3 February 2023)

Quantum metrology is supposed to significantly improve the precision of parameter estimation by utilizing
suitable quantum resources. However, the predicted precision can be severely distorted by realistic noises.
Here, we propose a control-enhanced quantum metrology scheme to defend against these noises to improve the
metrology performance. Our scheme can automatically alter the parameter-encoding dynamics with adjustable
controls, thus leading to optimal resultant states that are less sensitive to the noises under consideration. As a
demonstration, we numerically apply it to the problem of frequency estimation under several typical Markovian
noise channels. By comparing our control-enhanced scheme with the standard scheme and the ancilla-assisted
scheme, we show that our scheme performs better and can improve the estimation precision up to around one
order of magnitude. Furthermore, we conduct a proof-of-principle experiment in a nuclear magnetic resonance
system to verify the effectiveness of the proposed scheme. The research here is helpful for current quantum
platforms to harness the power of quantum metrology in realistic noise environments.
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I. INTRODUCTION

Quantum metrology concerns how to manipulate available
quantum resources to acquire the best estimation precision of
the parameters to be measured [1–3]. The standard procedure
of quantum metrology consists of preparing an input probe
state, having it interact it with the encoding dynamics, and
measuring the output state to extract the parameter. Ideally, in
the absence of noise, quantum systems undergo unitary evolu-
tions. Additionally, it has been well established that entangled
probe states with optimal measurements can achieve a preci-
sion improvement of the estimated parameter over classical
strategies, up to a factor of 1/

√
N in the number of particles

N [4]. However, for noisy processes, the inevitable interplay
with environments leads to nonunitary evolutions and lim-
its the usefulness of the aforementioned quantum strategies
[5,6]. For example, maximally entangled states can lose their
advantages when subjected to dephasing effects [7,8]. Under
different noisy environments, the ultimate precision bounds
that can be attained have attracted many theoretical studies
[9–13]. Nevertheless, how to use available resources in real-
istic experiments to saturate these bounds is still an urgent
research area [14–18].

The harmfulness of these unavoidable noises can be mit-
igated by applying additional controls in the metrology
process. Representative approaches include dynamical decou-
pling [19–21] and quantum error correction [22,23], yet they
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are usually designed for special cases or need abundant extra
resources and thus are rarely explored experimentally. Care-
fully derived feedback controls have been proven to be helpful
for maintaining the precision limit [24,25] but are hard to
obtain in experiments. Ancilla-assisted approaches [26–29],
which utilize the entanglement and joint measurement of the
system and the ancillary qubits, are certainly effective, but
at the expense of involving extra qubits and measurements.
Recently, researchers attempted to iteratively find optimal
controls that interact with the encoding dynamics to improve
the metrology performance through the use of a gradient-
based algorithm [30–34] or reinforcement learning algorithm
[35,36]. These control-enhanced methods are general and
flexible, but the optimizations need hard-to-obtain gradient
information or extensive training data, which restrict their ex-
perimental applications [37,38]. Furthermore, the comparison
with the other methods mentioned is still less explored.

In this work, we propose a control-enhanced quantum
metrology scheme to tackle the noise issue. It functions by
iteratively refreshing adjustable controls to alter the encoding
dynamics, thus automatically driving the system to certain
states that are more robust to the noises under consideration.
We use a gradient-free Nelder-Mead simplex algorithm [39] to
accomplish the learning process, which requires fewer exper-
imental resources and is more likely to reach global optimum
than the gradient-based algorithms. Other gradient-free algo-
rithms [40–42] are also applicable here. To demonstrate its
effectiveness, we test it in the case of frequency estimation
under common Markovian noise environments. We also com-
pare the proposed scheme with the ancilla-assisted scheme
[26–29], showing that the precision can be improved by
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FIG. 1. Comparison of three quantum metrology schemes.
(a) Standard scheme. A theoretical optimal probe state ρ0 (usually
the maximally entangled state) interacts with the encoding dynamics
εx over a time period T , which is divided into K = T/�t equal parts
εk

x (�t ), with k = 1, 2, . . . , K . Suitable measurements are then per-
formed on the resultant state ρx to extract the parameter information.
(b) Ancilla-assisted scheme. The system and the ancillary qubit are
first jointly prepared at the maximally entangled state, and then the
system solely interacts with the sliced encoding dynamics εk

x (�t );
finally, a joint measurement is performed. (c) Control-enhanced
scheme. The system is started from an arbitrary initial probe state
ρ0. The encoding dynamics is engineered with adjustable controls,
marked as εk

x,C (�t ) for each time length �t . The resultant state
ρx is then evaluated by suitable measurements, and the controls
are iteratively refreshed by a suitable optimization algorithm. This
procedure automatically alters the encoding dynamics to engineer
the initial probe to some optimal one that is insensitive to the noises
under consideration.

almost an order of magnitude. Furthermore, we experimen-
tally verify the proposed scheme in a nuclear-magnetic-
resonance system considering pure dephasing noise. The
outline of this study is described as follows. First, we in-
troduce the control-enhanced quantum metrology scheme in
Sec. II. Second, we conduct numerical simulations consid-
ering several kinds of Markovian noise channels in Sec. III.
Next, we show the results of experimental verifications in
Sec. IV. Finally, some conclusions and a discussion are pro-
vided in Sec. V.

II. FRAMEWORK

Consider the task of estimating the parameter x in the
general form of Hamiltonian H0(x) under specific Markovian
noises. The standard metrology scheme is to first prepare
the system at some theoretically optimal probe state ρ0, then
have it interact it with the encoding dynamics εx, and fi-
nally perform suitable measurements, as shown in Fig. 1(a).
However, the metrology performance can be greatly affected
by noises, and determining how to manipulate available re-
sources to achieve the best precision is challenging. It has
been verified that the ancilla-assisted scheme [26–29], as
shown in Fig. 1(b), moderately improves the metrology per-
formance by entangling the system with the ancillary qubit
but needs extra qubit resources and joint measurements. Here,
we propose a practical control-enhanced scheme to alter the
encoding dynamics such that the noises can be resisted for

better metrology, as shown in Fig. 1(c). With iteratively re-
freshed controls interacting with the encoding dynamics, the
optimal resultant state can be automatically discovered, which
is less sensitive to the noises. In the following, we describe our
control-enhanced scheme in detail.

A. Simulation of the encoding dynamics

We first describe how to simulate the encoding dynamics
with controls and Markovian noises. The noiseless Hamilto-
nian of a controlled system can be written as

H = H0(x) +
L∑

l=1

ul (t )Hl , (1)

where H0(x) denotes the encoding Hamiltonian, x is the pa-
rameter to be estimated, and ul (t ) : t ∈ [0, T ] represents the
amplitude of the lth control field with respect to the control
Hamiltonian Hl . Suppose that the system is in a Markovian
environment; then the encoding dynamics can be described
by the following Lindblad equation [43,44]:

dρ

dt
= −i[H, ρ] +

∑
v

γv

(
LvρL†

v − 1

2
{L†

vLv, ρ}
)

(2)

≡ L(ρ) ≡ −iH×(ρ) + �(ρ),

where ρ is the system state and L, H×, and � denote the
superoperators for the total, noiseless, and noisy evolution
dynamics, respectively. For the noisy part, the Lindblad op-
erators Lv are used to model various dissipative channels, and
the constants γv are the corresponding dissipative rates.

To conveniently solve this equation, we use Liouville’s
representation to reshape the states and operators [45]. By
stacking the columns of the quantum state ρ = ∑

i j ρi j |i〉〈 j|,
we get the corresponding vector representation, i.e., ρ →
|ρ〉 = ∑

i j ρi j | j〉 ⊗ |i〉. Meanwhile, the effects of the opera-
tors U and V performed on ρ can be rephrased as UρV →
|UρV 〉 = V T ⊗ U |ρ〉. In this way, the solution of the above
equation can be formally written as

|ρ(t )〉 = eL̂t |ρ(0)〉, L̂ = −iĤ× + �̂, (3)

where L̂, Ĥ, and �̂ represent the superoperators in the
Liouville representation. Precisely, Ĥ and �̂ satisfy the fol-
lowing transformation rules: Ĥ× = I ⊗ H − H∗ ⊗ I and �̂ =∑

v
γv

2 (L∗
v ⊗ Lv − 1

2I ⊗ L†
vLv − 1

2 LT
v L∗

v ⊗ I), where I repre-
sents the identity matrix.

B. Evaluation of the metrology performance

We proceed to describe how to evaluate the metrology
performance by estimating x. We denote the system’s initial
state as ρ0 = ρ(0) and denote the final state after encoding
with controls and noises as ρx = ρ(T ). Normally, the standard
deviation of estimating x can be quantified by the quantum
Cramér-Rao bound, i.e., �x � 1/

√
FQ [1], where FQ repre-

sents the quantum Fisher information (QFI). For a general
final state ρx, its QFI can be calculated by [3]

FQ(ρx ) =
∑

p,q;λp+λq>0

2

λp + λq
|〈p|∂xρx|q〉|2, (4)
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where p, q and λp, λq are the eigenvalues and eigenvectors
of ρx. Furthermore, in consideration of the cost of encoding
time T , we can introduce the sensitivity υ to more carefully
evaluate the metrology performance, i.e.,

υ =
√

T

γc
√

FQ
, (5)

where γc is the transduction parameter, for example, the gyro-
magnetic ratio for estimating magnetic fields.

C. Optimization of the controls

To achieve the best metrology performance, the key task
is optimizing the adjustable controls. For convenience, we
divide the total encoding time T into K = T/�t slices.
Thus, the noiseless Hamiltonian becomes H[k] = H0(x) +∑L

l=1 ul [k]Hl , with k = 1, 2, . . . , K . The final system state
can then be calculated by

|ρ(T )〉 = 
K
k=1eL̂[k]�t |ρ(0)〉 = 
K

k=1ε
k
x,C (�t )|ρ(0)〉, (6)

where εk
x,C denotes the kth sliced dynamical evolution su-

peroperator. Now the problem becomes finding the optimal
sliced control fields u = (ul [k]), with k = 1, 2, . . . , K and l =
1, 2, . . . , L, to maximize the QFI or minimize the sensitivity.
Many optimization algorithms can be used to accomplish this
task; here, we choose the Nelder-Mead simplex algorithm
[39]. It is a multidimensional unconstrained direct-search al-
gorithm without resorting to gradients. Due to its simplicity,
it has been successfully implemented in various advanced
quantum control experiments [46–48]. It is based on applying
some geometric transformations, including reflection, expan-
sion, contraction, and shrinkage, on an initialized working
simplex which consists of many vertices representing the to-
be-optimized parameter vectors. The vertices are renewed in
the optimal-solution direction iteratively until the stopping
criterion is met. In our optimization, we use the MATLAB

function FMINSEARCH to conveniently include this method.

III. NUMERICAL SIMULATIONS

To demonstrate the effectiveness of the proposed control-
enhanced scheme, we apply it to the problem of frequency
estimation under some typical Markovian noise channels,
including parallel dephasing, transverse dephasing, and am-
plitude damping. Specifically, we consider estimating the
frequency ω0 along z axis using one or two carbon nuclear
spins. By comparing the metrology metrics QFI and sensitiv-
ity, we show the advantage of our control-enhanced scheme
over the standard and ancilla-assisted schemes.

A. Parallel-dephasing channel

Parallel dephasing is a common dominant noise source for
many physical platforms [49,50]. For the parallel-dephasing
channel, the corresponding Lindblad operators are L1 =
σz/

√
2 and L2 = I; thus, the Lindblad equation in Eq. (2) can

be explicitly written as

dρ

dt
= −i[H, ρ] + γ

2
(σzρσz − ρ), (7)

0.5

1.5

2.5 10-3

(a)

0

2

4 10-3

(b)

0 0.1 0.2 0.3 0.4

2

5

8
10-6

(c)

0 0.1 0.2
1

5

9 10-7

(d)

0.03

0.5

10-3

FIG. 2. Numerical comparison of three quantum metrology
schemes on frequency estimation under parallel-dephasing noise.
(a) and (c) show the QFI and the sensitivity vs the encoding time for
single-qubit dephasing noise, where we set γ = 1/T2 = 10 s−1, and
ω0 = 2π . (b) and (d) plot the QFI and the sensitivity vs the encoding
time under two-qubit uncorrelated dephasing noise, where we set
γ n = 1/T n

2 = 10 s−1, with n = 1, 2 and ω0 = 2π . In all the plots, the
curve of the standard scheme and that of the ancilla-assisted scheme
coincide with each other.

where γ = 1/T2 and T2 characterizes the coherence time.
We consider transverse controls; thus, the encoding Hamil-
tonian in Eq. (1) becomes H(ω0) = ω0σz/2 + ux(t )σx/2 +
uy(t )σy/2, with x = ω0. Without loss of generality, we set
γ = 10 s−1, ω0 = 2π in our simulations; see the results in
Figs. 2(a) and 2(c). From Fig. 2(a), it can be seen that when the
encoding time T is smaller than the coherence time T2, neither
the ancilla-assisted scheme nor our control-enhanced scheme
can visibly improve the QFI compared to the standard scheme.
The reason is that the decoherence effect has little influence on
the metrology performance within the coherence time; thus,
the standard scheme is already optimal. However, when in-
creasing the encoding time beyond T2, the QFI for the standard
scheme quickly decays because of the severe decoherence.
The ancilla-assisted scheme also fails to increase the QFI
due to the fact that maximally entangled states will lose their
advantages compared to the uncorrelated states in the pres-
ence of decoherence [7]. Remarkably, our control-enhanced
scheme can maintain a QFI increment for the encoding time
that is far beyond T2; thus, the sensitivity can be improved
by almost an order of magnitude compared to the standard
scheme and the ancilla-assisted scheme, as shown in Fig. 2(c).

The above results demonstrate the effectiveness of our
control-enhanced scheme for improving the metrology per-
formance under one-qubit parallel-dephasing noise; we now
explore its abilities in the two-qubit case. For simplicity, we
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assume that the two qubits are uncorrelated; thus, the Lindblad
operators can be expressed as Ln = σ n

z /
√

2, n = 1, 2, and the
corresponding Lindblad equation in Eq. (2) can be rewritten
as

dρ

dt
= −i[H, ρ] +

2∑
n=1

γn

2

(
σ n

z ρσ n
z − ρ

)
, (8)

with

H =
2∑

n=1

[
1

2
ω0σ

n
z + un

x (t )σ n
x /2 + un

y (t )σ n
y /2

]
, (9)

where σ n
α (α = x, y, z; n = 1, 2) represent the Pauli operators

for the nth qubit, un
x and un

y are the transverse controls applied
to the nth qubit, and γn = 1/T n

2 characterize the correspond-
ing dephasing rates. We set γ1 = γ2 = 10 s−1 and ω0 = 2π in
our simulations; see the results in Figs. 2(b) and 2(d). From
Fig. 2(b), it can be seen that the optimal encoding time using
the standard scheme is much smaller than T 1

2 (T 2
2 ); this is

because the multiqubit dephasing noises quickly destroy the
system coherence, thus achieving an even smaller QFI than
the single-qubit case in Fig. 2(a). Similarly, we find that the
ancilla-assisted scheme cannot improve the metrology perfor-
mance compared to the standard scheme. By implementing
our control-enhanced scheme, the QFI can be greatly in-
creased, and the sensitivity in Fig. 2(d) can also be enhanced,
up to around an order of magnitude. This verifies the effective-
ness of our method in the two-qubit parallel-dephasing noise
environment.

B. Transverse-dephasing channel

For transverse-dephasing noise, the Lindblad operators are
L1 = σx/

√
2 and L2 = I; thus, the corresponding Lindblad

equation in Eq. (2) can be explicitly expressed as

dρ

dt
= −i[H, ρ] + γ

2
(σxρσx − ρ), (10)

where γ denotes the transverse-dephasing rate. Here, we con-
sider longitudinal controls; thus, the encoding Hamiltonian
in Eq. (1) becomes H(ω0) = ω0σz/2 + uz(t )σz/2, with x =
ω0. In our simulations, we set ω0 = 2π and consider two
cases with the distinct dephasing rates γ = 0.1 s−1 and γ =
10 s−1. In addition to the standard scheme, the ancilla-assisted
scheme, and our control-enhanced scheme, we demonstrate
the results using the theoretical optimal controls predicted in
Ref. [30], namely, ux(t ) = uy(t ) = 0 and uz(t ) = −ω0; this is
called the theoretical optimal control scheme.

For a small dephasing rate γ = 0.1 s−1, the simulation re-
sults are shown in Figs. 3(a) and 3(c). From Fig. 3(a), it can be
seen that the optimal encoding time with the standard scheme
satisfies Topt � 2/γ = 20 s (see the inset), which is consistent
with the conclusion in Ref. [30] under the condition ω0 
 γ .
When the encoding time is sufficiently small (T < 4 s), we
find that all the schemes have similar performances, which is
due to the same reason as in the previous parallel-dephasing
case; that is, the decoherence effect in a short time is so small
that additional controls are useless for improving the metrol-
ogy precision. However, as the encoding time increases, the
four schemes gradually show different features. Specifically,
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FIG. 3. Numerical comparison of four quantum metrology
schemes on frequency estimation under transverse-dephasing noise.
(a) and (c) show the QFI and the sensitivity vs the encoding time for
γ = 0.1 s−1 and ω0 = 2π . (b) and (d) demonstrate similar cases, but
with γ = 10 s−1.

when the encoding time satisfies 4 s < T < 20 s, it can be
seen that all three advanced schemes can moderately increase
the QFI compared to the standard scheme. This phenomenon
is different from that in the parallel-dephasing case. Herein,
the transverse-dephasing noise is perpendicular to the en-
coding operator, which makes the additional controls easier
to manipulate to resist the noises. When the encoding time
T > 20 s, the QFI of the theoretical optimal control scheme
and the ancilla-assisted scheme slowly increase or begin to
decrease, while the QFI of our control-enhanced scheme can
still significantly grow. From the perspective of sensitivity,
our scheme can achieve a twofold to threefold improvement
compared to the other three schemes, as shown in Fig. 3(c).

The above results demonstrate the effectiveness of our
control-enhanced scheme under transverse-dephasing noise
with a relatively small dephasing rate; we now explore the
case with a large dephasing rate, namely, γ = 10 s−1 [see
Figs. 3(b) and 3(d)]. In this case, the optimal encoding time
Topt using the standard scheme is obviously larger than 2/γ .
The theoretical optimal control scheme cannot improve the
QFI compared to the standard scheme during the entire tested
encoding time. The noiseless Hamiltonian in Eq. (1) equals
zero with the theoretical optimal controls; thus, the system
dynamics is totally determined by the transverse-dephasing
noise. Such significant dephasing effects make the perfor-
mance of the theoretical optimal scheme quickly decrease,
unlike in the previous case with the small dephasing rate. The
ancilla-assisted scheme can improve the QFI by around 50%
compared to the standard scheme but gets very little sensitivity
improvement, as shown in Fig. 3(d). Our control-enhanced
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FIG. 4. Numerical comparison of three quantum metrology
schemes on frequency estimation under amplitude-damping noise.
(a) shows the QFI vs the encoding time. (b) plots the corresponding
sensitivity vs the encoding time. In the simulations, we set γ =
2/T1 = 0.2 s−1 and ω0 = 2π .

scheme improves the QFI up to threefold compared to the
standard scheme. Similarly, it achieves only a relatively small
sensitivity improvement [see Fig. 3(d)]. These results reveal
that the transverse-dephasing noise with large dephasing rates
is relatively harder to resist when trying to improve the metrol-
ogy.

C. Amplitude-damping channel

The generalized amplitude-damping channel characterizes
the effect of dissipation at nonzero temperature and dominates
the noise for many physical systems [51,52]. The Lindblad
operators of this channel are L1 = σ− and L2 = σ+, where
σ± = (σx ± iσy)/2; thus, the Lindblad equation in Eq. (2) can
be written as

dρ

dt
= − i[H, ρ] + γ−

[
σ−ρσ+ − 1

2
{σ+σ−, ρ}

]

+ γ+

[
σ+ρσ− − 1

2
{σ−σ+, ρ}

]
, (11)

where γ± represents the amplitude-damping rates. Consider-
ing transverse controls, the encoding Hamiltonian in Eq. (1)
turns out to be H(ω0) = ω0σz/2 + ux(t )σx/2 + uy(t )σy/2,
with x = ω0. For simplicity, we set γ+ = 0 and denote γ− =
γ . Suppose that the environment is at zero temperature; then
the generalized amplitude-damping channel reduces to the
amplitude-damping channel [52]. In this case, we have γ =
1/T1, where T1 usually characterizes the spin-lattice relax-
ation time. Without loss of generality, we set γ = 0.2 s−1 and
ω0 = 2π in our simulations; see the results in Figs. 4(a) and
4(b).

From Fig. 4(a), we find that the optimal encoding time
in the standard scheme satisfies the predicted relation Topt =
2/γ = 2T1 = 10 s [30]. When the encoding time is smaller
than Topt, it is clear that the ancilla-assisted scheme and
our control-enhanced scheme have comparable performances;
both can achieve great enhancement of the QFI compared to
the standard scheme. However, when the encoding time is
beyond Topt, we observe that the QFI using the ancilla-assisted

scheme starts to decay, while our control-enhanced scheme
still maintains the increment of the QFI. If we investigate the
sensitivity, as shown in Fig. 4(b), we find that the ancilla-
assisted scheme improves the sensitivity by only around 25%,
while our control-enhanced scheme leads to almost an order
of magnitude improvement compared to the standard scheme.

IV. EXPERIMENT

To verify the effectiveness of our control-enhanced quan-
tum metrology scheme, we test it in the nuclear-magnetic-
resonance (NMR) system. We use 13C-labeled chloroform
dissolved in acetone-d6 to perform experiments on a Bruker
Avance III 400-MHz spectrometer at room temperature.
Specifically, we decouple the 1H nuclear spin and take the
13C nuclear spin as a probe for estimating the frequency ω0

along the z axis with transverse controls. The experimental
schematic diagrams are shown in Fig. 5(a), where we compare
the standard scheme and our control-enhanced scheme. In
the following, we describe the experimental procedures and
demonstrate the corresponding experimental results.

A. Experimental procedures

We first introduce the way to calculate the evolution
dynamics to predict the system’s final state. As parallel de-
phasing is the dominant noise in the NMR system [53], we
utilize the Lindblad equation in Eq. (7) to model the en-
coding dynamics, i.e., dρ

dt = −i[H, ρ] + γ

2 (σzρσz − ρ), with
H(ω0) = ω0σz/2 + ux(t )σx/2 + uy(t )σy/2. Now the key task
becomes obtaining the dephasing rate γ = 1/T2. A practical
and reasonable method is to first obtain the spectrum of the
thermal equilibrium state, then measure the width at half
height of the spectrum �, and finally get the value of T2 using
the relation T2 = 1/(π�) [54].

Next, we introduce how to experimentally measure the QFI
for quantifying the metrology performance. In practice, we
use the following equation related to Uhlmann’s quantum fi-
delity [55] to equivalently measure the QFI instead of Eq. (4):

FQ(ρω0 ) = 8 lim
δω0→0

1 − Tr
√√

ρω0ρω0+δω0

√
ρω0

δ2ω0
, (12)

where δω0 is a small change in ω0 and ρω0 and ρω0+δω0

are the exact state and the perturbed state, respectively. It
is worth noting that we need to choose appropriate δω0 so
that the difference between ρω0 and ρω0+δω0 can easily be
distinguished experimentally and the estimation of the QFI is
accurate enough.

Based on the above strategies, we now describe how to
perform the metrology tasks using the standard scheme and
the control-enhanced scheme [see Fig. 5(a)]. For the standard
scheme, the 1H nuclear spin is decoupled, and the nuclear
spin 13C is prepared in the state |+〉 = (|0〉 + |1〉)/

√
2. The

system is then encoded by freely evolving with an offset ω0

along the z axis. This process automatically includes the de-
phasing effects of the NMR system. Afterwards, the system’s
final state and its perturbed state are measured to calculate
the corresponding QFI. For our control-enhanced scheme, the
initial state of the 13C nuclear spin is randomly prepared.
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FIG. 5. Experimental comparison of the standard scheme and our control-enhanced scheme on frequency estimation in the NMR system.
(a) The top and the bottom panels show the schematic diagrams for the standard scheme and the control-enhanced scheme, respectively. The
nuclear spin 1H is decoupled, and the spin 13C is initialized at |+〉 for the standard scheme and a random state for the control-enhanced scheme.
The encoding process is realized by freely evolving the system with an offset ω0 in the presence of pure parallel-dephasing noise, marked as
εk

ω0
, k = 1, 2, . . . , 5. We set ω = 60 × 2π , and the measured coherence times is T2 = 0.149 s. In our control-enhanced scheme, the encoding

dynamics is engineered by additional control for resisting the noises, marked as εω0,C, k = 1, 2, . . . , 5. The final state ρω0 and its perturbed
state ρω0+δω0 , with δω = 2π , are measured from experiments for calculating the QFI. (b) shows the theoretically calculated QFI F theo

Q and the
experimentally measured QFI F exp

Q for the standard scheme and the control-enhanced scheme. We also demonstrate the tomography results of
the initial states and the final states (exact states and perturbed states) using our control-enhanced scheme.

The encoding process is also realized by freely evolving with
an offset ω0 along the z axis. However, we add additional
transverse controls in this process. Specifically, we divide the
total encoding time T into K = 5 slices, and the encoding
dynamics with controls can be solved by Eq. (6). Thus, in each
time period �t = T/K , three kinds of effects exist, including
the encoding, the controls, and the dephasing. We observe
the system’s final state and its perturbed state to calculate the
corresponding QFI. To search optimal controls for maximiz-
ing the QFI, we use the FMINSEARCH function in MATLAB, as
described above.

B. Experimental results

The measured result of the width at half height of the
spectrum is � = 2.13 Hz; thus, T2 = 1/π� ≈ 0.149 s. Af-
ter a careful test, we choose ω0 = 60 × 2π and δω0 = 2π

in our experiments. We compare the standard scheme and
the control-enhanced scheme for a total encoding time up
to 2.5T2, as shown in Fig. 5(b). We label the QFI directly
calculated by the numerical results as F theo

Q and the QFI mea-
sured from experiments as F exp

Q . When the encoding time is
smaller than the coherence time (T/T2 < 1), it can be seen
that F theo

Q and F exp
Q match very well. This reveals that within

the coherence time, our theoretical model is accurate, and our
control-enhanced scheme has the same performance as pre-
dicted. However, as the encoding time increases (T/T2 > 1),
the gaps between F theo

Q and F exp
Q gradually become distinct.

This may result from many factors, such as the amplitude-
damping effects or other unknown noises. As our theoretical
model concerns only the parallel-dephasing noise, many other

kinds of noises can lead to a reduction of the theoretically
predicted QFI. Nevertheless, during the tested encoding time,
we find that our control-enhanced scheme can improve the
QFI compared to the standard scheme, up to around twofold.
Overall, the above experimental results are roughly consistent
with the theoretical predictions, revealing the effectiveness of
the proposed control-enhanced quantum metrology scheme.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a practical control-enhanced
quantum metrology scheme to defend against Markovian
noises to improve the precision of frequency estimation.
The numerical comparisons of our scheme with the standard
scheme and the ancilla-assisted scheme under typical noise
channels revealed that our scheme works for all the tested
cases and can achieve substantial precision improvements up
to an order of magnitude. The experimental verification in the
nuclear-magnetic-resonance system shows the effectiveness
of the proposed method.

Instead of using gradient-based algorithms or reinforce-
ment learning algorithms, we utilized a gradient-free algo-
rithm that requires fewer computational resources and is more
friendly for experimental applications. Therefore, our scheme
can be easily adapted to a fully online version for automat-
ically discovering optimal controls on real platforms [56].
As realistic noises may be very complex and other unknown
imperfections may be involved, our scheme should achieve
more impressive improvements [57,58]. Moreover, the re-
search here can be combined with related theoretical studies
[5,8,9] which provide the precision bound of noisy quantum
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metrology to explore the underlying properties of the encod-
ing dynamics in our scheme. In addition, our scheme can also
be extended to quantum metrology in a non-Markovian noise
environment [59,60].
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Acín, Noisy Metrology beyond the Standard Quantum Limit,
Phys. Rev. Lett. 111, 120401 (2013).

[16] J. B. Brask, R. Chaves, and J. Kołodyński, Improved Quantum
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[26] R. Demkowicz-Dobrzański and L. Maccone, Using Entangle-
ment Against Noise in Quantum Metrology, Phys. Rev. Lett.
113, 250801 (2014).

[27] Z. Huang, C. Macchiavello, and L. Maccone, Usefulness of
entanglement-assisted quantum metrology, Phys. Rev. A 94,
012101 (2016).

[28] K. Wang, X. Wang, X. Zhan, Z. Bian, J. Li, B. C. Sanders, and
P. Xue, Entanglement-enhanced quantum metrology in a noisy
environment, Phys. Rev. A 97, 042112 (2018).

[29] Z. Huang, C. Macchiavello, and L. Maccone, Noise-dependent
optimal strategies for quantum metrology, Phys. Rev. A 97,
032333 (2018).

[30] J. Liu and H. Yuan, Quantum parameter estimation with optimal
control, Phys. Rev. A 96, 012117 (2017).

022602-7

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphys1958
https://doi.org/10.1007/s13538-011-0037-y
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1038/s41598-017-16710-w
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1038/s41534-017-0014-6
https://doi.org/10.1007/s11128-017-1596-9
https://doi.org/10.1103/PhysRevLett.112.120405
https://doi.org/10.1038/ncomms2067
https://doi.org/10.1103/PhysRevA.64.052106
https://doi.org/10.1103/PhysRevLett.111.120401
https://doi.org/10.1103/PhysRevX.5.031010
https://doi.org/10.1103/PhysRevA.94.052306
https://doi.org/10.1103/PhysRevLett.123.180504
https://doi.org/10.1103/PhysRevA.87.032102
https://doi.org/10.1103/PhysRevX.5.041016
https://doi.org/10.1088/1367-2630/18/7/073034
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.150802
https://doi.org/10.1103/PhysRevLett.115.110401
https://doi.org/10.1103/PhysRevLett.117.160801
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1103/PhysRevA.94.012101
https://doi.org/10.1103/PhysRevA.97.042112
https://doi.org/10.1103/PhysRevA.97.032333
https://doi.org/10.1103/PhysRevA.96.012117


YUE ZHAI et al. PHYSICAL REVIEW A 107, 022602 (2023)

[31] J. Liu and H. Yuan, Control-enhanced multiparameter quantum
estimation, Phys. Rev. A 96, 042114 (2017).

[32] X. Yang, X. Chen, J. Li, X. Peng, and R. Laflamme, Hybrid
quantum-classical approach to enhanced quantum metrology,
Sci. Rep. 11, 672 (2021).

[33] D. Basilewitsch, H. Yuan, and C. P. Koch, Optimally con-
trolled quantum discrimination and estimation, Phys. Rev. Res.
2, 033396 (2020).

[34] S. Qin, M. Cramer, C. Koch, and A. Serafini, Optimal control
for Hamiltonian parameter estimation in non-commuting and
bipartite quantum dynamics, SciPost Phys. 13, 121 (2022).

[35] H. Xu, J. Li, L. Liu, Y. Wang, H. Yuan, and X. Wang, Gen-
eralizable control for quantum parameter estimation through
reinforcement learning, npj Quantum Inf. 5, 82 (2019).

[36] T. Xiao, J. Fan, and G. Zeng, Parameter estimation in quantum
sensing based on deep reinforcement learning, npj Quantum Inf.
8, 2 (2022).

[37] B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch,
and P. S. Jessen, Accurate and Robust Unitary Transformations
of a High-Dimensional Quantum System, Phys. Rev. Lett. 114,
240401 (2015).

[38] J. Liu, M. Zhang, H. Chen, L. Wang, and H. Yuan, Optimal
Scheme for Quantum Metrology, Adv. Quantum Technol. 5,
2100080 (2022).

[39] J. A. Nelder and R. Mead, A simplex method for function
minimization, Comput. J. 7, 308 (1965).

[40] M. M. Müller, R. S. Said, F. Jelezko, T. Calarco, and S.
Montangero, One decade of quantum optimal control in the
chopped random basis, Rep. Prog. Phys. 85, 076001 (2022).

[41] M. Rossignolo, T. Reisser, A. Marshall, P. Rembold, A. Pagano,
P. J. Vetter, R. S. Said, M. M. Müller, F. Motzoi, T. Calarco, F.
Jelezko, and S. Montangero, QuOCS: The Quantum Optimal
Control Suite, arXiv:2212.11144.

[42] X. Yang, J. Li, and X. Peng, An improved differential evolution
algorithm for learning high-fidelity quantum controls, Sci. Bull.
64, 1402 (2019).

[43] C. P. Koch, Controlling open quantum systems: Tools, achieve-
ments, and limitations, J. Phys.: Condens. Matter 28, 213001
(2016).

[44] D. A. Lidar, Lecture notes on the theory of open quantum
systems, arXiv:1902.00967.

[45] T. F. Havel, Robust procedures for converting among Lindblad,
Kraus and matrix representations of quantum dynamical semi-
groups, J. Math. Phys. 44, 534 (2003).

[46] J. Kelly et al., Optimal Quantum Control Using Randomized
Benchmarking, Phys. Rev. Lett. 112, 240504 (2014).

[47] D. J. Egger and F. K. Wilhelm, Adaptive Hybrid Optimal Quan-
tum Control for Imprecisely Characterized Systems, Phys. Rev.
Lett. 112, 240503 (2014).

[48] F. Frank, T. Unden, J. Zoller, R. S. Said, T. Calarco, S.
Montangero, B. Naydenov, and F. Jelezko, Autonomous cali-
bration of single spin qubit operations, npj Quantum Inf. 3, 48
(2017).

[49] L. Childress, M. Gurudev Dutt, J. Taylor, A. Zibrov, F. Jelezko,
J. Wrachtrup, P. Hemmer, and M. Lukin, Coherent Dynamics of
Coupled Electron and Nuclear Spin Qubits in Diamond, Science
314, 281 (2006).

[50] M. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko,
A. Zibrov, P. Hemmer, and M. Lukin, Quantum register based
on individual electronic and nuclear spin qubits in diamond,
Science 316, 1312 (2007).

[51] A. Fujiwara, Estimation of a generalized amplitude-damping
channel, Phys. Rev. A 70, 012317 (2004).

[52] L. Chirolli and G. Burkard, Decoherence in solid-state qubits,
Adv. Phys. 57, 225 (2008).

[53] L. M. K. Vandersypen and I. L. Chuang, NMR techniques for
quantum control and computation, Rev. Mod. Phys. 76, 1037
(2005).

[54] M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Res-
onance (Wiley, Hoboken, NJ, 2013).

[55] M. Cerezo, A. Sone, J. L. Beckey, and P. J. Coles, Sub-
quantum Fisher information, Quantum Sci. Technol. 6, 035008
(2021).

[56] Z. Hou, R.-J. Wang, J.-F. Tang, H. Yuan, G.-Y. Xiang, C.-F. Li,
and G.-C. Guo, Control-Enhanced Sequential Scheme for Gen-
eral Quantum Parameter Estimation at the Heisenberg Limit,
Phys. Rev. Lett. 123, 040501 (2019).

[57] X.-D. Yang, C. Arenz, I. Pelczer, Q.-M. Chen, R.-B. Wu, X.
Peng, and H. Rabitz, Assessing three closed-loop learning al-
gorithms by searching for high-quality quantum control pulses,
Phys. Rev. A 102, 062605 (2020).

[58] X. Yang, J. Thompson, Z. Wu, M. Gu, X. Peng, and J. Du, Probe
optimization for quantum metrology via closed-loop learning
control, npj Quantum Inf. 6, 62 (2020).

[59] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K.
Wilhelm, Optimal Control of a Qubit Coupled to a Non-
Markovian Environment, Phys. Rev. Lett. 102, 090401
(2009).

[60] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and J. T.
Stockburger, Optimal Control of Open Quantum Systems: Co-
operative Effects of Driving and Dissipation, Phys. Rev. Lett.
107, 130404 (2011).

022602-8

https://doi.org/10.1103/PhysRevA.96.042114
https://doi.org/10.1038/s41598-020-80070-1
https://doi.org/10.1103/PhysRevResearch.2.033396
https://doi.org/10.21468/SciPostPhys.13.6.121
https://doi.org/10.1038/s41534-019-0198-z
https://doi.org/10.1038/s41534-021-00513-z
https://doi.org/10.1103/PhysRevLett.114.240401
https://doi.org/10.1002/qute.202100080
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1088/1361-6633/ac723c
http://arxiv.org/abs/arXiv:2212.11144
https://doi.org/10.1016/j.scib.2019.07.013
https://doi.org/10.1088/0953-8984/28/21/213001
http://arxiv.org/abs/arXiv:1902.00967
https://doi.org/10.1063/1.1518555
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1038/s41534-017-0049-8
https://doi.org/10.1126/science.1131871
https://doi.org/10.1126/science.1139831
https://doi.org/10.1103/PhysRevA.70.012317
https://doi.org/10.1080/00018730802218067
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1103/PhysRevLett.123.040501
https://doi.org/10.1103/PhysRevA.102.062605
https://doi.org/10.1038/s41534-020-00292-z
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevLett.107.130404

