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Entanglement-breaking channels are quantum channels transforming entangled states to separable states.
Despite a detailed discussion of their operational structure, to be found in the literature, studies on dynamical
characteristics of this type of maps are yet limited. We consider one of the basic questions: for Lindblad-type
dynamics, when does a given channel break entanglement? We discuss the finite-dimensional case where the
quantification of entanglement via entanglement witnesses is utilized. For the general setup, we use the method
of quantum speed limit to derive lower bounds on entanglement breaking times in terms of an input state, the
dynamical map, and the witness operator. Then, with a particular choice of the input state and the entanglement
witness, the bounds for the breaking time are turned to solely reflect the characteristics of the dynamics.

DOI: 10.1103/PhysRevA.107.022430

I. INTRODUCTION

Quantum speed limit [1–6] is a well-known fundamental
concept related to the question about time-energy uncertainty
relations in quantum mechanics. However, at the same time,
several diverse applications of quantum speed limit (QSL) can
be found [7–15]. The most popular form of QSL is due to
Mandelstam and Tamm [1,2] and depends on the variance of
the generator of time evolution. However, sometimes the vari-
ance would give an unreasonable assessment, and the average
value of the generator is employed, leading to the so-called
Margolus-Levitin QSL [4], which in fact has been derived
before by Fleming [3].

One can ask a philosophical question: Why does QSL
provide useful pieces of information, given that it is “just”
a mere consequence of an underlying time evolution? Here
we consider a problem which, on top of being interesting and
relevant by itself, also perfectly illustrates the way in which
QSL overcomes an overall complexity of the full description
of a quantum system’s dynamics.

To be more precise, we are concerned with quantum chan-
nels generated by Markovian dynamics of open quantum
systems. We ask whether such channels are entanglement
breaking. Any channel � is called entanglement breaking
(EB) if the composite state (� ⊗ I )[ρ] is always separable,
even for entangled input states ρ [16]. Since we only consider
quantum channels which belong to a semigroup parametrized
by t � 0, i.e., channels of the form �t = etL, the question
we pose gains a bit of structure. In particular, for t = 0 we
have �0 = I, so the channel �0 is not entanglement breaking.
We call such channels entanglement preserving (EP). One can
expect that, depending on L, the range of time splits into two
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nonempty and disjoint sets,

t ∈ [0,∞[= TEP(L) ∪ TEB(L), (1)

with self-explanatory interpretations. Even though t = 0 ∈
TEP(L), for every L, both sets in general will not be connected.
It might happen that the channel is EP for t ∈ [0, tEB[ and
starts to be EB at t = tEB. However, at a later time it is again
EP (revival of the EP property).

We might ask whether both sets can be characterized in a
more direct way. It is clear that, even for qubit channels, the
above task seems hopeless. In this simplest case, even though
one is able to explicitly write down cumbersome conditions
which describe the EB property [17], it is not possible to turn
such complex inequalities into an informative description of
TEB(L).

In this paper we establish quantum speed limit for (po-
tentially) entanglement-breaking channels, i.e., given the fact
that �0 is entanglement preserving, we bound from below the
time in which this property might be lost. In other words, we
are to bound the time tEB such that a given channel �t is
certainly entanglement preserving for t ∈ [0, tEB[. The stan-
dard formulation of QSL tells us what is the minimum time
necessary to pass from a given state to an orthogonal state. Our
results tell what is the minimal time during which the channel
in question is entanglement preserving. We shall stress that
this methodology is not aiming at delivering the very exact
moment in which the channel becomes entanglement breaking
since the problem of separability is, in general [18], NP hard
(however, in certain circumstances it can almost always be
solved [19]).

The paper is organized as follows. In Sec. II we present
the methodology as well as a necessary formal background
concerning quantum channels. We then utilize entanglement
witnesses to establish in Secs. III and IV various bounds for
tEB, in particular, bounds inspired by the Mandelstam-Tamm
QSL and Margolus-Levitin QSL. In Sec. IV B we discuss the
results with an example.
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II. PRELIMINARIES

In accordance with the formalism of quantum mechanics,
let H1 be a Hilbert space of a system under consideration and
let H2 be a Hilbert space of an auxiliary system. To study
open-system evolution, being a t-parametrized completely
positive and trace-preserving map on B(H1), one can rely on
expectation values [20,21]

〈A(t )〉ρ = tr(Â (�t ⊗ I )[ρ]). (2)

Here ρ denotes an initial state acting on a composite Hilbert
space H1 ⊗ H2, while Â is an arbitrary observable therein,
i.e., a Hermitian operator from B(H1 ⊗ H2).

Different ways to characterize the map �t concern differ-
ent choices of initial states and observables. For instance, in
quantum process tomography [22,23], the overall profile of
the map �t is recovered by collecting several 〈A(t )〉 con-
structed from various pairs of ρ and Â, so that both inputs
and observables exhaust some fixed bases of the matrix space
B(H1). In this case full knowledge about the auxiliary space
H2 is not required. Another example is the extraction of a
characteristic of an external system, encoded in an interac-
tion with the probe system H1 (signal), where in this case
the auxiliary system H2 can be taken as a reference (idler),
a catalyst, or the source of enhancement for the manipulation
[24].

For the sake of studying the dynamics of entanglement,
concerning the action of the map �t , an entanglement witness
Ŵ [25–28] will be an appropriate choice for the observable Â.
With this choice

wρ (t ) := 〈W (t )〉ρ = tr(Ŵ (�t ⊗ I )[ρ]), (3)

and

wρ (0) < 0, (4)

since by definition tr(σŴ ) � 0 if σ is a separable state, and
we require ρ to be entangled.

In a more formal fashion we now recall that �t is called
entanglement breaking [16,17] if (�t ⊗ I )[σ ] is separable for
all density matrices σ acting on H1 ⊗ H2, where H2 is a finite
dimensional Hilbert space. By setting ρ to be entangled, as
exposed in Eq. (4), and if �t becomes entanglement breaking
at a time moment tEB, this property will be reflected in the sign
of the function wρ (tEB). This sign shall change before tEB, or,
in an optimal case, wρ (tEB) = 0.

Interestingly, when both subsystems are finite dimensional
and symmetric, i.e., H1 = H2 � Cd , the initial state ρ can be
chosen to be a maximally entangled, pure state ρ = |�+〉〈�+|
[23], where

|�+〉 = d−1/2
∑

k

|k〉 ⊗ |k〉, (5)

and {|k〉} is a basis of Cd . In such a case, the final state ρ�t =
(�t ⊗ I )[ρ] is simply a Choi-Jamiołkowski isomorphic rep-
resentation of the map �t [29,30]. In this sense one can say
that entanglement of ρ�t certifies that the corresponding map
�t is entanglement preserving.

For nonsymmetric finite dimensional cases, and also for
infinite dimensional case, even though the notion of iso-
morphism may not be applicable, the basic concepts can be

illustrated in the similar way, i.e., an entanglement witness for
the outcome state can also be an EP witness for the dynamical
map. However, here we shall restrict our attention only to the
finite dimension and symmetric situation (both subsystems
have the same dimension).

From the perspective of our main question, we are partic-
ularly interested in a configuration-breaking time tCB(ρ,Ŵ )
defined as

tCB(ρ,Ŵ ) = min arg{wρ (t ) � 0}. (6)

In other words, this is minimal time t in which, for a given
prepare-measure configuration (ρ,Ŵ ), the state ρ�t is no
longer classified as entangled. Clearly

tEB = max
(ρ,Ŵ )

tCB(ρ,Ŵ ), (7)

because on the one hand, for a given ρ, we shall find an
optimal entanglement witness which works for the longest
possible time, while in the second step we need to find the
optimal entangled state ρ.

The aim of this paper is to find lower bounds for tCB(ρ,Ŵ ),
and consequently, bounds for tEB. From now on, we shall omit
the arguments of tCB. We note in passing that the time tEB is a
notion which relies on a possibility of entanglement detection
(through a witness or an entanglement measure in general).
Therefore, this time cannot by itself play the role of a witness.

A. Partitioning by spectral basis

Throughout this article we assume that �t is rendered by
a Lindblad generator [31], where the map converges to an
identity map as the time t ↓ 0 and supposedly becomes en-
tanglement breaking later on. In particular, for a given density
matrix σ ∈ B(H1), it is a continuous completely positive and
trace-preserving map �t = etL on B(H1) with

dσ

dt
= L[σ ], (8)

satisfying �t+s = �t ◦ �s for t � 0 and limt↓0 �t = I, where
I is an identity map on B(H1).

For further convenience we describe the situation in the
Heisenberg picture, where the dual map �∗

t = etL∗
is unital.

The generator L∗ can be written as

L∗ =
∑

α

λαuα tr(v†
α·), (9)

where both uα and vα are mutually orthogonal operators sat-
isfying

tr(v†
αuα′ ) = δαα′ . (10)

This is simply the spectral decomposition on the operational
level, where L∗[uα] = λαuα defines the corresponding eigen-
basis. Hence, by spectral theorem

�∗
t = etL∗ =

∑
α

eλαt uα tr(v†
α·). (11)

Since we discuss the case when both parties in the com-
posite system are finite dimensional, the operators can be
vectorized and the dynamical map becomes a linear trans-
formation [23]. Let us therefore write uα = |α) and tr(v†

α·) =
(α|, so that L∗ = ∑

α λα|α)(α| and �∗
t = ∑

α eλαt |α)(α|. We
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TABLE I. Classification of contributions to the witness function with respect to the characteristics of eigenvalues of the dynamical generator
L. Class I corresponds to the trivial eigenvalue; class II represents pure decay; class III comprises the rest. The index j runs from 1 to
L = (d2 − K − 1)/2. Note that we express arguments of complex numbers with respect to the branch (−π, π ].

Class 
α = λα ωα = �λα rα φα

I 
0 = 0 ω0 = 0 r0 � 0 φ0 = ∈ {0, π}
II 
1, . . . , 
K � 0 ω1 = · · · = ωK = 0 rα � 0 φ1 = · · · = φK ∈ {0, π}
III 
̃ j = 
̃2 j � 0 ω̃ j = −ω̃2 j � 0 r̃ j = r̃2 j � 0 φ̃ j = −φ̃2 j > 0

can see that the conditions L∗|α) = λα|α) and (α|α′) = δαα′

define the basis and its dual for the subspace of operators with
respect to L∗.

We stress that, within the introduced vectorization, |α)
does not need to be a Hermitian operator. We also assume that
{|α)} form a basis of B(H1), inducing a resolution1 of identity
map I = ∑

α |α)(α|.
Consequently, Eq. (3) reads

wρ (t ) =
∑

α

eλαt (ρ|[|α)(α| ⊗ I]|Ŵ ). (12)

Let us rewrite

(ρ|[|α)(α| ⊗ I]|Ŵ ) = rαeiφα ,

which is just a polar decomposition of a complex number,
and denote 
α = λα � 0 and ωα = �λα to respectively be
the decay rates and oscillation frequencies associated with the
dynamics. In the Appendix we show that all these parameters
split into three classes, summarized in Table I. Looking at the
table, one can immediately recognize that the function wρ (t )
is real, so that

�wρ (t ) =
∑

α

rαe
αt sin(ωαt + φα ) = 0, (13)

and Eq. (12) is equivalent to

wρ (t ) =
∑

α

rαe
αt cos(ωαt + φα ). (14)

We observe that the negative contributions, which reflect en-
tanglement, are associated with oscillation frequencies ωα and
initial phases φα . The first type of parameters describes the
sole properties of the dynamics, while the latter type refers
to the relative direction of the dynamical axes with respect to
prepare-measurement configuration.

B. Structure of the dynamical components

From the previous discussion we can see that one can char-
acterize the behavior of the witness looking at the interplay
between different parameters involved. In particular, one can
decompose the average of the witness as follows:

wρ (t ) = wI + wII (t ) + wIII (t ), (15a)

1If {|α)}α does not form the basis, one can restrict the description to
the subspace of B(H1), in accordance with the set {|α)}α , and choose
ρ and Ŵ accordingly.

where

wI = (ρ|[|0)(0| ⊗ I]|Ŵ ) = r0eiφ0 = ±r0, (15b)

wII (t ) =
K∑

j=1

r je

 j t cos(φ j ), φ j ∈ {0, π}, (15c)

wIII (t ) = 2
L∑

j=1

r̃ je

̃ j t cos(ω̃ jt + φ̃ j ). (15d)

Clearly wI is the constant term corresponding to λ0 = 0, while
wII (t ) represents the decay.

We relabeled 
K+1, . . . , 
d as 
̃1, . . . , 
̃2L, where L is the
number of elements in the class III . The same pattern has
been applied to ω̃ j , r̃ j , and φ̃ j . Note that the total dimension
decomposes as L = (d2 − K − 1)/2. Note also that the eigen-
vector associated with λ0 = 0, an identity operator 1, which
constitutes the class I , is denoted by a vector |0).

Let us now remark on an interesting case wI = r0 � 0,
corresponding to φ0 = 0. This can occur, for example, when

[|0)(0| ⊗ I]|Ŵ ) ∝ |0)⊗2,

or when Ŵ is orthogonal to the identity. In this scenario the
term wII (t ) + wIII (t ) will contribute to the negativity of wρ (t )
while the time-independent term wI will set the threshold for
the former terms. In other words, entanglement remains at
time t if

|wII (t ) + wIII (t )| > wI . (16)

Let us also point out a specific setting, in which one pre-
pares a pair (ρ,Ŵ ) in such a way that φ j = φ̃ j = π for j > 0.
At the initial time t = 0 the summands in Eqs. (15c) and (15d)
are all negative. Furthermore, we also observe that at time
t � 0

wII (t ) = −
K∑

j=1

r je

 j t � 0, (17)

wIII (t ) = −2
L∑

j=1

r̃ je

̃ j t cos(ω̃ jt ). (18)

The term wII (t ) is an increasing function eventually approach-
ing 0. We call such special prepare-measure pairs of operators
(ρ,Ŵ ) good configurations. Given that a good configuration
exists for every channel (which indeed is the case, as con-
structively shown in Sec. IV), we infer that coherent dynamics
speeds up the deterioration of the EP property.

In the following section we derive bounds for tCB us-
ing two standard methods relevant for quantum speed limit
and mentioned in the introduction, as well as obtain a
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specific bound valid for good configurations. While the
Mandelstam–Tamm-inspired bound will be valid in general,
the Margolus–Levitin-inspired bound will also only apply to
good configurations.

III. ENTANGLEMENT BREAKING TIME

In general, the problem of finding tCB(ρ,Ŵ ) defined in
Eq. (6), with the explicit form of the input function taken
from Eq. (14), is very complicated. This is due to its nonlinear
character and plenty of involved parameters. In fact, since
wρ (0) < 0, this problem boils down to solving highly nonlin-
ear equation wρ (t ) = 0, and further seeking for the minimum
root. Obviously, if all parameters are known, one can employ
numerical methods to find the exact breaking time. Therefore,
our goal is to get explicit results without specifying the pa-
rameters. To this end we shall follow three routes in order to
bound tEB.

A. Mandelstam–Tamm-inspired bound

In this part we consider the general case pertaining to an
arbitrary prepare-measure pair (ρ,Ŵ ).

Firstly, we follow the most standard approach towards
quantum speed limit. We observe that

wρ (t ) − wρ (0) =
∫ t

0
dtẇρ (t ) =

∫ t

0
dt

∑
α

rαλαeλαt+iφα .

(19)

Since rα � 0 and |eλαt+iφα | = |e
αt | � 1, we are able to bound

|wρ (t ) − wρ (0)| =
∣∣∣∣∣
∫ t

0
dt

∑
α

rαλαeλαt+iφα

∣∣∣∣∣
�

∫ t

0
dt

∑
α

rα|λα|

= t
∑

α

rα|λα|, (20)

where the last equation just follows from evaluating the re-
maining trivial integral. Consequently, we get

t � |wρ (t ) − wρ (0)|∑
α rα|λα| . (21)

Note that |λα| = √

2

α + ω2
α . Since wρ (0) < 0 and because

wρ (tCB) = 0, we get the first final result,

tCB � |wρ (0)|∑
α rα|λα| . (22)

Note that

wρ (0) =
∑

α

rα cos (φα ). (23)

As already mentioned, the time tCB also depends on the de-
tails of the prepare-measure configuration (ρ,Ŵ ). From now
on we intend to leverage our results by appropriately using this
freedom. Therefore, all remaining results of this section will
be derived under an assumption that the pair (ρ,Ŵ ) forms a
good configuration. Then, in Sec. IV we explicitly construct

such a configuration, in which the state is maximally entan-
gled while the witness is based on the projection on this very
special state.

On a first sight, one could attempt to use the same approach
in order to describe a future time moment in which a poten-
tial revival of EP takes place. Such configuration EP revival
time tCREP > tCB, if it exists, would then need to be defined
according to the condition wρ (tCREP) = −ε, for any ε > 0.
Consequently,

tCREP − tCB � |ε|∑
α rα|λα| . (24)

We immediately see that the bound assumes an infinitesimal
value, so it is not informative. One could still try to modify the
above procedure; however, it seems clear that the revival of EP
will not be captured in a similar fashion to the EB property.

B. General bound for good configurations

Let 
l be a lower bound for all real parts of the nontriv-
ial eigenvalues {γα}α �=0, i.e., 
l � 
α for all α. Because of
Eq. (17), fulfilled by good prepare and measure configura-
tions, we can provide a bound

wII (t ) � −e
l tCII � 0, (25)

where CII = ∑K
j=1 r j . In a similar fashion, if we denote

�̃ = max
j

ω̃ j, (26)

we get

wIII (t ) � −e
l tCIII (T ) � 0, (27)

where CIII (T ) = 2
∑L

j=1 r̃ j cos(ω̃ jT ), valid for 0 � t � T

whenever T � π/(2�̃). This is true because cos(ω̃ jT ) � 0
for all j. Consequently, if tCB � T , after a few algebraic steps
we get the lower bound

tCB � 1

|
l | ln

(
CII + CIII (T )

wI

)
:= τCB(T ). (28)

By the above arguments we get that if the right-hand side of
the last inequality is smaller than T , it forms a valid lower
bound on tCB. On the other hand, if this is not the case,
we know that tCB is at least T . Therefore, for any 0 � T �
π/(2�̃) we find that

tCB � min {T, τCB(T )}. (29)

Consequently, we also get

tCB � max
0�T�π/(2�̃)

min {T, τCB(T )}. (30)

We stress that, contrarily to the general result in Eq. (22)
the above bound only holds for good prepare-measure con-
figurations. In particular, the logarithm therein requires that
wI > 0, which is one of the characteristic features of such
configurations.

C. Margolus–Levitin-inspired bound for good configurations

For the sake of completeness we shall also discuss a vari-
ant of the bound inspired by the Margolus–Levitin bound.
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However, the method used to derive this bound turns out to
be unsuitable in the general case. This happens because that
bound is based on the inequality

cos(x) � 1 − 2

π
[x + sin(x)], (31)

valid for x � 0. In our problem, this inequality could po-
tentially be applied to bound cos(ωαt + φα ) factors in (14).
However, Eq. (31) constitutes a lower bound which, given that
we rely on wρ (tCB) � 0, is not useful. Moreover, in general we
have no control over the sign of the arguments ωαt + φα .

Quite interestingly, both limiting factors pointed out above
disappear for good configurations. First of all, the trigonomet-
ric terms appear only in wIII (t ) and are always multiplied by
−1. Moreover, since all ω̃ j are nonnegative, we also do not
suffer from the sign issue.

Therefore, for good configurations we can bound wIII (t ) as
follows:

wIII (t ) = −2
L∑

j=1

r̃ je

̃ j t cos(ω̃ jt )

� 2
L∑

j=1

r̃ je

̃ j t

[
2

π
ω̃ jt + 2

π
sin(ω̃ jt ) − 1

]

� 2
L∑

j=1

r̃ je

̃ j t

[
2

π
ω̃ jt − π − 2

π

]
. (32)

In the last line we just bounded the sin function by 1. Since
all ω̃ j � 0, the first term is positive so that the exponent
multiplying it can be bounded by 1 (since all 
̃ j � 0). On the
other hand, the second term is negative, so we can bound the
exponent as follows:

e
̃ j t = e−|
̃ j |t � 1 − |
̃ j |t, (33)

using the fact that e−x � 1 − x for x � 0. As a result, we get
the inequality

wIII (t ) � 2
L∑

j=1

r̃ j

[
2

π
ω̃ jt + π − 2

π
(|
̃ j |t − 1)

]
. (34)

Following the same reasoning concerning the exponential de-
cay, we also bound

wII (t ) �
K∑

j=1

r j (|
 j |t − 1). (35)

Finally, since wρ (tCB) � 0, we get the lower bound

tCB �
∑K

j=1 r j + 2 π−2
π

∑L
j=1 r̃ j − r0∑K

j=1 r j |
 j | + 2
∑L

j=1 r̃ j
(

2
π
ω̃ j + π−2

π
|
̃ j |

) . (36)

The above bound for the entanglement breaking time looks
rather cumbersome. It does not only depend on the spectrum
of the channel (superoperator) represented by the parameters

 j , 
̃ j , and ω̃ j , but also on an interplay between a state, an
entanglement witness, and the eigenbasis of the superoperator
(through r0, r j , and r̃ j). In the next section we select both the
state and the entanglement witness in such a way that together
they not only form a good configuration but also, due to very

high symmetry of this configuration, render the parameters “r”
which do not depend on the basis |α).

IV. SYMMETRIC ENTANGLEMENT WITNESS

In this section we consider a specific choice for the entan-
glement witness operator

Ŵ�+ = 1⊗2 − d|�+〉〈�+|, (37)

with the maximally entangled state |�+〉 already defined in
(5). One can observe that the average value of this witness
is 0 for all separable states, a fact which suggests a certain
optimality of this choice of the witness.

Moreover, in order to strengthen the configuration we
also select the state to be maximally entangled, i.e., ρ̂ =
|�+〉〈�+|. We shall call this whole choice a symmetric con-
figuration.

As a result, the time-dependent average value of the wit-
ness becomes

w�+ (t ) = 1 − d (�+|�t ⊗ I|�+),

= 1 − d
∑

α

eλαt sα, (38)

where

sα = (�+|[|α)(α| ⊗ I]|�+). (39)

In the vectorized notation, the state

ρ̂ = |�+〉〈�+| = 1

d

d∑
j, j′=1

| j〉〈 j′| ⊗ | j〉〈 j′| (40)

is represented by a vector

|�+) = 1

d

d∑
j, j′=1

|e j j′ ) ⊗ |e j j′ ), (41)

where |e j j′ ) are members of a canonical basis of the matrix
space B(H1). In other words, |e j j′ ) is a vectorized form of
| j〉〈 j′| (we remember that H1 = H2 � Cd ).

We are in position to use the above vectorization to prove
two technical results concerning the choice (38):

Lemma 1. For every channel �t we have that

∀α sα = 1

d2
. (42)

To show this result, one shall perform the calculation as
follows (we omit summation ranges for brevity):

sα = (�+|[|α)(α| ⊗ I]|�+)

= 1

d2

∑
j, j′, j′′, j′′′

(e j j′ |α)(α|e j′′ j′′′ )(e j j′ |e j′′ j′′′ )

= 1

d2

∑
j, j′

(α|e j j′ )(e j j′ |α) = 1

d2
(α|α) = 1

d2
. (43)

Passing from the second to the third line we used orthogonal-
ity of the vectors |e j j′ ).
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Lemma 2. For every channel �t we have that

rαeiφα = δα0 − dsα =
{

1 − 1
d , α = 0

− 1
d , otherwise

, (44)

provided that (ρ,Ŵ ) is a symmetric configuration.
First of all, since the witness under discussion is vectorized

to the form |Ŵ ) = |0)⊗2 − d|�+), for the symmetric config-
uration we know that

rαeiφα = (ρ|[|α)(α| ⊗ I]|Ŵ )

= (�+|[|α)(α| ⊗ I]|0)⊗2 − d (�+|[|α)(α| ⊗ I]|�+)

= (�+|[|α)(α| ⊗ I]|0)⊗2 − dsα.

Therefore, given Lemma 1 we only need to explicitly calcu-
late the first term. To this end, we observe that |0), which
corresponds to the identity operator 1 = ∑d

j=1 | j〉〈 j|, is rep-

resented as |0) = ∑d
j=1 |e j j ). We can then explicitly calculate

(�+|[|α)(α| ⊗ I]|0)⊗2

= 1

d

∑
j, j′

(e j j′ |α)(α|0)(e j j′ |0)

= 1

d

∑
j, j′

(e j j′ |α)δα0

[ ∑
j′′

(e j j′ |e j′′ j′′ )

]

= δα0

d

∑
j, j′

(e j j′ |α)
∑

j′′
δ j j′′δ j′ j′′

= δα0

d

∑
j, j′

(e j j′ |α)δ j j′

= δα0

d

∑
j

(e j j |0) = δα0

d

∑
j j′

(e j j |e j′ j′ ) = δα0. (45)

This finalizes the proof. Given both lemmas above, we reach
the following conclusion:

Corollary 1. The symmetric configuration is also a good
configuration.

Lemma 2 says that r0 = 1 − 1
d � 0 and consequently φ0 =

0. On the other hand, for α �= 0 (i.e., for members of classes II
and III) we can see that rαeiφα is real and negative. Therefore,
φα = π in all these cases. These are exactly the conditions
defining the good configuration.

As we can see, one can find a good configuration for any
channel �t , simply by means of the symmetric configuration
discussed in this section. Moreover, since the entanglement
breaking time tEB is lower bounded by all tCB, we conclude
that all three bounds derived in the previous section do apply
to tEB.

In the following, we simplify these bounds given the sym-
metric configuration. Before doing so, we note in passing
that the symmetric configuration has an additional interesting
feature, namely, it can be related to the geometric measure
of entanglement [32]. The latter was recently shown to be
equal to a minimal time required for a unitary (global) trans-
formation to transform a given pure entangled state to a
closed separable state [33]. An analog of tEB in this problem
reads �−1 arccos(

√
d ) with � defined as an energy scale of a

Hamiltonian rendering the global time evolution. Recently, a
similar problem has been studied in Refs. [34,35], where the
dynamical behavior of several entanglement quantifiers has
been considered for a generic form of dynamics, revealing
a relation between quantum speed limit and the change in
entanglement.

A. Speed of entanglement breaking property

We are now going to summarize the above findings by
bounding time when the channel becomes EB as

tEB � tCB(|�+〉〈�+|,Ŵ�+ ). (46)

The Mandelstam-Tamm-inspired lower bound for the sym-
metric configuration provides

tEB � d (d − 1)∑
α |λα| = TM−T. (47)

In the case of the general bound for good prepare-measure
configurations we can slightly simplify the intermediate
bound defined in (28) to the form

τCB(T ) = 1

|
l | ln

(
K + 2

∑L
j=1 cos(ω̃ jT )

d − 1

)
. (48)

Still, this bound does depend on the time threshold T , and
needs to be optimized as in (30). For consistency, let us denote
such an optimized bound by TGC. Finally, The Margolus–
Levitin-inspired lower bound for the symmetric configuration
gives

tEB �
K + 2 π−2

π
L − d + 1∑K

j=1 |
 j | + 2
∑L

j=1

(
2
π
ω̃ j + π−2

π
|
̃ j |

) = TM−L.

(49)

B. The qubit case

In this section we demonstrate implications of derived
bounds via an example of two qubits (i.e., d = 2) undergoing
local and unital Lindblad dynamics. Without loss of general-
ity, we consider the evolution map in the Heisenberg picture
given by

�∗
t ≡ diag(1, e−γ‖t , e−γ⊥t e−itω, e−γ⊥t eitω ), (50)

where γ‖, γ⊥ � 0 and π � ω � 0. These parameters need to
satisfy the complete positivity condition 2γ⊥ � γ‖ [36]. The
right-hand side of (50) gives the matrix representation of �∗

t in
the |α) basis, for α = 0, . . . , 3. Although the above expression
represents the spectral decomposition in Eq. (11), γ‖ = −|
1|,
γ⊥ = −|
̃1| and ω = ω̃1, these three parameters at the same
time correspond to the characteristics of the Markovian qubit
dynamics. In other words, γ‖ and γ⊥ are decay rates in lon-
gitudinal and transversal degrees of freedom with respect to a
quantization axis set by the system, while ω is the precession
frequency about such axis [37]. Note that, in general, the
parameter ω can also be 0, but we only consider nonzero
values of ω for clarity.

The two explicit bounds established in this paper become

TM−T(ω, γ‖, γ⊥) = 2

γ‖ + 2
√

ω2 + γ 2
⊥

, (51)
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TM−L(ω, γ‖, γ⊥) = π − 2
π
2 γ‖ + 2ω + (π − 2)γ⊥

. (52)

Optimization rendering the bound TGC(ω, γ‖, γ⊥) leads to a
transcendental equation

TGC = ln[1 + 2 cos(ωTGC)]

max{γ‖, γ⊥} , (53)

just because the right-hand side of (48) becomes a decreasing
function of T for 0 � T � π/2ω.

Let us now compare these three bounds regarding different
regions of the parameters (γ‖/ω, γ⊥/ω), where the modu-
lation by the frequency is used for simplicity. Figure 1(a)
suggests that TGC > TM−T > TM−L for all physically mean-

(a)

(b)

FIG. 1. Comparisons of TM−T, TGC and TM−L for qubit dynamical
map given in Eq. (50) for different values of γ⊥ and γ‖ modulated
by ω (therefore all quantities are given in dimensionless units). The
contours of the functions in (a) are shown in (b), labeled by their
corresponding values TM−T, TGC, and TM−L [their heights in (a),
respectively]. The black thick line represents the physical condition
for complete positivity of the dynamical map, i.e., only the maps with
parameters above such line are physically allowed. One can observe
that, in the physical regions of parameters we consider, the bounds
satisfy the order TGC > TM−T > TM−L.

ingful values of the parameters. In fact, there is a region
where TGC < TM−T, but its associate parameters γ‖ and γ⊥
do not satisfy complete positivity condition 2γ⊥ � γ‖—see
Fig. 1(b). In other words, for the qubit case we observe that
the dynamical map �t is certainly entanglement preserving
for all times t < TGC(ω, γ‖, γ⊥). We believe that this feature is
specific to qubits, since in general one could expect different
orders among TM−T, TGC, and TM−L for different regions of
the dynamical parameters {ωα} and {
α}, subject to complete
positivity.

V. CONCLUSION

Since time in quantum mechanics is not an observable—it
is “just” a parameter—the rich formalism of uncertainty rela-
tions cannot be utilized to describe the dynamics. However,
quantum speed limit, even though based on slightly different
foundations, often seems to offer a sufficient quantification of
various dynamical features of quantum systems. Here we pro-
pose yet another aspect in which the methodology behind the
QSL can successfully be applied. We study Markovian open-
system dynamics which, when described in the language of
quantum channels, always corresponds to an identity channel
in the starting moment of the evolution. Consequently, such
a dynamics always starts with an entanglement-preserving
channel. Therefore, depending on the details of the Marko-
vian dynamics, such a channel sooner (but not instantly) or
later (perhaps never) becomes entanglement breaking. While
the task to describe this transition exactly is computationally
laborious as it would pretend to solve an NP-hard problem
[18], using the QSL we managed to derive three lower bounds
for the time moment in which it happens (see Sec. IV A for
a summary). These bounds do only depend on the parameters
describing the associated master equation, so that they can be
expressed in terms of decay rates and oscillation frequencies.
Despite fundamental aspects pertaining to a better understand-
ing of quantum open-system dynamics, the presented results
in a way complement other efforts aiming at the description
of generation and degradation of quantum resources [38].

Future, more technically oriented studies can already start
from the case of qutrits (d = 3). Even for a specific map
similar to (50), namely,

�∗
t ≡ diag(1)

4⊕
k=1

diag(e−γkt e−itωk , e−γkt eitωk ), (54)

where all parameters are defined in the same spirit as γ‖, γ⊥,
and ω in the qubit case, one can see that there are four pairs
of real parameters to be considered. This setting immediately
leads to more complex relations among the obtained bounds.
We shall leave this example, as well as more elaborate cases,
as an open question for further development.
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APPENDIX: ABSENCE OF IMAGINARY PART
OF THE ENTANGLEMENT WITNESS

In the main text we split the parameters into three different
classes and, for the sake of brevity, just observed that this fact
easily implies that wρ (t ) is real. Here, we aim to show the
latter result in an independent way. As a by-product we shall
find that this is equivalent to the content of Table I.

In other words, here we explain why the imaginary part∑
α rαe
αt sin(ωαt + φα ) vanishes. Recall Eq. (12),

wρ (t ) =
∑

α

eλαt (ρ|[|α)(α| ⊗ I]|Ŵ ).

We first notice that L∗ is Hermiticity preserving, i.e.,
L∗(X †) = L∗(X )†, since the operation �∗

t is completely pos-
itive. This leads to L∗|α†) = λα† |α†) = λα|α†) being also
another eigen equation where |α†) is a Hermitian conjugate
of |α). The dual element of |α†) appears to be the conjugate
of |α), i.e., |α†) = |α)†. This comes from

δαα′ = (α|α′) = (α|α′) = (α†|α′†),

supplied by invariance of the trace (defining the above inner
product) with respect to transposition. From this relation, it
follows that

(ρ|[|α†)(α†| ⊗ I]|Ŵ ) = (ρ|[|α)(α| ⊗ I]|Ŵ ). (A1)

In other words, with (ρ|[|α)(α| ⊗ I]|Ŵ ) = rαeiφα we get

eiφ
α† = e−iφα . (A2)

Consequently, we obtain

�wρ (t ) = − i

2
(wρ (t ) − wρ (t ))

= − i

2

∑
α

(eλαt rαeiφα − eλαt rαe−iφα )

= − i

2

(∑
α

eλαt rαeiφα −
∑

α

eλ
α† t rα† eiφ

α†

)
.

The second sum is equal to the first sum because its summands
are just permutations of other summands.

The properties mentioned above also lead to the classifica-
tion given in Table I. For the case when |α) is Hermitian, we
have that ωα = 0, and consequently from Eq. (A1) the quan-
tity (ρ|[|α)(α| ⊗ I]|Ŵ ) is real. Hence, φα can be either 0 or
π for the Hermitian eigenelements. This scenario is relevant
for classes I and II (class I is special because only there the
eigenvalue is 0).

For class III, where |α) and its complex conjugate |α†) are
not Hermitian, one can group eigenelements of this type as
L = (d2 − K − 1)/2 pairs. For this class we will mark the
element with the tilde symbol and use an index j in place
of α for the sake of clarity. Let λ̃ j denote the eigenvalue of
| j) for j = 1, . . . , L if it is in the upper plane, and λ̃2 j denote
its complex conjugate, which is clearly an eigenvalue of |2 j).
Also, let us express the argument ϕ̃ j in the set (−π, π )\{0}.
With these conventions, the conditions in Table I for class III
follow from expressions Eqs. (A1)–(A2).
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