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Invariance of success probability in Grover’s quantum search under local noise with memory
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We analyze the robustness of Grover’s quantum search algorithm performed by a quantum register under a
possibly time-correlated noise acting locally on the qubits. We model the noise as originating from an arbitrary
but fixed unitary evolution U of some noisy qubits. The noise can occur with some probability in the interval
between any pair of consecutive noiseless Grover evolutions. Although each run of the algorithm is a unitary
process, the noise model leads to decoherence when all possible runs are considered. We derive a set of unitary
U ’s, called good noises, for which the success probability of the algorithm at any given time remains unchanged
with varying nontrivial total number m of noisy qubits in the register. The result holds irrespective of the presence
of any time correlations in the noise. We show that only when U is either of the Pauli matrices σx and σz (which
give rise to m-qubit bit-flip and phase-damping channels, respectively, in the time-correlation-less case), the
algorithm’s success probability stays unchanged when increasing or decreasing m. In contrast, when U is the
Pauli matrix σy (giving rise to m-qubit bit-phase flip channel in the time-correlation-less case), the success
probability at all times stays unaltered as long as the parity (even or odd) of the total number m remains the
same. This asymmetry between the Pauli operators stems from the inherent symmetry-breaking existing within
the Grover circuit. We further show that the positions of the noisy sites are irrelevant in the case of any of the
Pauli noises. The results are illustrated in the cases of time-correlated and time-correlation-less noise. We find
that the former case leads to a better performance of the noisy algorithm. We also discuss physical scenarios
where our chosen noise model is of relevance.
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I. INTRODUCTION

The past few decades have seen the advent and flourishing
of the field of quantum information and computation. One
of the most important classes of discoveries made in this
field has to be that of quantum algorithms which provide or
are believed to provide substantial computational advantages
over their classical counterparts. The most significant ones
include the Deutsch-Jozsa algorithm [1,2], Shor’s factoring
algorithm [3,4], the quantum search algorithms [5–10], and
the quantum simulation algorithms [11–16]. The advantages
of these quantum algorithms are assumed to be derived from
the efficient use of quantum coherence and entanglement.

After Grover’s seminal proposal [5,6] of his eponymous
quantum search algorithm, which has been shown to be a
special case of the more general amplitude amplification al-
gorithm [17], an extensive amount of research effort has been
directed towards implementing and studying the effect of
noise on the efficiency of the algorithm in an actual quantum
device. The experimental implementation of the algorithm
was first done using nuclear magnetic resonance techniques
[18]. Later on, the efficiency of Grover’s algorithm was stud-
ied in [19] and a generalization of the algorithm for an
arbitrary amplitude distribution was done in [8]. For more
works on the applications of the quantum search algorithm
see [20–28] and for some experimental implementations see
[29–37].

Even if a quantum algorithm theoretically provides sig-
nificantly better efficiency in comparison with its classical

counterpart, the efficiency in an implementation of the same
undoubtedly depends on the actual fabrication of the relevant
quantum circuit. Due to possible impurities in circuit com-
ponents and their erroneous implementations, fluctuations or
drifts may arise, which can affect the performance of the quan-
tum algorithm considerably. Therefore, characterizing such
deviations from the ideal situation, caused by decoherence and
noise, is important to assess the usefulness of an algorithm.
The disturbances may cause a unitary noise on the ideal sys-
tem, i.e., a small perturbation can arise in the Hamiltonians
describing the unitary gates, conserving the Hermiticity of the
Hamiltonian as well as the unitarity of the quantum gates (see,
e.g., [38–41]).

Studies of the consequences of noisy scenarios in quantum
algorithms started several decades back [42]. The effect of
noise on the Grover search algorithm was studied in [43],
which investigated the effect of random Gaussian noise on the
algorithm’s efficiency at each step. A perturbative method was
used in [44] to study decoherence in a noisy Grover algorithm
where each qubit suffers phase-flip error independently after
each step. The effect of a noisy oracle was considered in
[45,46]. In [47] the effect of depolarizing channels on all
qubits was examined and it was found that the number of
iterations needed to obtain the maximal efficiency of the suc-
cess probability decreases with increasing decoherence. The
effect of the Grover unitary becoming noisy was considered in
[48] using a noisy Hadamard gate, with unbiased and isotropic
noise, uncorrelated in each iteration of the Grover operators.
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An upper bound on the strength of the noise parameters up
to which the algorithm works efficiently was deduced. A
comparison of the effects of several completely positive and
trace-preserving maps on the efficiency and computational
complexity of the algorithm was described in [49]. The perfor-
mance of the algorithm under localized dephasing was studied
in [50]. For more discussions and further ramifications of
noise on Grover’s algorithm, see [51–53]. A fault-ignorant
quantum search was proposed in [54] where the searched
element is reached eventually but with the runtime depending
on the noise level. Steane’s [55] quantum error correction
code was also employed in the presence of the depolarizing
channel in [56]. On the other hand, noise with correlations in
time [57–69] and space [70–72] has been observed in realistic
quantum computing devices and the detrimental effects of
such noise on quantum error correcting codes have also been
reported [73–77].

In this paper we study the effects of a noise that originates
from the probabilistic noisy unitary evolution of some register
qubits in between any two Grover operations. In particular,
we find a set of noisy qubit unitaries, for which the success
probability of the algorithm remains unaffected by the number
of noisy qubits. We refer to those special noise unitaries as
good noises. We extend our investigation to a type of time-
correlated noise considered in [78–80] and examine its effects
on the performance of the algorithm.

We have organized the paper as follows. After reviewing
the noiseless Grover algorithm in Sec. II A, we introduce our
noise model and its physical motivation in Sec. II B. The
dynamics of the register under the Markovian-correlated noise
is analyzed in Sec. II C. The time-correlation-less case of our
noise model and its connection to some fundamental decoher-
ence processes are then elucidated in Sec. II D. In Sec. III we
give an overview of our analysis for finding the good noises.
A measure of the algorithm’s performance is introduced in
Sec. IV A. The effects of a memoryless and of a Markovian-
correlated noise on the efficiency of Grover’s algorithm are
numerically studied in Sec. IV B. Section V summarizes the
paper.

II. GROVER SEARCH: THE NOISELESS
CASE AND OUR NOISE MODEL

The Grover search algorithm that we consider here aims to
find a single marked element from a search space of finite size.
It is known to attain a quadratic speedup over the best classical
search. In our paper we consider a Grover search under a
time-correlated local noise. In the succeeding sections we
discuss the ideal Grover algorithm and then introduce our
noise model.

A. Noiseless scenario

The search algorithm is concerned with a search space
{x} = {1, 2, . . . , N} with N = 2n elements. There exists a
function f : {x} → {0, 1} defined such that

f (x) =
{

1 for x = w (marked element)
0 for x �= w.

(1)

FIG. 1. Grover’s search algorithm in the noiseless situation. The
register containing a string of n qubits, each in the state |0〉, is
subjected to a Hadamard operation in the first step. The second step is
the operation of the Grover operator, for t times, which is followed by
a measurement on the output state of the register in the computational
basis. The time taken to reach the maximal success probability is
O(2n/2 ). See the text for further discussion.

To search for the marked element w, a classical computer
evaluates f for each of the elements until the value 1, i.e.,
the marked element is found. This requires O(N ) operations.
The advantage of Grover’s search algorithm over the classical
one is that, by using a sequence of unitary operations, it can
find the marked element in only O(

√
N ) queries to f . The

steps of the algorithm are described as follows and a schematic
demonstration is shown in Fig. 1.

It starts with all the qubits of an n-qubit register in the
|0〉 state, where |0〉 is the eigenvector of a Pauli-z operator
with eigenvalue 1. The next step is to act on each qubit by
the Hadamard operator H = 1√

2
(σx + σz ), where σx and σz

are Pauli operators. This takes the total register to a uniform
superposition state

|s〉 =
( |0〉 + |1〉√

2

)⊗n

= 1√
N

⎛
⎜⎜⎝

N∑
x=1
x �=w

|x〉 + |w〉

⎞
⎟⎟⎠, (2)

where |w〉 is the marked state, i.e., the state corresponding to
the element we are searching for in the database of N = 2n

elements. The state |s〉 is then acted on by the Grover operator
G, given by G = DO, where D = (2|s〉〈s| − 1N ) is called the
diffuser and O = (1N − 2|w〉〈w|) is the oracle. (For a detailed
discussion about the construction of the diffuser D, oracle O,
and the Grover G unitaries, see, e.g., [41,81].) The operator G
has the form

G = −1N + 2|s〉〈s| − 4√
N

|s〉〈w| + 2|w〉〈w|. (3)

It acts on successive states until the state of the register
|ψ (t )〉 = Gt |s〉 reaches close enough to the marked state |w〉.
Here t stands for the number of times the Grover opera-
tor is employed after the first step, i.e., after the Hadamard
operation. The success probability, i.e., the probability to
find the marked state after the t th operation, is given as
P(t ) = |〈w|ψ (t )〉|2. It can be checked that the marked element
is reached after around t = �π

4

√
N	 Grover iterations (see

Fig. 2).
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FIG. 2. Noiseless Grover algorithm for n = 5 qubits in the regis-
ter. The number t of Grover iterations is along the horizontal axis and
the success probability P(t ) for finding the marked state is plotted on
the vertical axis. The smallest t for which P(t ) is maximal is given
by t = 4. All quantities plotted are dimensionless.

B. Noise model

For a large database, the number of iterations of the Grover
operator will be large, although quadratically smaller than that
for the classical algorithm, to reach the first maximal success
probability. A high number of applications of Grover operator
may result in some noise or fluctuations in the circuit pa-
rameters performing the computation, affecting the efficiency
of the algorithm [82,83]. In this paper we consider that in
the interval between any two consecutive Grover operations,
some m out of a total of n qubits evolve under some unitary
U that we call the noise unitary, at a rate specified by the
noise probability. Such local single-qubit errors in a quantum
register due to probabilistic unitary qubit evolutions have been
studied previously in numerous settings (see the discussions
and references in Secs. I and II D).

We express the effect of this noisy evolution in the form
of the total noise unitary χm acting on the whole register. For
example, it can be χm = U ⊗ (12)⊗(n−m) ⊗ U ⊗(m−1), meaning
m noisy qubits evolving under U and n − m noiseless qubits
acted on by the identity operator 12. We refer to the number
of noisy qubits m as the noise strength. The positions of the
m noise sites are allowed to be arbitrary, but are fixed during
a given run of the algorithm. The noise χm occurs with some
well-defined probability after every Grover iteration and we
can incorporate its effect on the algorithm by defining a new
unitary G′ = χmG, which we refer to as the noisy Grover
operator. Using Eq. (3), we obtain

G′ = −χm + 2(χm|s〉〈s| + χm|w〉〈w|) − 4√
N

χm|s〉〈w|. (4)

The probabilistic occurrences of the noise could possibly even
be correlated in time and we assume in this paper that the
noise at each consecutive time step is Markovian correlated.

The motivation behind choosing this type of noise model
comes from the possibility of spatiotemporally correlated
errors [84,85] and unwanted qubit crosstalk [86–90] in the
currently available experimental setups for implementing the
Grover search algorithm. We discuss below one such noisy
scenario.

FIG. 3. Circuit diagram for the Grover algorithm under time-
correlated noise. The n-qubit register is initialized in the state |0〉⊗n.
The total noise unitary χm acts in between two consecutive perfect
Grover iterations. Here ξt is the Markovian process introduced in
Sec. II B 1, D denotes the diffuser unitary of Sec. II A, Uf implements
the oracle O using the work and auxiliary qubits initialized in states
|0〉 and |−〉, respectively, and t denotes the number of noisy Grover
iterations.

1. Physical scenario motivating the noise model

Let us first discuss the ideal experimental setup of the im-
plementation of Grover’s search algorithm. We have already
discussed in Sec. II A that the Grover operator G contains
two parts: One is the diffuser D and the other is the oracle
O. The ideal experimental setup can be seen in Fig. 3, if we
ignore the noisy evolutions χξi

m for i = 1, 2, . . .. As shown in
Fig. 3, the oracle O can be implemented by introducing an
auxiliary qubit and an oracle workspace [41] to the circuit.
The auxiliary qubit in this case needs to be initialized in the
state |−〉 = |0〉−|1〉√

2
and then evolved together with the quantum

register, under the unitary Uf , that acts on the joint state of the
register and auxiliary qubit |x〉 ⊗ |q〉 as follows:

Uf (|x〉 ⊗ |q〉) = |x〉 ⊗ |q ⊕ f (x)〉. (5)

Here the function f (x) is given in Eq. (1) and ⊕ denotes the
modulo 2 addition. It can be easily verified that |q〉 = |−〉
recovers the oracle operation on the register’s state so that
Uf (|x〉 ⊗ |−〉) = (O|x〉) ⊗ |−〉. The physical implementation
of Uf generally requires the use of multiple work qubits
[41,91,92] in the oracle workspace (see Fig. 3). Suppose the
workspace has n̄ work qubits, each initialized in state |0〉 and
then evolved with the auxiliary and the n register qubits under
some combination of several one-qubit and two-qubit gates,
depending on the particular Uf [93]. The two-qubit gates, due
to technical constraints [82,94–98] of physical implementa-
tion, require the concerned qubits to be in close proximity
[99,100]. This increases the possibility of spatially correlated
errors [84,85] on those qubits. Unwanted crosstalk [86–90]
could creep in while the qubits are idle, i.e., in between any
two Grover steps, when no gates are applied on the register.
For these types of errors and noises, some of the register qubits
face noisy evolutions.

Let us consider that between two Grover steps, a crosstalk
error occurs due to a stochastic interaction Hamiltonian [101]
of the form

�(r,ν) = ξt
(
h(r) ⊗ σ (ν)

z

)
, (6)

with h(r) acting on the rth qubit of the register and the
Pauli σ (ν)

z acting on the νth work qubit. The dimensionless
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coupling strength ξt undergoes fluctuations at each time step.
The Hamiltonians h(r) and �(r,ν) are taken to be dimension-
less. The Hamiltonian h(r) leads to the local noisy unitary
U = exp(−ih(r) ) on the register qubit at each time step, as
described in Sec. II B. For the composite setup of the regis-
ter and the auxiliary qubit, we have exp(−i �(r,ν) ) = U ξt ⊗
|0〉〈0| + (U †)ξt ⊗ |1〉〈1|, which is a unitary on the rth register
qubit controlled by the νth work qubit [102,103] at each time
step.

Now suppose that any m of the total n-qubit register suffer
the crosstalk error, given in Eq. (6), in the interval between
two Grover iterations at time t . Hence, the total noisy Hamilto-
nian becomes � = ∑

(r,ν) �
(r,ν), where the sum is over all the

(r, ν) pairs corresponding to the m noisy register qubits. In the
physical implementation of Grover’s algorithm, all the work
qubits are unitarily brought back to state |0〉 after each oracle
operation using uncomputation [104–107]. Thus, the state of
the workspace before and after the complete oracle operation
is |0〉⊗n. So the joint state of the register |ψ (t )〉 and the oracle
workspace evolve under the total noise unitary, due to the
interaction Hamiltonian in Eq. (6), as e−i�[|ψ (t )〉 ⊗ |0〉⊗n].
This situation is analogous to the case where the noise unitary
χm, introduced in Sec. II B, acts on the register qubits. There-
fore, we can write

e−i�[|ψ (t )〉 ⊗ |0〉⊗n] = [
χξt

m |ψ (t )〉] ⊗ |0〉⊗n. (7)

Here ξt indicates that the noise can be time correlated. The
occurrence of this type of noise is demonstrated in Fig. 3.

In this paper we consider the coupling strength ξt to be a
time-homogeneous discrete-time Markov process [108–110].
In particular, we choose the dichotomous Markov chain con-
sidered in [78–80,111]. This kind of time-dependent coupling
strength may arise due to a noisy coupling field, which couples
the register and work qubits [112–114], and also due to a qubit
in the environment [115] or a spurious control field [116]. For
our noise model, ξt takes the two values 0 and 1 according to
the following conditional probabilities:

Pr(ξt+1 = l|ξt = k) = (1 − μ)Pr(ξt = k) + μδlk

= (1 − μ)pk + μδlk = pl|k . (8)

Here pk = Pr(ξt = k) denotes the probability of the event k
of the Markov process and pk|l denotes the conditional prob-
ability of event k, given that event l happened in the previous
time step. The parameter μ will be referred to as the memory
parameter and it can take any real value from 0 (memoryless)
to 1 (perfect memory).

This kind of correlated noise with partial memory can
potentially be found in real quantum devices and it has been
shown to provide an enhancement in the transmission of
classical information compared to transmission through noisy
channels without memory [78]. In Sec. II C we describe the
register’s time evolution under this time-correlated noise. It
will become evident that such a scenario could arise if the
noisy qubits in the quantum register get coupled to an ex-
ternal degree of freedom acting as a physical memory state
[103,117–119].

FIG. 4. Schematic diagram of transitions of the walker’s state at
t � 2 with the conditional probabilities defined in Eq. (8). See the
text for details.

C. Time evolution under Markovian-correlated noise

In our noise model, a total unitary evolution by χm of
locally evolving m noisy qubits is a probabilistic process,
happening after each noiseless Grover evolution G. This noisy
evolution is probabilistic in the sense that after a given Grover
evolution G, the state of the register is a convex mixture of two
possible states: one corresponding to no noise after evolution
by G and another corresponding to a noisy evolution by χm

after G. Now, as we discussed in Sec. II B, it can happen that
the probability of noise at a given time depends on the history
of the register’s noisy evolution [120,121]. In this paper we
consider the simplest of such situations, where this noise is
Markovian correlated in time (see Appendix B). In this case,
the evolution at each given instant is affected only by the
immediately previous time step. This potentially important
variety of noise with memory has not yet been studied before
in the case of the Grover algorithm. It should be noted here
that the results shown in the paper are not exclusive to only
this kind of noise, and the validity in this case will serve as an
indication of the generality of the results.

The time evolution under the time-correlated noise is easier
to describe if we incorporate an extra (not necessarily physi-
cal) degree of freedom, the walker, which we can trace out
after the evolution of the composite register-walker state. The
walker helps to keep track of the fluctuating coupling strength
ξt introduced in Sec. II B 1. The walker has two orthogonal
states |g〉 and |g′〉 and at each time step it performs a transition
between these two states with some well-defined probability.
In particular, it is in the state |g′〉 when ξt = 1 and in |g〉
when ξt = 0. A schematic diagram is shown in Fig. 4. When
it transitions to |g′〉, all the m qubits connected to it are rotated
by a unitary U and the other n − m are left as they were.
When it transitions to |g〉, all the n qubits connected to it are
left as they were. Thus, at each time step, application of an
ideal unitary Grover operator G is followed by each of the
following with some corresponding probabilities: (I) Any m
out of n qubits are rotated by a unitary U , i.e., the walker is in
state |g′〉, and (II) all the n qubits are left untouched, i.e., the
walker is in state |g〉. To make the situation clearer, let us say
that after the (t − 1)th noisy Grover iteration, the register is in
a state given by the density matrix ρt−1. After the noisy (t )th
iteration, the register will be a convex mixture of the following
two possible states:

ρt = G′ρt−1G′† with G′ = χmG [Possibility (I)],

ρt = Gρt−1G† [Possibility (II)].
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These processes are dictated by the state of the walker, which
in turn performs transitions according to the Markov process
as described in Eq. (8). When μ = 0, noise at each time
step is independent of what happened in the previous step,
since pk|l = pk . On the other hand, μ = 1 leads to pk|k = 1,
meaning that in the case of perfect memory, the walker state
remains fixed throughout the evolution. At t = 1, i.e., for
the first Grover iteration, the probabilities of (I) and (II) are
determined by the initial probabilities of the walker to be in
states |g′〉 and |g〉, respectively. These probabilities are called
stationary probabilities and are taken to be pg′ = p and pg =
1 − p, respectively. Here p can be referred to as the noise
probability. Note that here p and 1 − p are equal to p1 and
p0, respectively, in Eq. (8).

Before the application of the first Grover iteration, the n-
qubit register is in the uniform superposition state correspond-
ing to ρ0 := |s〉〈s|. Thus the density matrix of the composite
system containing the walker and the register before applying
the first Grover iteration is R0 = ( |g〉+|g′〉√

2

)( 〈g|+〈g′ |√
2

) ⊗ |s〉〈s|. So
the state of the register after the first and subsequent Grover
iterations will be obtained by tracing out the walker from
Rt , i.e., ρt = Trwalker{Rt }. In the following, the superoperators
�g[•] and �g′

[•] acting on an operator ρ will represent unitary
evolutions Gρ G† and G′ρ G′†, respectively. The time evolu-
tion of ρt can then be expressed using transition operators S0

and S as

R1 = S0R0 = {pg(|g〉〈g| + |g〉〈g′|) ⊗ �g[•]

+ pg′ (|g′〉〈g| + |g′〉〈g′|) ⊗ �g′
[•]}R0

= {pg(|g〉〈g| + |g〉〈g′|) ⊗ �g[ρ0]

+ pg′ (|g′〉〈g| + |g′〉〈g′|) ⊗ �g′
[ρ0]}. (9)

Therefore, ρ1 = Trwalker{R1} = pg�
g[ρ0] + pg′�g′

[ρ0] and

R2 = SR1 = (pg|g|g〉〈g| ⊗ �g[•] + pg|g′ |g〉〈g′| ⊗ �g[•]

+ pg′ |g|g′〉〈g| ⊗ �g′
[•] + pg′ |g′ |g′〉〈g′| ⊗ �g′

[•])R1.

(10)

Hence, ρ2 = Trwalker{R2} = ∑
i, j pi| j p j�

i[� j[ρ0]], where i
and j can be g or g′. Similarly, for t � 2 we have

Rt = St−1R1,

ρt = Trwalker{Rt }. (11)

The success probability, i.e., the probability to find the marked
state at time t , is given as

P(t ) = |〈w|ρt |w〉|. (12)

We show in Sec. II D that in the absence of any time
correlations, our noise model reduces to some well-known
decoherence processes.

D. Case of μ = 0 and unital decoherence processes

In the case when the noise in consecutive steps does not
have any time correlations, i.e., μ = 0, Eq. (8) has the form
pg|g = pg = pg|g′ and pg′|g = pg′ = pg′ |g′ . Putting these in the
expressions of S0 and S, we get S = S0. Taking the initial
register state ρ0 and the composite walker and register state

R0 as given in Sec. II C, we get the register’s state ρ1 after the
first noisy Grover iteration as

ρ1 = Trwalker{R1} = Trwalker{S0R0}
= (1 − p)�g[ρ0] + p�g′

[ρ0]

= (1 − p)(Gρ0G†) + pχm(Gρ0G†)χ†
m. (13)

Thus, the noisy evolution after the first noiseless Grover op-
eration is a quantum dynamical map [122–125] E given by
the Kraus operators K1 = √

1 − p1N and K2 = √
pχm so that

E[ρ] = K1ρK†
1 + K2ρK†

2 and ρ1 = E[Gρ0G†]. Since S0 = S
in the case of μ = 0, we have, for t � 1,

ρt = E[Gρt−1G†]. (14)

Note that for μ > 0, an expression like Eq. (14) is not possible
because of noise being conditioned on the application at the
previous time step.

For U = σx, the noisy operation E thus becomes an m-qubit
bit-flip channel. Similarly, U = σz leads to phase-damping
and U = σy to bit-phase-flip channels. A comparison of the
effects of these channels on the Grover algorithm was done
extensively in [49]. In fact, all these are examples of unital
channels (that is,

∑
i K†

i Ki = 1) and any unital channel can be
expressed, like in Eq. (13), as an affine combination of unitary
channels [126].

We have shown how the memoryless special case of the
Markovian-correlated noise gives rise to some of the most
relevant sources of decoherence in quantum registers [87]. It is
a general feature that the success probability of an algorithm
decreases with an increase in the strength of noise, as seen,
e.g., in [48], whereas there is a possibility of identifying such
noise for which the decrease in the success probability does
not depend on the number of noisy qubits m. (For an example,
see Appendix A.) If it is possible to choose between different
noise-generating unitaries in an experimental setup, it will be
helpful to have those noise unitaries which do not decrease
the success probability with an increase in the noise strength.
We can refer to such noise unitaries as good noises. In the
succeeding section, we try to identify the form of such good
noises.

III. SET OF GOOD NOISES

To find what the good noises are, we will start with the most
general single-qubit unitary matrix (in the {|0〉, |1〉} basis),
viz.,

U =
(

a b
−b̄eiθ āeiθ

)
, (15)

with a, b ∈ C, |a|2 + |b|2 = 1, θ ∈ [0, 2π ), and z̄ denoting the
complex conjugate of z. The good noise corresponds to the
values of a, b, and θ , for which the success probability P(t )
[Eq. (12)] remains unchanged on changing the value of m. If
the total noise unitary χm acts on m sites, we will denote P(t )
in that case by Pm(t ). The good noises will be found through
elimination of U ’s for which Pm(t ) changes with m. We will
also show the independence of the positions of the m noisy
qubits as long as U is one of the Pauli matrices.
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To start with, we will check under what conditions the
success probability at time t = 1 remains constant under vary-
ing m. After that, we will extend our investigations for the
times t > 1. A detailed calculation of the search for good
noises is given in Appendix C for t = 1. The derivation be-
gins with the aim to keep Pm(t = 1) = (1 − p)|〈w|G|s〉|2 +
p|〈w|G′|s〉|2 constant with the alteration of m, and we find that
both a and b of Eq. (15) cannot be nonzero [see the derivation
of Eqs. (C3) and (C4)]. The first condition (‘Condition-1’) for
constructing a good noise is |a| = 1 or |b| = 1. This condition
implies that χm must be a generalized permutation unitary
matrix. We can then introduce a state |w′〉 as follows:

χm|w〉〈w|χ†
m =

{|w〉〈w| for |a| = 1

|w′〉〈w′| for |b| = 1.
(16)

It turns out that the state’s evolution can be written in the basis
B, where

B =
{{|s′

1〉, . . . , |s′
M〉, |w〉} for |a| = 1

{|s′
1〉, . . . , |s′

M〉, |w〉, |w′〉} for |b| = 1.
(17)

[See the arguments around Eqs. (C6) and (C7) in Ap-
pendix C.] The basis set B is different from the N-dimensional
computational basis set {|x〉} used in Eq. (2). The basis ele-
ments |s′

i〉 are constructed using the computation basis states
{|d〉i}d∈{x} as

|s′
i〉 = 1√

i

∑
|w〉,|w′〉/∈{|d〉i}

|d〉i,

with i = S ({|d〉i}) (where S denotes cardinality of the set),⊔
i{|d〉i} = {|x〉}, and 〈s′

i|s′
j〉 = δi j . The dimension of B is

M + 1 and M + 2 for |a| = 1 and |b| = 1, respectively. For a
matrix U satisfying ‘Condition-1’, there are two possibilities:
Its two nonzero elements are either equal or unequal. As
elaborated in Appendix C, this implies that

dim(B) =
{

2 or 3 for |a| = 1

3 or 4 for |b| = 1,
(18)

which then leads to another necessary condition,
‘Condition-2’: M = 1 or 2. This requirement ensures that
the dimension of the basis B remains constant for any given
number of noise sites m (see Appendix C for more details).
Conditions 1 and 2 narrow down the possible set of good
noises to a restricted set of unitaries, the Pauli matrices eiφ12,
eiφσx, eiφσy, and eiφσz for any φ ∈ [0, 2π ). Basically, we
have derived that the above three (excluding the trivial 12)
noises lead to Pm(t = 1) = Pm+1(t = 1) ∀ m, thus satisfying
the criteria for being good noises.

We now check if these noise unitaries belong to the set
of good noises for all times, i.e., for t > 1. From Eqs. (9),
(10), and (12) we can see that the success probability at
time t , for m noisy qubits, can be written as Pm(t ) =∑

{γm (t )} pγm (t )|〈w|γm(t )|s〉|2. Here {γm(t )} is the set of results
from the multiplication of all possible length-t configurations
composed of the two unitaries G and G′. For example, at t =
2, {γm(2)} = {GG, GG′, G′G, G′G′}. The {pγm (t )} are the re-
spective probabilities of each such trajectory γm(t ) in {γm(t )}.
To satisfy the requirement of Pm(t ) = Pm+1(t ) ∀ m and all t ,
we need to have |〈w|γm(t )|s〉| = |〈w|γm+1(t )|s〉| ∀ m for any

time t . We can check that 〈w|γm(t )|s〉 have to be polynomials
of order t of the four variables: 〈s|χm|s〉, 〈s|χm|w〉, 〈w|χm|s〉,
and 〈w|χm|w〉. Now, for U ∈ {σx, σy, σz}, we have χ2

m = 1N .
So the constituent nonzero terms in 〈w|γm(τ )|s〉 for any t = τ

will have degrees with the same parity as τ , i.e., the degrees
of each term will belong to the set {τ, τ − 2, τ − 4, . . .}. For
example, a trajectory γm(2) = G′G′ will correspond to the
polynomial 〈w|γm(2)|s〉 of order 2. It contains terms of degree
2, such as 〈w|χm|s〉〈s|χm|s〉 and 〈w|χm|w〉2, and terms of
degree 0, such as 〈w|w〉 = 1 and 〈w|s〉 = 1√

N
.

It can be shown that 〈s|χm|s〉 = 1
N

∑N
k=1 ψq = [ a+b

2 +
eiθ ā−b̄

2 ]m, with ψq introduced in Eq. (C2). Also, |〈s|χm|w〉| =
|〈w|χm|s〉| = 1√

N
and |〈w|χm|w〉| = |a|m. These results will

be used in the following arguments for verifying the constancy
of |〈w|γm(t )|s〉| with respect to m for any given t , in the case
of the Pauli matrices.

For U = σx, we have a = 0, b = 1, and θ = π . So
〈s|χm|s〉 = 1, 〈w|χm|s〉 = 1√

N
= 〈s|χm|w〉, and 〈w|χm|w〉 =

0 ∀ m. Thus, |〈w|γm(t )|s〉| for any t does not depend on m.
This in turn implies that that Pm(t ) is independent of m in the
case of U = σx.

For U = σz, we have b = 0, a = 1, and θ = π and so
〈s|χm|s〉 = 0. From Eq. (16) we have that the magnitudes
|〈w|χm|s〉|, |〈w|χm|w〉|, and |〈s|χm|w〉| remain constant with
respect to m. Moreover, sgn(〈w|χm|s〉) = sgn(〈w|χm|w〉) =
sgn(〈s|χm|w〉) ∀ m, where sgn(z) = z

|z| with z ∈ R. Thus, in
the case of σz, |〈w|γm(t )|s〉| for any t depends on the three
variables 〈w|χm|s〉, 〈w|χm|w〉, and 〈s|χm|w〉. The magnitudes
of these variables remain constant with m, but their signs,
which do vary with m, are nevertheless equal among them-
selves. We have shown above that the constituent terms of
the polynomials are of the same parity (all even or all odd),
whereby we can infer that the value of |〈w|γm(t )|s〉| is not
affected by m. Hence, our claim for σz to be a good noise thus
also holds for any time t .

In the case of U = σy, we have a = 0, b = −i, and
θ = π . So 〈s|χm|s〉 = 0 and 〈w|χm|w〉 = 0. We also have
〈w|χm|s〉 = (−1)m〈s|χm|w〉. Thus, |〈w|γm(t )|s〉| for any t de-
pends only on 〈s|χm|w〉 and (−1)m. For example, one of
the elements of {γm(2)} in the case of Pm(2) is (GG′), for
which |〈w|GG′|s〉|2 = 1

N |(1 − 4
N )2 + 4

N (−1)m|2. Because of
the presence of the (−1)m factor in some of the terms of
any polynomial |〈w|γm|s〉| for U = σy, we can infer that the
success probabilities Pm(t ) = Pm+2(t ) ∀ m. That is, the success
probability at any given time is not constant for all m’s like in
the case of σx or σz; instead, m’s of equal parity have the same
success probability among themselves at any given time.

So, for example, if we have a total of n = 50 qubits in the
register performing the search algorithm, it turns out that the
evaluation of the success probability in the case of m = 22
noise sites and that in the case of m = 41 noise sites will be
indistinguishable if the qubits in those sites evolve under the
good noises, i.e., U ∈ {σx, σz}. The success probabilities in
the cases where m = 10, 40, or 50 will be exactly the same
in the case of U = σy. Similarly, the cases of m = 9, 33, or
45 will be indistinguishable among themselves when U = σy.
It should be noted that there may be some unitary U , other
than these Pauli matrices, which makes the success probability
independent of m for some particular time t and not at other
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FIG. 5. Regime of memory parameter and noise probability for
which the noisy Grover algorithm is at least as good (measured by the
quantity P̃) as the classical search algorithm. The different colored
symbols represent different sizes N of the search space. We find
that the quantum search can withstand more noise if μ is higher.
The advantage of the quantum algorithm becomes more evident with
increasing N . All the quantities plotted are dimensionless.

times. The Pauli matrices σx and σz are special in the sense
that when U is one of these, the success probability becomes
independent of m for all t .

FIG. 6. Success probabilities of the Grover search algorithm in
the presence of noise without any time correlation, i.e., μ = 0. We
have plotted P(t ) on the vertical axis and the number t of Grover
steps along the horizontal axis for (a) U = σx and m = 1, (b) U =
σx and m = 5, (c) U = σx+σz√

2
and m = 1, and (d) U = σx+σz√

2
and

m = 5. The noise occurs with probability p at each Grover step. The
plots are for a ten-qubit register with m noisy qubits (details are in
Sec. IV B 1). The legend shows the symbols used in the plots for the
noise probability p: 0.01 (closed green circles) and 0.1 (open brown
circles). All quantities used are dimensionless.

FIG. 7. Success probabilities of the Grover algorithm in the pres-
ence of noise without any time correlation, i.e., μ = 0. We have
plotted P(t ) on the vertical axis and the number t of Grover steps
along the horizontal axis for n = 8, U = σy (details in Sec. IV B 1),
and noise strengths (a) m = 1, (b) m = 5, (c) m = 2, and (d) m = 4.
The legend shows the symbols used for the noise probability p:
0.03 [yellow (light) curve] and 0.5 [blue (dark) curve]. As expected,
the first maximum of P(t ) is higher in the case of the lower noise
probability p = 0.03. All quantities used are dimensionless.

Another important observation is that none of the condi-
tions used above put restrictions on what the positions of the
m unitaries are, out of the total n positions. The coefficients ci

[in Eqs. (C6) and (C7)] remain the same for any arrangement
of the m noisy qubits. So the success probability does not
depend on the positions of the qubits which evolve under the
noise unitary U ∈ {σx, σy, σz}. This result is also supported
by Fig. 9. We will now investigate the effects of Markovian-
correlated noise on Grover’s search algorithm numerically;
the results are gathered in the following section.

IV. EXAMPLES

Before numerically showing the invariance of success
probabilities proved in the preceding section in the presence
of the good noises, we will first identify the parameter regime
in our noise model for which the algorithm performs better
than classical search.

A. Performance of the noisy algorithm

The preservation of success probability upon increasing
the number of noise sites is a potentially important feature.
Nevertheless, increasing the noise probability still has a detri-
mental effect on the performance of the algorithm, as will be

022427-7



MANDAL, GHOSHAL, SRIVASTAVA, AND SEN PHYSICAL REVIEW A 107, 022427 (2023)

FIG. 8. Success probabilities of Grover’s search algorithm in the
presence of time-correlated noise. We have plotted P(t ) on the ver-
tical axis and the number t of Grover steps along the horizontal axis
for (a) U = σx and m = 1, (b) U = σx and m = 4, (c) U = σy+σz√

2
and

m = 1, and (d) U = σy+σz√
2

and m = 4. The plots are for a register with
n = 8 qubits, out of which m are noisy. The legend exhibits symbols
used in the plots for different pairs of values of the noise probability
p and memory parameter μ: p = 0.1 [yellow (light) curve], p = 0.4
[blue (dark) curve], μ = 0.2 (open circles), and μ = 0.9 (closed
circles). All quantities used are dimensionless.

evident in the analysis in Sec. IV B. Since the probability of
finding the marked element in Grover’s algorithm is given by
a success probability which never reaches unity in the noisy
scenario, the algorithm needs to be rerun multiple times to find
the element with some confidence [43,49].

Suppose that a noisy register, searching for a marked state
out of a total of N states, reaches its success probability max-
imum P at time T . A classical search would find the element
in N

2 time steps on average. Thus, assuming T < N
2 , the quan-

tum algorithm reaches its global maximum approximately
q = N

2T times faster than the classical one. However, it being
likely that P is much less than 1 for a noisy algorithm, we
can claim that the quantum algorithm is at least as good
as the classical one only if, after running the noisy algo-
rithm q times, the probability P̃ = 1 − (1 − P)q of finding
the marked element at least once is close to unity. Here we
take a probability of 0.95 to be the lower bound of such
confidence.

In Fig. 5 we show the values of μ and p for which the
register, under U = σx noise, searching from a collection of N
elements is at least as good as the classical algorithm. We can
see that a higher memory μ helps the algorithm to perform
better than its classical counterpart up to much higher noise
probabilities. Another observation from the figure is that the

quantum advantage becomes more prominent in the case of
larger database sizes N .

B. Patterns of success probability

In this section we first show that the invariance of the suc-
cess probabilities in the case of Pauli noise unitaries persists
irrespective of any time correlation in the noise. Then the
independence from positions of the noise sites in the case of
the good noises and the effect of memory on the algorithm are
shown numerically.

1. Noise without memory

The case of μ = 0, discussed in Sec. II D, is a noise with-
out any memory or time correlation. So at each time step,
the probability for the Grover operation to become noisy is
pg′ = p. In Fig. 6 we compare the behavior in the case of two
noise unitaries U . The noise sites are the first m qubits in the
register, i.e., χm = U ⊗m ⊗ 1

⊗(10−m)
2 .

The case of U = σx here corresponds to an m-qubit bit-flip
channel, as was shown in Sec. II D. We see that the success
probability’s evolution P(t ) for a given noise probability p
is unchanged when the number of noisy qubits is increased
from m = 1 to m = 5 for U = σx. We contrast this with the
evolution of P(t ) in the case of U = (σx + σz )/

√
2, i.e., the

Hadamard operator. This U is a linear combination of two
Pauli matrices and thus is not a good noise. The P(t ) in the
presence of this noise changes when the number of noise sites
is increased from m = 1 to m = 5, as expected.

We have also plotted in Fig. 7 the success probability’s
evolution for m = 1, 2, 4, 5 in the presence of noise unitary
U = σy and μ = 0, on an eight-qubit register. In other words,
the register is under an m-qubit bit-phase-flip channel occur-
ring with probability p after each noiseless Grover operation.
As discussed in Sec. III, the behavior of P(t ), for any given p
and n, is exactly the same for an odd number of total noise
sites, i.e., for m = 1 and 5 in the figure. The same is true
among noise strengths of even parity, m = 2 and 4. In Fig. 9,
we will also see that the locations of the noisy qubits are
not important in the case of the good noises U = σx, σy, or
σy. In the next section we study how the success probability
evolution is affected by the presence of time correlations in
the noise.

2. Noise with finite time correlation

In Fig. 8 the success probability P(t ) of Grover’s search
algorithm for nonzero (positive) memory μ and for n = 8
qubits (256 elements in the search database) for two different
noise unitaries is depicted. Here we have used the form of
noise as χm = 1

⊗(8−m)
2 ⊗ U ⊗m with m = 1 and 4. We can

observe that the success probability P(t ) depends on the noise
probability p and the memory parameter μ. It is obvious
that the success probability decreases with increasing noise
probability, and we can see from all four panels that for a
very high noise probability, the oscillatory behavior of P(t )
tends to vanish. It can be seen from Figs. 8(a) and 8(b) that
for a good noise U = σx, P(t ) for a given p and μ remains
unaffected when we change the number of noise sites m on
which U is applied, whereas for a unitary U = (σy + σz )/

√
2,
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FIG. 9. Success probabilities of Grover algorithm for good noises. Here n = 10 and μ = 0.9. Each of the colored curves is for a different p
value and noise unitary U , as shown in the legend. The noise matrices χm are (a) χ3 = U ⊗ 1⊗7 ⊗ U ⊗2, (b) χ10 = U ⊗10 ⊗ U ⊗2, and (c) χ3 =
1⊗5 ⊗ U ⊗3 ⊗ 1⊗2. The plots inside the green boxes show magnified views of the indicated smaller portions of the plots above. The total
number of noisy qubits in (a) and (c) is m = 3, and in (b) m = 10. For U = σy, its corresponding curve (blue solid line with dots) in (b) is
slightly different from those in the case of U = σy in (a) and (c). This supports our claim that P(t ) in the case of U = σy depends on the parity
of m, unlike the other two Pauli matrices. All quantities used are dimensionless.

which was shown not to be a good noise before, the success
probability P(t ) changes with the noise strength m. From a
comparison of Figs. 8(c) and 8(d) we can see that in the
case of a noise with low memory μ = 0.2 and a high noise
probability p = 0.4, the success probability evolution of the
algorithm almost disappears. The noisy Grover search algo-
rithm achieves greater efficiency for lower values of p and
higher values of μ. Moreover, for higher values of p for
which the oscillation of P(t ) completely vanishes, the cor-
related noise helps in achieving higher success probabilities.
For example, compare the lines corresponding to (p, μ) =
(0.4, 0.2) and (0.4,0.9) in the figure. The time evolution for
U = σx in the case of perfect memory (μ = 1) is analyzed in
Appendix D.

The success probabilities for the good noises are plotted
with respect to time in Fig. 9 for different locations and num-
bers of noise sites. As we have noted previously in Sec. III, the
positions of the noisy qubits do not matter if U is a good noise;
however, it was also shown that the parity of the total number
of noise sites is important in the case of U = σy. In Figs. 9(a)
and 9(c) the parities of the total number m of noise sites are
the same. Only the positions of the noise sites are different. As
expected, the respective profiles of P(t ) in the case of all three

Pauli matrices are exactly the same in Figs. 9(a) and 9(c). In
Fig. 9(b) all the qubits in the register are noisy and m = 10 is
an even number; the behavior of P(t ) in the case of σy is not
exactly the same as in Figs. 9(a) and 9(c), where m is odd for
both. In contrast, P(t ) in the case of U = σx and σz remains
unaltered in Figs. 9(a)–9(c).

Figure 10 gives an overview of the effects of memory,
database size, and noise probability on the algorithm’s suc-
cess. Here we plot the success probabilities at their first
maxima P(t = t∗) with respect to the noise probability p
for U = σx. The effect of memory is contrasted in the three
plots. As observed in Fig. 8, here also we can see that for
a given amount of noise probability p, a higher memory μ

of the noise helps the noisy algorithm reach a higher success
probability.

V. CONCLUSION

Grover’s algorithm can be employed to achieve a quadratic
speedup over classical methods in an unstructured search.
While this gives an advantage, a practical quantum circuit
will undoubtedly be affected by different types of noise and
several studies have already been pursued on the effects of
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FIG. 10. Effects of memory, database size, and noise probability
on the algorithm’s success probability. We have presented here the
values of P(t∗), with respect to the noise probability p, for different
(a) μ = 0, (b) μ = 0.5, and (c) μ = 1. The algorithm is performed
on n = log2 N qubits. Here the noise unitary considered is U = σx .
All quantities used are dimensionless.

such noises on the algorithm’s performance. In our study, we
considered the quantum register performing the algorithm to
be under a local unitary noise which can also be correlated in
time. In the interval between any two Grover operations, there
is some probability for the noise to act on the register. In this
setting, we found that the success probability of the algorithm
at all times remains unchanged with respect to the number of
noisy qubits if and only if the local noisy evolutions are given
by some special unitaries. We refer to these unitaries as good
noises. These noises have been shown to reduce to multiqubit
bit-flip or phase-damping errors and in some cases bit-phase-
flip errors in the absence of time correlations. The locations of
the noisy qubits were also shown to be irrelevant in the case of
the good noises. This can be potentially useful information in
an actual implementation of the search algorithm on a register.
The result that two of the Pauli noises behave in a different
way than the third can be explained by the symmetry breaking
in Grover’s algorithm due to the choice of initial state of the
algorithm’s register (which is a product of eigenvectors of the
Pauli σz operator) and the ensuing Hadamard rotation (which
connects the σx and σz eigenbases). Numerically, we were also
able to show that a time-correlated noise could lead to a better
performance of the noisy algorithm.
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APPENDIX A: SPECIAL CASE OF INVARIANCE
OF SUCCESS PROBABILITY WITH RESPECT

TO NOISE STRENGTH

In the case of U = σx, we get χm|s〉 = |s〉. So we can
express all the states in terms of the orthogonal basis vector
set {|s′

1〉, |w〉, |w′〉}, with |s′
1〉 = 1√

N−2

∑
x �=w,w′ |x〉.

In this basis, 〈s| = (√
N−2

N
1√
N

1√
N

)
. From Eqs. (3)

and (4) we obtain

G =

⎛
⎜⎜⎜⎝

2 N−2
N − 1 −2

√
N−2
N 2

√
N−2
N

2
√

N−2
N − 2

N + 1 2
N

2
√

N−2
N − 2

N
2
N − 1

⎞
⎟⎟⎟⎠, (A1)

G′ =

⎛
⎜⎜⎜⎝

2 N−2
N − 1 −2

√
N−2
N 2

√
N−2
N

2
√

N−2
N − 2

N
2
N − 1

2
√

N−2
N − 2

N + 1 2
N

⎞
⎟⎟⎟⎠. (A2)

It is evident from the expressions above that, at least for
the case U = σx, although changing m changes the forms of
the basis vectors |w′〉 and |s′

1〉 in the computational basis,
elements of all the states or operators like |s〉 or G′ remain
the same in the {|s′

1〉, |w〉, |w′〉} basis. Thus, increasing or
decreasing the number m of noise sites does not affect the
success probability (12) of the algorithm in the case of U = σx

and m � 1.

APPENDIX B: EXAMPLE OF A MARKOVIAN
CORRELATED CHANNEL

An important example of noise with memory is the Marko-
vian correlated Pauli channel investigated in [78–80]. In that
paper they studied the classical capacity of channels with
partial memory. More specifically, they considered a channel
that applies π rotations along random sets of axes l1, l2, . . . , ln
on a sequence of n qubits, with joint probability pl1l2···ln , where∑

l1,l2,...,ln
pl1l2···ln = 1. They also assumed that the rotation

about axes l1, . . . , ln form a Markov chain so that

pl1···ln = pl1 pl2|l1 · · · pln|ln−1 , (B1)

where pi| j denotes the conditional probability of rotation
about the i axis given that the previous one was about the j
axis. The conditional probabilities are given as

pi| j = (1 − μ)pi + μδi, j . (B2)

Here μ corresponds to the relaxation time or memory. For
example, if μ = 1, the same rotation axis l1 is used at all
subsequent rotations, i.e., l1l1 · · · l1 on the qubits.
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APPENDIX C: DETAILS OF CALCULATION
FOR Pm(t = 1) OF SEC. III

In connection to the search for good noises, we de-
tail here the conditions on U for keeping Pm(t = 1) = (1 −
p)|〈w|G|s〉|2 + p|〈w|G′|s〉|2 constant with changing m. We
have

|〈w|G′|s〉|2 =
∣∣∣∣
(

1 − 4

N

)
〈w|χm|s〉 + 2√

N
〈w|χm|w〉

∣∣∣∣
2

= 1

N

∣∣∣∣
(

1 − 4

N

) N∑
j=1

(χm)w, j + 2(χm)w,w

∣∣∣∣
2

,

(C1)

where

χm|s〉 = 1√
N

⎛
⎜⎝

∑N
j=1(χm)1, j

...∑N
j=1(χm)N, j

⎞
⎟⎠.

It can be shown that

N∑
j=1

(χm)k, j = eiqθ (a + b)m−q(ā − b̄)q := ψq (C2)

and (χm)k,k = eiqθ am−qāq, where q ∈ [0, m] and q depends

on k. Here each ψq appears
( N

2m

)(m
q

)
times in χm|s〉. Since

|〈w|G|s〉|2 is independent of m, we can conclude from the
expression of |〈w|G′|s〉|2 in Eq. (C1) that to get Pm+1(1) =
Pm(1) we need either |a| = 0 or |b| = 0. Therefore, we get
our first condition for constructing a good noise, which gives
the constraints (C3) and (C4). So a good noise needs to obey
‘Condition-1’, i.e., |a| = 1 or |b| = 1. Thus

U =
⎧⎨
⎩

(
a 0
0 āeiθ

)
for |a| = 1 (C3)(

0 b
−b̄eiθ 0

)
for |b| = 1. (C4)

Hence χm has to be a generalized permutation unitary matrix.
We can now define a new state |w′〉 so that

χm|w〉〈w|χ†
m =

{|w〉〈w| for |a| = 1
|w′〉〈w′| for |b| = 1.

(C5)

Using this we can write

χm|s〉 = 1√
N

⎧⎪⎪⎨
⎪⎪⎩

(∑M
i=1ci

√
i|s′

i〉 + α|w〉) for |a| = 1

(C6)(∑M
i=1ci

√
i|s′

i〉+α|w〉 + β|w′〉) for |b| = 1,

(C7)

where

|s′
i〉 = 1√

i

∑
{|di〉}�=|w〉,|w′〉

|di〉,

i = S ({|d〉i}),
⊔

i{|d〉i} = {|x〉}, 〈s′
i|s′

j〉 = δi j , and
|ci| = 1 = |α| = |β|, i.e., we get the basis B =
{|s′

1〉, |s′
2〉, . . . , |s′

M〉, |w〉} of dimension M + 1 from Eq. (C6)
and B = {|s′

1〉, |s′
2〉, . . . , |s′

M〉, |w〉, |w′〉} of dimension M + 2
from Eq. (C7).

Now there are two possibilities for a unitary U of the form
in Eqs. (C3) and (C4): Its two nonzero elements are either
equal [case (i)] or unequal [case (ii)]. Case (i) suggests that
M = 1 and directly leads to the constraints, given in Eqs. (C8)
and (C9), which have to be satisfied by U to be a good noise.
In case (ii) we need to put further restrictions on U for the suc-
cess probability to stay conserved with m. We should not have
dim(B) changing with m. Thus, the number of distinct ci’s in
Eqs. (C6) and (C7) must remain constant with m. There is total
of M of these coefficients for both |a| = 1 and |b| = 1. For
m = 1, e.g., for χ1 = U ⊗ 1N/2 in case (ii), there are only two
distinct nonzero elements in χ1, because U has two distinct
nonzero elements. This implies that M = 2. Since M should
remain constant with m, case (ii) leads to the conditions given
in Eqs. (C10)–(C12). To summarize, we have the necessary
(but not sufficient) condition (‘Condition-2’) for U to be a
good noise, i.e., M = 1 or 2. Thus

χm|s〉 =
⎧⎨
⎩c

(√
N−1

N |s′
1〉 + 1√

N
|w〉) for |a| = 1, M = 1 (C8)

c
(√

N−2
N |s′

1〉 + 1√
N
|w〉 + 1√

N
|w′〉) for |b| = 1, M = 1, (C9)

χm|s〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1
(√

N−2
2N |s′

1〉 + 1√
N
|w〉) + c2√

2
|s′

2〉 for |a| = 1, M = 2 (C10)

c1
(√

N−4
2N |s′

1〉 + 1√
N
|w〉 + 1√

N
|w′〉) + c2√

2
|s′

2〉 for |b| = 1, M = 2, α = β (C11)

c1
(√

N−2
2N |s′

1〉 + 1√
N
|w〉) + c2

(√
N−2
2N |s′

2〉 + 1√
N
|w′〉) for |b| = 1, M = 2, α �= β. (C12)

So only the U ’s that satisfy one of Eqs. (C8)–(C12)
are the unitaries corresponding to the good noise for
which P(t ) does not depend on the number of noise

sites m. It can be shown that ψq appears
(

N
2m

)(m
q

)
times

in the column vector χm|s〉. We have the following
observations.

022427-11



MANDAL, GHOSHAL, SRIVASTAVA, AND SEN PHYSICAL REVIEW A 107, 022427 (2023)

(i) If U satisfies Eq. (C8), then b = 0 and ψq = c ∀ q.
Solving for a and θ gives a = eiφ = m

√
c and θ = 2φ, i.e.,

U = m
√

c
(1 0

0 1

) = m
√

c12.
(ii) If U satisfies Eq. (C10), then it turns

out that we need (a) ψq = ψq+2 = c1 ∀ q even
and (b) ψq = ψq+2 = c2 ∀ q odd. That is because(m

0

) + (m
2

) + (m
4

) + · · · = (m
1

) + (m
3

) + (m
5

) + · · · = 2m−1, i.e.,
the sum of multiplicities of elements in χm|s〉 from the set
{ψq | q even} is equal to that in the case of elements from the
set {ψq | q odd}. Since c1 �= c2, solving (a) and (b) for a and
θ gives the solution a = m

√
c1 and θ = 2φ − π . The solution

corresponds to c1 = −c2, i.e., U = m
√

c
(1 0

0 −1

) = m
√

c σz.
(iii) If U satisfies Eq. (C9), then a = 0 and ψq = c ∀ q.

Solving for b and θ gives b = eiφ = m
√

c and θ = 2φ − π , i.e.,
U = m

√
c
(0 1

1 0

) = m
√

c σx.
(iv) If U satisfies Eq. (C11) or (C12), an analysis simi-

lar to the above can be performed and the solution is U =
m
√

c
( 0 1
−1 0

) = m
√

c iσy.

Here m
√

c is only a constant phase factor. We can see from the
above discussion for Pm(t = 1) that the candidates for good
noise are the unitaries eiφ12, eiφσx, eiφσy, and eiφσz for any
φ ∈ [0, 2π ).

APPENDIX D: EVOLUTION OF SUCCESS PROBABILITY
FOR PERFECT MEMORY FOR U = σx

Here we consider the case when μ = 1, i.e., perfect mem-
ory. On the first noisy iteration (i.e., t = 1), G occurs with

probability 1 − p and G′ with p. Let us assume that, at t = 1,
G is applied. Due to perfect memory, for all t � 2, the same
operator G will be applied. This scenario corresponds to an
ideal noiseless Grover algorithm. The success probability in
this case will be denoted by P(t ) and the marked state is
reached at t ≈ π

4

√
N [41].

If G′ is applied at t = 1, for t � 2 the state of the whole
n-qubit register would be |ψ (t )〉 = G′t |s〉. Using the form of
G′ in Eq. (A2) for U = σx,

〈w|G′t |s〉 = (−1)t+1

√
N

Im

{[
tan

(
θ

2

)
− i

]
eitθ

}
,

where θ = cos−1( 2
N ) and Im{•} denotes the imaginary part of

a complex number. Then the success probability at time t in
this case is

P′(t ) = |〈w|G′t |s〉|2 = cos2(θt )

N

[
tan

(
θ

2

)
tan(θt ) − 1

]
2.

(D1)

Combining the above two cases, the success probabil-
ity of a noisy algorithm at time t , with noise prob-
ability p and perfect memory μ = 1, then becomes
(1 − p)P(t ) + pP′(t ).
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