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Homodyne measurement is a crucial tool widely used to address continuous variables for bosonic quantum
systems. While an ideal homodyne detection provides a powerful analysis, e.g., to effectively measure quadrature
amplitudes of light in quantum optics, it relies on the use of a strong reference field, the so-called local
oscillator, typically in a coherent state. Such a strong coherent local oscillator may not be readily available,
particularly for a massive quantum system like a Bose-Einstein condensate, posing a substantial challenge in
dealing with continuous variables appropriately. It is necessary to establish a practical framework that includes
the effects of nonideal local oscillators for a rigorous assessment of various quantum tests and applications.
We here develop entanglement criteria beyond a Gaussian regime applicable for this realistic homodyne
measurement that do not require assumptions on the state of local oscillators. We discuss the working conditions
of homodyne detection to effectively detect non-Gaussian quantum entanglement under various states of local
oscillators.
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I. INTRODUCTION

In recent decades, continuous-variable (CV) quantum
information [1,2] has been developed to provide wide applica-
tions, e.g., quantum cryptography [3], quantum metrology [4],
quantum computation [5], etc. In CV quantum information
processing, continuous variables like position and momen-
tum for a massive particle or the quadrature amplitude of
light are employed to encode information and homodyne
measurements, providing a critical tool to measure these
observables [2,6]. It has been adopted as a powerful tool
in various areas of CV quantum information processing in-
cluding quantum teleportation [7,8], quantum communication
[9–11], quantum key distribution [12], and nonclassicality
detection [13–15].

In an ideal homodyne measurement, a local oscillator (LO)
of a classical nature is required usually in a coherent state
with a very large amplitude. In optical systems, an intense
coherent state is readily produced using a strong laser field.
On the other hand, if CV quantum information processing is
to be implemented in other experimental platforms, such a
local oscillator may not be available in a desired form, e.g.,
for massive systems like Bose-Einstein condensates (BECs).
Homodyne measurements in atomic systems have been re-
alized experimentally to detect CV quantum correlations of
massive particles to some extent [16,17]. Recently, it was
proposed that one can detect quantum gravity by observ-
ing non-Gaussianity of BECs using homodyne measurement
[18]. However, there exist some caveats when implementing
homodyne measurements in atomic systems. First, the in-
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tensity strength of LOs is limited by the number of atoms
available in a certain electronic state used as a reference
state for LO, unlike the large number of photons in optical
systems. Second, atomic ensembles do not remain as stable
coherent states due to atomic interactions. There have been
only few studies examining the effect of these imperfect LOs
in addressing CV for a massive system [19].

In this paper, we develop entanglement criteria that can
be tested via homodyne detection for a massive system
by incorporating the properties of LO states appropriately.
The existing entanglement criteria via quadrature observables
[20–23] cannot be directly used when the strong oscillator
limit is not satisfied. In this case, the actually measured ob-
servables are dependent on the properties of LOs as well as
those of the signal fields under test [19], thus requiring the
need for a careful approach to consider the effect of LOs.
We here examine Hillery-Zubairy (HZ) criteria [24,25] in
the case that the assumption on classical LOs is not applica-
ble. Remarkably, we show that the only information required
about LOs is the mean number of bosons, which can be readily
measured in typical absorption-based imaging. We apply our
criteria to specific examples of different LO states and exam-
ine how effectively they detect entanglement with different
states of LOs.

This paper is organized as follows. In Sec. II, we briefly
introduce homodyne measurements and discuss how to deal
with imperfect LOs. In Sec. III, we show how to test first-order
HZ criteria using homodyne measurement and generalize it to
the case of practical homodyne measurements. In Sec. IV, we
show how to also derive higher-order entanglement criteria
incorporating realistic homodyne detections and discuss their
resource requirements. In Sec. V, we analyze our criterion
in a practical BEC system to illustrate the usefulness of our
approach and conclude with remarks in Sec. VI.
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FIG. 1. Scheme implementing a homodyne measurement. A sig-
nal mode â and a LO mode ĉ are mixed at a 50/50 beam splitter.
The difference in the intensity between two output modes provides
information on the quadrature observables defined in main text.

II. HOMODYNE MEASUREMENT

Bosonic quantum systems may be described by the an-
nihilation and creation operators â and â†. They satisfy the
commutation relation [â, â†] = 1 and the bosonic number
operator is given by n̂a = â†â. In CV quantum information,
they are alternatively described by quadrature operators such
as position X̂a = 1

2 (â† + â) and momentum P̂a = i
2 (â† − â).

Quadrature operators can be measured by homodyne mea-
surements that are generally implemented as shown in Fig. 1.
The signal mode â is mixed with a LO ĉ at a 50/50 beam
splitter, then the operators associated with output modes may
be written as â′ = 1√

2
(â + ĉ) and ĉ′ = 1√

2
(â − ĉ). We mea-

sure the intensity of each output mode and consider the
difference that corresponds to

â′†â′ − ĉ′†ĉ′ = 1
2 (â† + ĉ†)(â + ĉ) − 1

2 (â† − ĉ†)(â − ĉ)

= â†ĉ + âĉ†. (1)

In the strong oscillator limit, where the LO is in coherent
state |α〉 with α = |α|eiφ and |α| � 1, the difference signal
is approximated as

â†ĉ + âĉ† ≈ |α|(â†e−iφ + âeiφ ) ≡ 2|α|Q̂a,φ. (2)

Here a general quadrature Q̂a,φ is defined as Q̂a,φ ≡ â†e−iφ+âeiφ

2 .
Therefore, depending on the phase φ of the LO, we can mea-
sure all different quadrature amplitudes. For instance, with
φ = 0, the output signal corresponds to the position operator
X̂a. On the other hand, with φ = π

2 , we obtain the momentum
operator P̂a.

However, if the LO is not in the assumed coherent state
of strong intensity, the above analysis does not hold and we
must consider the measurement statistics more carefully. That
is, the obtained signal of intensity difference corresponds to

X̂ (m)
a ≡ â†ĉ + âĉ†

2
√

〈ĉ†ĉ〉
, (3)

incorporating the normalization with respect to the finite in-
tensity 〈ĉ†ĉ〉 of the LO. From now on, we use the superscript

(m) to represent the actually “measured” observable distin-
guished from the ideal quadrature observable X̂a. Similarly, if
we use the LO with additional phase π

2 , we have

P̂(m)
a ≡ i(â†ĉ − âĉ†)

2
√

〈ĉ†ĉ〉
. (4)

Observables X̂ (m)
a and P̂(m)

a have dependence on the state of
LOs. Therefore, care must be taken when we intend to inves-
tigate the statistics of the signal mode a, as the output signal
definitely contains the contribution from the statistics of the
LO mode c.

III. FIRST-ORDER ENTANGLEMENT CRITERIA

Let us first briefly introduce HZ entanglement criteria
[24,25], which have been known to be useful to address quan-
tum entanglement for non-Gaussian states. If two modes a and
b are separable, it was shown that the following inequalities
must be satisfied:

first type: |〈âs(b̂†)t 〉|2 � 〈(â†)sâs(b̂†)t b̂t 〉, (5)

second type: |〈âsb̂t 〉|2 � 〈(â†)sâs〉〈(b̂†)t b̂t 〉, (6)

for any positive integers s and t . If any of these inequalities
are violated, the state is entangled. The simplest case may
be considered in the lowest order s = t = 1, for which the
inequalities become

first type: |〈âb̂†〉|2 � 〈n̂an̂b〉, (7)

second type: |〈âb̂〉|2 � 〈n̂a〉〈n̂b〉. (8)

It was suggested that the left-hand side (LHS) of the first-type
inequality |〈âb̂†〉|2 can be measured by boson number count-
ing followed by 50/50 beam-splitter interaction [25], but this
measurement requires a nonlocal interaction. Alternatively, it
can be measured by local homodyne measurements because
it can be written by expanding in terms of quadrature observ-
ables as

〈âb̂†〉 = 〈X̂aX̂b〉 + 〈P̂aP̂b〉 − i〈X̂aP̂b〉 + i〈P̂aX̂b〉. (9)

These four terms can be determined by measuring X̂ and P̂ at
each mode a and b.

However, as discussed in the previous section, when ideal
homodyne measurements are not available, the measured ob-
servable X̂ (m)(P̂(m)) is different from the anticipated X̂ (P̂).
Then, we need to reformulate entanglement criteria more
rigorously, incorporating the actually obtained measurement
statistics. In terms of the measured observables, Eq. (9) can
be rewritten as

∣∣〈X̂ (m)
a X̂ (m)

b + P̂(m)
a P̂(m)

b − iX̂ (m)
a P̂(m)

b + iP̂(m)
a X̂ (m)

b

〉∣∣2

= |〈âb̂†ĉ†d̂〉|2
〈n̂c〉〈n̂d〉 = |〈âb̂†〉|2 |〈ĉ†〉|2

〈n̂c〉
|〈d̂〉|2
〈n̂d〉 . (10)

A. First-type criterion

In the last identity, we factor out the terms of the LO modes
c and d since those modes are to be prepared independently.
Then, by using the separability condition in the first-type HZ
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criterion (7) relevant to the signal fields only, we obtain
∣∣〈X̂ (m)

a X̂ (m)
b + P̂(m)

a P̂(m)
b − iX̂ (m)

a P̂(m)
b + iP̂(m)

a X̂ (m)
b

〉∣∣2

� 〈n̂an̂b〉 |〈ĉ
†〉|2

〈n̂c〉
|〈d̂〉|2
〈n̂d〉 . (11)

This is a precise form of separability condition whose viola-
tion can manifest quantum entanglement of the two modes a
and b. One may thus try to detect entanglement by testing the
above inequality, which then requires measurement of |〈ĉ†〉|
and |〈d̂〉| additionally as well as the intensities of the LOs on
the right-hand side (RHS).

To reduce experimental efforts, we may eliminate the de-
pendence on LOs by optimizing the RHS terms in Eq. (11).
That is, we find a general relation |〈ĉ†〉|2 � 〈n̂c〉 and |〈d̂〉|2 �
〈n̂d〉 (see Appendix A). The inequality is saturated when the
sum of variances 〈�2X̂ 〉 and 〈�2P̂〉 satisfies the minimum
uncertainty, i.e., by coherent states. Finally, we obtain an en-
tanglement criterion, i.e., a state is entangled if the following
inequality is violated:
∣∣〈X̂ (m)

a X̂ (m)
b + P̂(m)

a P̂(m)
b − iX̂ (m)

a P̂(m)
b + iP̂(m)

a X̂ (m)
b

〉∣∣2 � 〈n̂an̂b〉.
(12)

This inequality looks very similar to the original HZ cri-
terion (7). However, it must be noted that the LHS quantities
are the actually measured quadrature amplitudes. Therefore,
importantly, our criterion in its final form (12) does not require
the knowledge on the statistics of the LO. It simply suggests
we proceed with the usual way of measuring the intensity dif-
ference to obtain statistics on quadrature amplitudes (LHSs),
which necessarily entail contributions from LOs. Our criterion
indicates that one does not need the specifics of LOs. Of
course, the LO state certainly affects the entanglement test
because the actually measured statistics will vary according
to LOs used. Below we discuss entanglement detection for
various cases of LOs in practice.

Our criterion makes it possible to detect entangled states,
which are detectable in an ideal setting by the original HZ
criterion (7), even using weak coherent-state LOs. However,
if the LO amplitude is too small, it is necessary to increase the
number of measurements to observe a substantial violation
because the fluctuation in the measurement becomes large.
As an example, we here evaluate the inequality (12) for the
single-boson entangled state, |�01〉 = 1√

2
(|0〉|1〉 + |1〉|0〉). In

this case, we see that the LHS and RHS become 1
4 and 0, re-

spectively, thus violating the inequality. The fluctuation of the
LHS is given by �2

m ≡ 〈�2(X̂ (m)
a X̂ (m)

b )〉 + 〈�2(P̂(m)
a P̂(m)

b )〉 +
〈�2(X̂ (m)

a P̂(m)
b )〉 + 〈�2(P̂(m)

a X̂ (m)
b )〉, which we plot in Fig. 2(a).

It is shown that �m increases as the amplitude of LOs de-
creases. As the precision of the measurement is given by �m√

M
,

where M is the number of samples, M has to increase for weak
LOs to make sure of the violation. Note that �m converges to
a nonzero value for α → ∞ because the fluctuation due to
a finite number of measurement is unavoidable even for the
ideal homodyne measurement.

If LOs are not in coherent states, the LHS of (10) may
decrease so the entanglement detection becomes a bit disad-
vantaged. The contribution from the LO identified in the LHS

FIG. 2. Analysis of entanglement test for the single-excitation
entangled state. (a) Plot illustrating the fluctuation �2

m of the LHS
in our criterion Eq. (12) with respect to the amplitude α of coherent-
state LOs. Dotted line shows the fluctuation due to a finite number
(M = 1) of measurement in a large α limit. (b) Entanglement test
using displaced thermal LOs. Red solid curve shows the LHS of
Eq. (12) and gray dashed line shows the RHS of Eq. (12).

of Eq. (10) is |〈ĉ†〉|2
〈n̂c〉 , which takes the maximum value of 1 for

the case of coherent states. This term indicates that the LO
having a coherent amplitude squared close to its intensity is
desirable. However, as we have shown in Fig. 2(a), we must
take into consideration the effect of experimental fluctuation.
Even for the case of coherent states that all give |〈ĉ†〉|2

〈n̂c〉 = 1, the
fluctuation varies with respect to the strength α.

For instance, when LOs are in displaced thermal states Nth

with the thermal excitation, we plot the behavior of measured
quadratures with respect to Nth in Fig. 2(b). It is shown that the
LHS decreases as Nth increases, but we see that the violation
can always be observed owing to the RHS equal to 0. A
similar behavior can be observed when we employ displaced
squeezed states or displaced Fock states for LOs.

B. Second-type criterion

Now, starting from the second-type HZ criterion in Eq. (8),
we can obtain the entanglement criterion in a similar way, that
is, a state is entangled if the following inequality is violated:

∣∣〈X̂ (m)
a X̂ (m)

b − P̂(m)
a P̂(m)

b + iX̂ (m)
a P̂(m)

b + iP̂(m)
a X̂ (m)

b

〉∣∣2

� 〈n̂a〉〈n̂b〉. (13)

This type of inequality can be violated by two-mode squeezed
vacuum (TMSV) states |�TMSV〉 = (1 − x2)

1
2
∑∞

n=0 xn|n〉|n〉
where 0 � x � 1. For coherent-state LOs, the LHS and the
RHS of inequality (13) become ( x

1−x2 )
2

and ( x2

1−x2 )
2
, respec-

tively, and the violation thus occurs for any x > 0. The
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FIG. 3. Entanglement test for TMSV with 3dB of squeezing.
(a) Plot illustrating the measurement fluctuation �2

m with respect to
the amplitude α of coherent LOs. Dotted line shows the fluctuation
due to a finite number of measurement (M = 1) in a large α limit.
(b) Entanglement test using displaced thermal LOs. Red solid curve
shows the LHS of Eq. (13) and gray dashed line the RHS of Eq. (13).

measurement precision �2
m again becomes large when the size

of LOs are small, as shown in Fig. 3(a).
For displaced-thermal-state LOs, the LHS decreases as

the thermal excitation number increases, which is shown in
Fig. 3(b). In this case, if Nth

|α|2 is too large, we fail to detect

entanglement. Explicitly, the crossover occurs at Nth
|α|2 = 1−x

x ,
which means that we need smaller Nth or larger α to observe
the violation for larger x (higher squeezing). This is because
the photon number of TMSV increases as x increases so we
need LOs with a large enough amplitude.

IV. HIGHER ORDER ENTANGLEMENT CRITERIA

A useful feature of HZ criteria is that they are given as
a series of inequalities in different orders of field operators.
For instance, we may consider the second-order criterion with
s = t = 2, written as

|〈â2(b̂†)2〉|2 = |〈(X̂a + iP̂a)2(X̂b − iP̂b)2〉|2
� 〈(â†)2â2(b̂†)2b̂2〉. (14)

Replacing X̂ (P̂) with the measured observable X̂ (m)(P̂(m)), we
rewrite the inequality as

∣∣〈(X̂ (m)
a + iP̂(m)

a

)2(
X̂ (m)

b − iP̂(m)
b

)2〉∣∣2

= |〈â2(b̂†)2〉|2 |〈(ĉ†)2〉|2
〈n̂c〉2

|〈d̂2〉|2
〈n̂d〉2

� 〈(â†)2â2(b̂†)2b̂2〉 |〈(ĉ
†)2〉|2

〈n̂c〉2

|〈d̂2〉|2
〈n̂d〉2

. (15)

Again, if we do not have access to the information about
〈(ĉ†)2〉 and 〈d̂2〉, it is desirable to take their maximum
possible values to eliminate the need of measuring them.
Using Cauchy-Schwarz inequality |〈Â〉|2 = |〈Â†〉|2 � 〈Â†Â〉,
we find

|〈(ĉ†)2〉|2 � 〈(ĉ†)2ĉ2〉 = 〈
n̂2

c

〉 − 〈n̂c〉,
|〈d̂2〉|2 � 〈(d̂†)2d̂2〉 = 〈

n̂2
d

〉 − 〈n̂d〉, (16)

where equalities hold for coherent states. Therefore, we obtain
the second-order criterion given by

∣∣〈(X̂ (m)
a + iP̂(m)

a

)2(
X̂ (m)

b − iP̂(m)
b

)2〉∣∣2

� 〈(â†)2â2(b̂†)2b̂2〉
〈
n̂2

c

〉 − 〈n̂c〉
〈n̂c〉2

〈
n̂2

d

〉 − 〈n̂d〉
〈n̂d〉2

. (17)

In this criterion, we require 〈n̂2
c(d )〉 as well as 〈n̂c(d )〉, which

can both be obtained by measuring the particle number distri-
bution of the LO.

An alternative bound can be derived using the positivity
condition of covariance matrices (see Appendix B) as

|〈(ĉ†)2〉|2 � 〈n̂c〉2 + 〈n̂c〉,
|〈d̂2〉|2 � 〈n̂d〉2 + 〈n̂d〉, (18)

where equalities hold for squeezed states. Then the second-
order criterion is written as

∣∣〈(X̂ (m)
a + iP̂(m)

a

)2(
X̂ (m)

b − iP̂(m)
b

)2〉∣∣2

� 〈(â†)2â2(b̂†)2b̂2〉 〈n̂c〉 + 1

〈n̂c〉
〈n̂d〉 + 1

〈n̂d〉 . (19)

Here we require only 〈n̂c(d )〉 for LO modes. From now on, we
assume that both LO modes c and d are in the same state.
Whether the criterion (17) or (19) yields a tighter bound de-
pends on the state of LO modes. For instance, as the inequality
(16) is saturated by coherent states, the criterion (17) always
gives a tighter bound for coherent-state LOs. In contrast, the
inequality (18) is saturated by squeezed states, and thus the
criterion (19) gives a tighter bound for squeezed-state LOs.

We investigate our second-order entanglement criteria for
the binomial state |�bi〉 = 2− n

2
∑n

j=0

(n
j

)| j〉|n − j〉. The bino-
mial state is widely studied in massive particle systems in the
case that the total number of particles is constrained [26,27].
For instance, it can be generated by injecting a Fock state |n〉
and a vacuum state into a 50:50 beam splitter. In Figs. 4(a) and
4(b), we compare the LHSs and the RHSs of the inequalities
(17) and (19) employing coherent-state LOs and squeezed-
state LOs, respectively. For the case of a coherent-state LO,
it is shown that the criterion (17) detects entanglement in
all ranges of α, while the criterion (19) cannot detect en-
tanglement for small α. On the other hand, for the case of
squeezed-state LO, the criterion (19) detects entanglement in
all ranges of r, whereas the criterion (17) cannot detect entan-
glement when the squeezing r is large. Interestingly, although
the observables X̂ (m) and P̂(m) obtained with squeezed-vacuum
LOs show quite different statistics from X̂ and P̂, they can be
successfully used to detect CV entanglement.

The condition on which criterion yields a tighter bound
is fully determined by Mandel Q factor, Q = 〈�2 n̂〉

〈n̂〉 − 1. In-
equality (16) yields a tighter bound than inequality (18) if
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FIG. 4. Entanglement test for the binomial entangled state
with n = 4 of total excitation using (a) coherent-state LOs and
(b) squeezed-state LOs. The red solid curve shows the LHS of in-
equalities (17) and (19), and the yellow dotted curve and the green
dot-dashed curve the RHSs of (17) and (19), respectively.

and only if Q < 1. Therefore, for LOs with Poissonian or
sub-Poissonian distribution, one may possess an advantage
in employing the criterion (17) for efficient entanglement
detection.

To experimentally measure the second-order quadra-
tures properly, (X̂ (m) + iP̂(m) )2 = (X̂ (m) )2 + (P̂(m) )2 +
i(X̂ (m)P̂(m) + P̂(m)X̂ (m) ) in the LHS, we need to measure
X̂ m,φ ≡ 1

2
√

〈ĉ† ĉ〉 (eiφ â†ĉ + e−iφ âĉ†) at three different angles

φ by changing the phase of LO. One possible choice
is to take φ = 0, π

2 for X̂ (m), P̂(m), and φ = π
4 for

X̂ m, π
4 = 1√

2
(X̂ (m) + P̂(m) ). Then X̂ (m)P̂(m) + P̂(m)X̂ (m) can be

obtained by analyzing the statistics of those three observables,
i.e., X̂ (m)P̂(m) + P̂(m)X̂ (m) = 2(X̂ m, π

4 )2 − (X̂ (m) )2 − (P̂(m) )2.
Therefore, homodyne measurements with a total of nine
different settings (three for each mode) are sufficient to test
our second-order entanglement criterion.

We can also develop higher-order entanglement criteria
in a similar way. In general, we need homodyne measure-
ments with s + 1 different settings to obtain the expectation
values of sth-order quadratures by extending the above ap-
proach [28,29]. Therefore, homodyne measurements with
(s + 1)(t + 1) different settings are needed for higher orders
of s and t .

V. PRACTICAL DETECTION OF BEC ENTANGLEMENT

In this section, we demonstrate that our entanglement cri-
terion can be applied to detect entanglement of BEC states in
practical conditions. Entanglement between modes associated
with different energy levels in BEC system can be gener-

ated via nonlinear interactions like the spin-changing collision
[30–36]. BEC entanglement may provide useful applications
in quantum technologies, especially in quantum metrology
[37–39]. CV entanglement between two atomic modes has
been experimentally verified [16,17], where correlated atom
pairs are created via collision of two atoms in a certain mag-
netic level acting as a pump mode. This is an analogy of
optical parametric amplifier that creates two photon pairs by
parametric down conversion. In optical systems, the nonlin-
earity is limited due to the short interaction time, whereas
atomic systems do not exhibit such a restriction, so a huge
number of entangled pairs can potentially be created.

The spin dynamics may be restricted to the subspace with
F = 1, where mF = 0 mode plays as a pump mode and
mF = ±1 modes become the signal and the idler modes,
respectively. The spin-changing collision in F = 1 levels is
described by the Hamiltonian [30,39]

Ĥ = λ(â†
1â†

1â1â1 + â†
−1â†

−1â−1â−1 − 2â†
1â†

−1â1â−1

+ 2â†
1â†

0â1â0 + 2â†
−1â†

0â−1â0 + 2â†
0â†

0â1â−1

+ 2â†
1â†

−1â0â0), (20)

where âmF are annihilation operators of mode mF and λ is
the parameter of interaction strength. In the low-depletion
limit, where the pump mode is large enough compared to
the number of excited atoms, the operator â0 can be replaced
by

√
N0. In this approximation, the Hamiltonian is reduced

to the typical two-mode squeezing operation and we thus
obtain TMSV as an output state. On the other hand, when the
population in modes mF = ±1 becomes substantially large,
this approximation no longer holds. A full quantum treatment
of the spin-changing dynamics is studied in Ref. [30], intro-
ducing angular momentumlike operators, L̂− ≡ √

2(â†
1â0 +

â†
0â−1), L̂+ ≡ √

2(â†
0â1 + â†

−1â0), and L̂z ≡ â†
−1â−1 − â†

1â1.
With these operators, the Hamiltonian (20) can be written in a
simple form as Ĥ = λ(L̂2 − 2N̂ ), where N̂ ≡ â†

1â1 + â†
0â0 +

â†
−1â−1 is the total number of atoms. For a fixed total number

N of atoms, the eigenstate is given as |N, l, ml〉, where l =
0, 2, 4, · · · , N for even N , l = 1, 3, 5, · · · , N for odd N , and
ml = 0,±1,±2, · · · ,±l . In the Fock-state representation,
the eigenstate has the form |N, l, ml〉 = ∑

k C(N,l,ml )
k |n−1 =

k, n0 = N − 2k − ml , n1 = k + ml〉, where the summation
runs over all the states with nonnegative n−1, n0, and n1. The
coefficient C(N,l,ml )

k can be determined using the property of
angular momentum operators [30].

We start our simulation with an initial state in which mF =
±1 modes are empty and mF = 0 mode is in a coherent state,
i.e., |ψ (0)〉 = e−|α|2/2 ∑

j
α j√

j!
|0, j, 0〉 in the Fock-state repre-

sentation. Because the atom number difference n1 − n−1 = 0
is preserved, the state resides in the subspace of states |n−1 =
k, n0 = N − 2k, n1 = k〉 with ml = 0. In Fig. 5(a), we show
the growth of the population in modes mF = ±1 where the
initial state has the mean atom number 〈n̂0〉 = 500. The
population 〈n̂1〉 = 〈n̂−1〉 increases first and then is saturated
after long interaction time. The insets show the atom num-
ber distribution after short and long interaction times. In
the weak interaction regime, the distribution follows that of
TMSV, whereas the state becomes a nontrivial non-Gaussian
entangled state after long interaction time [16]. We test our
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FIG. 5. (a) The population of modes mF = ±1 with respect
to the interaction time. Insets show the atom number distribution
on two specific time (marked as red dots). (b) The plot illus-
trating the difference between LHS and RHS of entanglement
criterion (13).

entanglement criterion (8) using coherent-state LOs and plot
the difference between LHS and RHS in Fig. 5(b). It is shown
that LHS is greater than RHS for λt > 0, so entanglement can
be detected at all times even after long interaction time. This
result implies that our entanglement criterion can detect spinor
entangled states in a broad range of interaction strengths re-
sulting in different numbers or characteristics of entangled
atoms.

There can be two main contributions to the statistical error.
One is the intrinsic uncertainty due to a finite measurement of
quantum states and the other the excess noise during the atom
number counting. The error due to a finite measurement is
unavoidable but the fluctuation can be reduced by increasing
the number of measurement M. The excess noise is mainly
caused by photon shot noise in the absorption imaging [40],
which leads to an overestimation of number of atoms, say
�Nex. In the homodyne measurement, we obtain unbiased ex-
pectation values because we take the difference between atom
numbers of two different modes. The excess noise only has an
affect on the fluctuation such that �X (m)

a ∼ �Nex
〈n̂c〉 . We can thus

make the fluctuation small enough with the coherent-state LO
with the practically available size. For example, the achievable
precision of current technology is �Nex ≈ 4 [40,41] so the
coherent-state LO with 〈n̂c〉 � 100 is enough to make the
fluctuation much smaller than the intrinsic uncertainty. On
the other hand, in the atom number counting on the RHS,
one needs to subtract the photon shot noise, which can be
precisely determined by measuring the signal without atomic
absorption [16,40,42].

VI. DISCUSSION

There has recently been growing interest in CV quan-
tum information employing atomic systems, which require
techniques for manipulating and measuring CV quantum ob-
servables appropriately. In this paper, we have developed
entanglement criteria that are useful to address non-Gaussian
entangled states for a massive system. In this case, the usual
homodyne detection must be carefully analyzed incorporating
the quantum statistics of the nonideal LOs. We have particu-
larly derived the modified HZ criteria in forms only requiring
the measurement of intensity of LOs. For the case of first-
order criterion, we have obtained a criterion that does not
require knowledge over the used LOs. However, the prop-
erty of the LO naturally affects the measured statistics of
quadrature amplitudes and we have illustrated this for the case
of coherent-state, displaced-thermal state, and squeezed-state
LOs, respectively. Our criteria, i.e., Eqs. (12), (13), (17), and
(19), can be adopted generally for an arbitrary CV quantum
system. Further studies on the CV nonclassical characteris-
tics of massive-particle systems may pave the way toward
applications of CV quantum information processing in atomic
systems, such as quantum gravity sensing [18] and quan-
tum computation [43]. One may also pursue to develop a
criterion to detect a stronger form of quantum correlation,
so-called EPR correlation [17,19,44], using atomic homodyne
measurements.

In optical systems, techniques have recently been devel-
oped to enable weak-field homodyne measurements, e.g., so
as to explore both wave and particle natures of quantum states
[45,46]. It would be interesting to extend our approach in a
similar context and also develop entanglement criteria that
detect a various class of entangled states under a variety
of LOs.
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APPENDIX A: BOUND OF |〈ĉ†〉|2 AND |〈d̂〉|2

The mean photon number of a single mode c state can be
written as

〈n̂c〉 = 〈
X̂ 2

c

〉 + 〈
P̂2

c

〉 − 1
2

= 〈X̂c〉2 + 〈P̂c〉2 + 〈�2X̂c〉 + 〈�2P̂c〉 − 1
2

= |〈ĉ†〉|2 + 〈�2X̂c〉 + 〈�2P̂c〉 − 1
2 . (A1)

The first term |〈ĉ†〉|2 is the contribution made out of a co-
herent amplitude. The remaining term 〈�2X̂c〉 + 〈�2P̂c〉 − 1

2
represents the contribution from variances of quadratures,
which is nonnegative due to the uncertainty relation. There-
fore, we have |〈ĉ†〉|2 � 〈n̂c〉 and, similarly, |〈d̂〉|2 � 〈n̂d〉. The
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inequalities are saturated by states satisfying the minimum
uncertainty, that is, coherent states. If LOs are not in coherent
states, the term |〈ĉ†〉|2

〈n̂c〉 becomes less than 1, which decreases
the LHS of Eq. 7. For example, displaced thermal states with
displacement α and thermal photon number Nth, we have
|〈ĉ†〉|2
〈n̂c〉 = 1 − Nth

|α|2 .

APPENDIX B: BOUND OF |〈(ĉ†)2〉|2 AND |〈d̂2〉|2

A simple calculation leads to

|〈(ĉ†)2〉|2 = ∣∣〈X̂ 2
c

〉 − 〈
P̂2

c

〉 + i〈X̂cP̂c + P̂cX̂c〉
∣∣2

= (〈
X̂ 2

c

〉 − 〈
P̂2

c

〉)2 + 〈X̂cP̂c + P̂cX̂c〉2

= (〈
X̂ 2

c

〉 + 〈
P̂2

c

〉)2 + 〈X̂cP̂c + P̂cX̂c〉2 − 4
〈
X̂ 2

c

〉〈
P̂2

c

〉
.

(B1)

Let us introduce a ≡ 〈�2X̂c〉, b ≡ 〈�2P̂c〉, and c ≡
1
2 〈�X̂c�P̂c + �P̂c�X̂c〉, which are elements of covariance

matrix V = (a c
c b). From the uncertainty relation

V � i
4 ( 0 1

−1 0), the inequality ab − c2 − 1
16 � 0 must be

satisfied. As |〈(ĉ†)2〉|2 is invariant under the phase rotation
ĉ �→ eiφ ĉ, we may assume 〈P̂c〉 = 0. Then Eq. (B1) becomes

|〈(ĉ†)2〉|2 = (〈
X̂ 2

c

〉 + 〈
P̂2

c

〉)2 + 4c2 − 4b(a + 〈X̂c〉2)

�
(〈n̂c〉 + 1

2

)2 + 4(c2 − ab)

� 〈n̂c〉2 + 〈n̂c〉, (B2)

where the inequality in the second line is saturated by states
with zero first moments and the one in the last line is satu-
rated by all pure Gaussian states. In a similar way, we obtain
|〈d̂2〉|2 � 〈n̂d〉2 + 〈n̂d〉.
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