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E. R. Zinatullin ,1 S. B. Korolev ,1,2 and T. Yu. Golubeva 1

1Department of Physics, Saint Petersburg State University, Universitetskaya Naberezhnaya 7/9, Saint Petersburg 199034, Russia
2Laboratory of Quantum Engineering of Light, South Ural State University, Prospekt Lenina 76, Chelyabinsk 454080, Russia

(Received 11 October 2022; accepted 1 February 2023; published 14 February 2023)

In our paper, we compare three teleportation protocols: The original protocol, the photon subtraction protocol,
and the protocol with a cubic phase gate. We evaluate the fidelity of each protocol using the example of
teleportation of the squeezed state and the Schrödinger cat state. We show that, under equal conditions, the
teleportation scheme with a cubic phase gate achieves significantly higher fidelity than the other protocols
considered.
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I. INTRODUCTION

Quantum teleportation is one of the basic protocols of
quantum information processing [1–5]. It is this protocol that
underlies one of the promising models of universal quan-
tum computation—the one-way quantum computation model
[6–8]. In our paper, we will discuss the continuous-variable
quantum teleportation protocol [9,10]. Unlike discrete quan-
tum systems, the use of continuous-variable ones allows
one to build deterministic schemes. However, working with
continuous-variable quantum systems also has a significant
drawback: The presence of unavoidable errors associated with
the finite squeezing degree of states, which are used as a
resource for teleportation. It is these errors that are the main
limiting factor of the regime in question.

Continuous-variable one-way quantum computation has
inherited this disadvantage. The squeezing degree, which
is experimentally achievable at the moment, turns out to
be insufficient for performing universal fault-tolerant quan-
tum computations. The maximum experimentally achievable
squeezing degree is −15 dB [11], whereas for such compu-
tations (without using a postselection procedure) a squeezing
of −20.5 dB [12] is required. There are various approaches
to circumvent the limitations of insufficient squeezing. These
approaches include the use of postselection [13] and surface
codes [13–19]. For example, in [13] the authors proposed a
computation scheme that allows reducing the squeezing re-
quirements to −10.8 dB. Thus, the main efforts are usually
aimed at error correction. However, the resource state require-
ments can be lowered by using computational schemes that
are less sensitive to the initial error. The first step for building
such schemes is to modify the basic one-way quantum com-
putation protocol—the teleportation protocol.

One of the recipes to improve teleportation accuracy is to
use a non-Gaussian state obtained by the conditional subtrac-
tion or addition of photons (PS) procedure as a teleportation
resource. This method has been proposed in [20]. However,
such a modified protocol loses determinacy because of the

probabilistic nature of the non-Gaussian operations used. An-
other teleportation scheme, described by us in [21], uses as a
resource the non-Gaussian state obtained with a cubic phase
gate (CPG) [22]. In contrast to the scheme with PS, it works
in a deterministic way.

The first idea of generating cubic phase states was pro-
posed by Gottesman, Kitaev, and Preskill back in 2001 (see
[22–24]). It turned out that this idea is difficult to implement
in practice since it requires performing the quadrature dis-
placement operation by a value far from what is achievable in
an experiment. Because of this, the CPG has long remained
just an abstract mathematical transformation. However, the
situation has changed in recent years. There are more and
more works devoted to new methods for the cubic phase
states generation [25–27] and the implementation of CPG
[28–32]. Particularly significant advances have been made in
the microwave frequency range—it was in this range that the
cubic phase state was generated for the first time [33]. As
a result, the CPG gradually turns from a purely theoretical
transformation into a real-life device.

Thus, we can talk about the advantage of the scheme with
CPG over the scheme with PS in terms of preserving the
transformations’ determinism. However, the question arises as
to which of these schemes allows one to perform teleportation
better and gives a greater gain over the scheme using Gaussian
resource. It is natural to consider teleportation fidelity as a
measure of this comparison.

In our paper, we will compare the original teleporta-
tion protocol [4], the teleportation protocol with PS [20],
and the teleportation protocol with CPG [21]. For this pur-
pose, we briefly describe each of the protocols in Sec. II.
Then in Sec. III we will evaluate the fidelity for each of
the protocols when teleporting Gaussian and non-Gaussian
states. As the Gaussian state, we will consider the squeezed
state, and the non-Gaussian state will be the Schrödinger
cat state. In Sec. IV, we evaluate the role of each of the
non-Gaussian operations used in the protocols under consider-
ation. Such comparison will allow us to estimate which of the
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FIG. 1. The teleportation scheme of the input state In. On the
scheme: S1 and S2 are resource oscillators squeezed in orthogonal
quadratures; BS1 and BS2 are symmetric beam splitters; ŷ and x̂ are
homodyne detectors, measuring the corresponding field quadratures
in channels; X and Y denote devices that displace the corresponding
field quadratures in the channel depending on the detection results.

non-Gaussian procedures has more perspectives for introduc-
tion into one-way quantum computation schemes.

II. TELEPORTATION PROTOCOLS

Before we compare protocols, let us recall how each of
them is constructed. In this section, we recall how the original
continuous-variable teleportation protocol works. Then we
will consider its modification with the PS procedure. Finally,
we briefly describe the protocol of teleportation with CPG.

A. Original teleportation protocol

We begin our discussion by recalling how the original
continuous-variable teleportation protocol is constructed. The
two oscillators denoted as S1 and S2 in Fig. 1 are squeezed in
orthogonal directions. We will describe them by the following
quadrature components:

x̂1 = er x̂0,1, ŷ1 = e−r ŷ0,1, (1)

x̂2 = e−r x̂0,2, ŷ2 = er ŷ0,2, (2)

where x̂0, j and ŷ0, j are quadratures of the jth oscillator in the
vacuum state. The oscillators used are believed to be equally
squeezed and the parameter r specifies their squeezing degree.

The squeezed fields are mixed on the symmetric beam
splitter, which leads to the creation of the entangled state:

â′
1 = 1√

2
[(x̂1 + x̂2) + i(ŷ1 + ŷ2)], (3)

â′
2 = 1√

2
[(x̂1 − x̂2) + i(ŷ1 − ŷ2)]. (4)

The resulting entangled state acts as a quantum resource for
further teleportation.

Then the input (teleportable) state is mixed with the field
in the first channel using a symmetrical beam splitter. As a
result, the field operators will take the form

â′′
in = 1√

2

[(
x̂in + 1√

2
(x̂1 + x̂2)

)

+ i

(
ŷin + 1√

2
(ŷ1 + ŷ2)

)]
, (5)

â′′
1 = 1√

2

[(
x̂in − 1√

2
(x̂1 + x̂2)

)

+ i

(
ŷin − 1√

2
(ŷ1 + ŷ2)

)]
. (6)

Next, using the homodyne detection procedure, we mea-
sure the y quadrature of the field in the input channel and the
x quadrature in the first channel. Such a measurement, because
of the entanglement of the resource state, will lead to a change
in the quadratures of the field in the second channel:

x̂′′′
2 = x̂in −

√
2x̂2 −

√
2X1, (7)

ŷ′′′
2 = ŷin +

√
2ŷ1 −

√
2Yin. (8)

Here X1 and Yin are measured quadrature values.
Finally, the last step in the teleportation protocol is to dis-

place quadratures in the second channel. One should choose
the displacement value as so to compensate for the c-number
terms in Eqs. (1) and (2). As a result, the state at the output of
the scheme takes the form

x̂out = x̂in −
√

2x̂2 = x̂in −
√

2e−r x̂0,2, (9)

ŷout = ŷin +
√

2ŷ1 = ŷin +
√

2e−r ŷ0,1, (10)

where the second equalities consider the squeezing degree of
the resource oscillators (1) and (2). Thus, the output quadra-
tures are equal to the input ones with the addition of errors
from the nonideally squeezed quadratures of the resource
oscillators.

The above reasoning is convenient for a clear demonstra-
tion of the protocol operation. However, it does not allow
us to evaluate the quality of teleportation for specific input
states. Therefore, we will once again consider the original
teleportation protocol, but in Schrödinger’s representation. In
the following, we will repeat the reasoning outlined by the
authors in [20].

Let the input state be described by the wave function in
the coordinate representation ψin(xin ), and let the entangled
resource oscillators (i.e., after the first beam splitter) be de-
scribed by the wave function ψ ′

1,2(x1, x2). The second beam
splitter acts on the oscillators’ quadrature as

x̂in → x̂in + x̂1√
2

, x̂1 → x̂in − x̂1√
2

. (11)

The wave function of the system is transformed as follows:

ψ ′′
in,1,2(xin, x1, x2) = ψin

(
xin + x1√

2

)

× ψ ′
1,2

(
xin − x1√

2
, x2

)
. (12)

Then the quadratures x1 and yin are measured. The un-
normalized wave function of the second oscillator after such a
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measurement takes the form

ψ ′′′
2 (x2;Yin, X1) = 1√

π

∫
dxin e−2iYinxinψin

(
xin + X1√

2

)

× ψ ′
1,2

(
xin − X1√

2
, x2

)
. (13)

The probability density that the measurement of the quadra-
tures x̂1 and ŷin will yield values X1 and Yin is determined by
the following expression:

P(Yin, X1) =
∫

dx2 |ψ ′′′
2 (x2;Yin, X1)|2. (14)

To complete the teleportation procedure, it remains to displace
the quadratures in the second channel by the measured quadra-
ture values. Thus, the wave state function at the output of the
scheme is given by the expression

ψout (x;Yin, X1) = 1√
πP(Yin, X1)

∫
dxin e2iYin (

√
2x−xin )

× ψin

(
xin + X1√

2

)
ψ ′

1,2

(
xin − X1√

2
, x +

√
2X1

)
.

(15)

Next, we will need to modify this protocol by adding a
conditional photon subtraction procedure. With this in mind,
it will be convenient to proceed to the decomposition of the
wave functions by the set of Fock states:

ϕk (x) = 1√
2k−1k!

√
2π

e−x2
Hk (

√
2x), k = 0, 1, 2, . . . .

(16)

In Eq. (16) Hk (x) are Hermite polynomials. Then, the wave
function of the entangled resource oscillators can be repre-
sented as

ψ ′
1,2(x1, x2) =

∑
k

akϕk (x1)ϕk (x2), (17)

where the coefficients have the form

ak =
√

1 − q2qk . (18)

In this decomposition, the parameter q (0 < q < 1) is re-
sponsible for an entanglement strength and is related to the
oscillators’ squeezing as

q = tanh r. (19)

We also represent the wave function of the teleported input
oscillator as the sum

ψin(xin ) =
∑

m

ain
mϕm(xin ). (20)

If we substitute the decompositions (17) and (20) into
Eq. (15), we can write the expression for the wave function
of the output state as

ψout (x;Yin, X1) = 1√
πP(Yin, X1)

e2
√

2iYinx
∑
k,m

akain
m

× ϕk (x +
√

2X1)Dk,m(Yin, X1). (21)

FIG. 2. The teleportation scheme with the PS. On the scheme:
Open channels are designated as Vac; BS1 and BS4 are symmetric
beam splitters; BS2 and BS3 are low-reflectance beam splitters; ŷ and
x̂ are homodyne detectors, and n̂ are photon-number detectors.

Here we introduced the c-numeric function Dk,m(Yin, X1) de-
fined by expressions

Dk,m(Yin, X1) = 2

√
2m−k

k!

m!
e−Y 2

in−X 2
1

× (X1 − iYin )m−kLm−k
k

(
2Y 2

in + 2X 2
1

)
(22)

for m � k, and

Dm,k (Yin, X1) = (−1)m−kD∗
k,m(Yin, X1) (23)

for m < k. In Eq. (22) Lm
k (x) are generalized Laguerre poly-

nomials. The resulting form of the transformation will be
convenient for modifying the scheme by PS.

B. Teleportation protocol with PS

In [20], the authors proposed a modified teleportation pro-
tocol (see Fig. 2). In this protocol, the entangled non-Gaussian
state is used as a resource. This state is obtained from the
two-mode squeezed vacuum by subtracting photons from each
mode. The conditional PS procedure is performed as follows:
A beam splitter with small amplitude reflection coefficient R
(and amplitude transmittance T ) is placed in the channel, then
the number of photons is measured in the reflected beam. Such
an operation on the jth oscillator transforms the Fock state
|k j〉 as follows:

|k j〉 → (−1)n j

√
(k j + n j )!

k j!n j!
|R|n j |T |k j−n j |k j − n j〉, (24)

where n j is the number of measured photons in the reflected
beam (see [34,35]).

A successful implementation of the protocol will be con-
sidered the case when one photon has been detected in each
channel. Then, the non-Gaussian entangled resource state can
be represented as the decomposition

ψ
ps
1,2(x1, x2) =

∑
k

aps
k ϕk (x1)ϕk (x2), (25)

where the coefficients are given by the following relation:

aps
k =

√
1 − q2

(k + 1)!

k!
|R|2|T |2kqk+1. (26)

Since the rest of the scheme is the same as the original one,
Eq. (21) describes the output state up to changing ak → aps

k .
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FIG. 3. The teleportation scheme with the CPG. On the scheme:
Yα denotes the displacement of the y quadrature by a fixed value α;
Q̂γ is a cubic phase gate with a nonlinearity coefficient γ ; ĈZ (g) is a
CZ transformation with weight coefficients g.

C. Teleportation protocol with CPG

Let us now consider the teleportation protocol we proposed
in [21]. This protocol uses the entangled state modified by a
cubic phase gate [22] as a resource. Figure 3 shows the scheme
of this protocol. As in the previous sections, we will describe
the action of the protocol using wave functions in coordinate
representation. But now we no longer need to proceed to the
decomposition of the wave functions by the set of Fock states.

Each of the squeezed oscillators at the input of the scheme
is described by a wave function:

ψs(x; r j ) = 4

√
2e2r j

π
exp(−e2r j x2), (27)

where r j is the squeezing coefficient of the corresponding
oscillator. In our protocol r2 = −r1 = r. Next, a non-Gaussian
state is prepared by sequentially applying to the second
squeezed oscillator the displacement procedure by the value
of α > 0:

Ŷα,2 = e2iαx̂2 (28)

and CPG

Q̂γ ,2 = e−2iγ ŷ3
2 , (29)

where γ is the nonlinearity coefficient. After these operators
act, the wave function of the second oscillator takes the form

ψ ′
2(x2) = 1√

π

∫
dy2 e2iy2(x2−γ y2

2 )ψs(y2 − α; −r). (30)

In contrast to previous teleportation protocols, for en-
tanglement we use the controlled-Z (CZ) transformation
(see, for example, [36–38]), which acts on the jth and kth
oscillators as

Ĉz, jk (g) = e2igx̂ j x̂k . (31)

The action of this operator on quadratures can be written as
follows:

Ĉz, jk (g) : x̂ j → x̂ j, (32)

Ĉz, jk (g) : x̂k → x̂k, (33)

Ĉz, jk (g) : ŷ j → ŷ j + gx̂k, (34)

Ĉz, jk (g) : ŷk → ŷk + gx̂ j . (35)

Here g is the weight coefficient, which can be any posi-
tive or negative value. It was shown in [39] that using such
an entanglement transformation instead of the beam splitter
transformation reduces the teleportation error of one quadra-
ture by a factor of g. We apply two CZ transformations
sequentially. The first CZ transformation entangles the re-
source oscillators, and the second one entangles the input state
with the state in the first channel. After that, the wave function
describing the whole system has the form

ψ ′′
in,1,2(xin, x1, x2) = e2igx1(x2−xin )ψin(xin )

× ψs(x1; −r)ψ ′
2(x2). (36)

Next, we measure the y quadratures of the input and the
first oscillators. We will consider the measured values to be Yin

and Y1, respectively. Homodyne measurement is a projection
operation on the y quadratures’ eigenstates, corresponding
to the measured values of the photocurrents. Then the un-
normalized wave function of the second oscillator after the
measurement takes the form of

ψ ′′′
2 (x2;Yin,Y1) = 1√

π

∫
dxin e−2ixinYinψin(xin )

× ψs

[
g

(
x2 − xin − Y1

g

)
; r

]
ψ ′

2(x2). (37)

The resulting wave function must be normalized by the square
root of the probability density that the measurement of the
quadratures ŷ1 and ŷin will yield values Y1 and Yin:

P(Y1,Yin ) =
∫

dx2 |ψ ′′′
2 (x2;Yin,Y1)|2. (38)

To complete the teleportation procedure, the x quadrature
of the second oscillator should be displaced by −Y1/g, and the
y quadrature by Yin − √|Y1|/(3γ g). Thus, the wave function of
the teleported state has the following form:

ψout (x;Yin,Y1) = 1√
πP(Y1,Yin )

∫
dxin e−2ixinYin

× e
2i

(
Yin−

√ |Y1 |
3γ g

)
x
ψin(xin )ψs[g(x − xin ); r]

× ψ ′
2

(
x + Y1

g

)
. (39)

Reference [21] presents a detailed analysis of this protocol.

III. COMPARISON OF DIFFERENT
TELEPORTATION PROTOCOLS

Let us evaluate the performance of each protocol for spe-
cific input states. To do this, we calculate the teleportation
fidelity, which is defined as

F (Yin, E1) =
∣∣∣∣
∫

dx ψ∗
out (x;Yin, E1)ψin(x)

∣∣∣∣
2

. (40)

Here, for the original teleportation protocol and the teleporta-
tion with PS, the quadrature measured in the first channel is X1

(i.e., E1 = X1), and for the teleportation with CPG E1 = Y1.
The protocols we consider have significantly different

working areas (i.e., different ranges of measured quadrature
values). To compare fidelity graphs for different protocols,
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FIG. 4. The probability densities of measuring the values X̃1 (or Ỹ1) and Ỹin (a)–(c) as well as teleportation fidelity (d)–(f) for the squeezed
state: (a), (d) original teleportation protocol, (b), (e) teleportation with PS, and (c), (f) teleportation with CPG.

it is necessary to combine these areas. To do this, we center
and normalize the axes of the measured quadratures. We will
normalize them by the variances values of the corresponding
quadratures:

Ẽ j = Ej − 〈Ej〉
〈(Ej − 〈Ej〉)2〉 , Ej = Yin, X1,Y1. (41)

Such a scaling seems natural, since the first and second mo-
ments of the probability densities P(Ỹin, Ẽ1) are equal, and
their differences are due only to non-Gaussian features of the
protocols themselves and the teleported states.

Let us briefly discuss the parameters we took for the calcu-
lations. We will take the squeezing of resource oscillators for
all protocols the same and equal to −10 dB. Such squeezing
is achievable in the real experiment [11]. For a teleportation
protocol with PS, a balance between two factors should be
maintained when selecting the reflection coefficient of the
beam splitters used for photon subtraction. On the one hand,
the reflection coefficient should be small so that cases of
subtraction of two or more photons can be neglected (since
existing photon detectors do not allow us to measure the exact
number of photons that have arrived). On the other hand, it
cannot be very small, so that the probability of successful
protocol implementation does not tend to zero. Following the
authors of [20], we take r = 0.05. In this case, the probability
of successful PS in both channels is approximately 4%. Now
let us turn to the parameters used in the teleportation protocol
with CPG. Usually, auxiliary squeezed oscillators (see, for
example, [39]) are required to implement the CZ transfor-
mation. We assume that the squeezing of these oscillators is
the same as that of the resource ones (i.e., −10 dB). Then
the weight coefficient of the CZ transformation can be taken
approximately g = 3 [40]. We take the relatively small non-
linearity of the CPG γ = 0.1, and the displacement α = 7.
Small values of nonlinearity are estimated as conditionally
achievable [25,33], and displacement by a small value does
not represent experimental difficulties [21].

A. Squeezed state teleportation

It is of interest to evaluate for which type of states the
use of a non-Gaussian resource gives a greater gain and
which of the protocols provides it. To evaluate the perfor-
mance of the protocols, we considered the cases of Gaussian
and non-Gaussian input states. As a Gaussian one, we took an
x-quadrature squeezed state with −5 dB squeezing.

Figure 4 shows the probability density of measuring the
values X̃1 (or Ỹ1) and Ỹin as well as teleportation fidelity of the
Gaussian state for all analyzed protocols. Let us first compare
the original protocol and the protocol with PS. For the original
protocol, the probability density P(Ỹin, X̃1) has the form of a
Gaussian distribution. For the teleportation protocol with PS,
the probability density P(Ỹin, X̃1) has a dip in the center of
the working area. Comparing the fidelities for these protocols,
we see that the fidelity for the protocol with PS is slightly
higher in the area of the most probable measured values, but
less at the edges of this area. Therefore, it is difficult to say
unequivocally which of the protocols turned out to be more
effective. At the same time, the probability density P(Ỹin, Ỹ1)
for the protocol with CPG is asymmetric about the Ỹin axis.
It has a tail going into the area with high fidelity values.
Furthermore, the fidelity of the teleportation protocol with
CPG exceeds the fidelity of the other protocols in almost the
entire working area.

B. Schrödinger’s cat state teleportation

As a non-Gaussian input state, we took an odd Schrödinger
cat state, which is a superposition of two coherent states:

ψcat (x) = 1

Ncat
(e2ibx − e−2ibx )e−x2

, (42)

where Ncat is the normalization factor. For the calculations, we
take b = 1.5. Using the same state, the authors of the paper
[20] tested the operation of the protocol with PS.

Figure 5 shows the probability density of measuring the
values X1 (or Y1) and Yin as well as the teleportation fidelity for
the three protocols considered. When comparing the original
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FIG. 5. The probability densities of measuring the values X̃1 (or Ỹ1) and Ỹin (a)–(c) as well as teleportation fidelity (d)–(f) for the Schrödinger
cat state: (a), (d) original teleportation protocol, (b), (e) teleportation with PS, and (c), (f) teleportation with CPG.

teleportation protocol and the protocol with PS, we see that
the probability density P(Ỹin, X̃1) for the protocol with PS
increases in the central part of the working area. Also, for the
chosen non-Gaussian input state, the fidelity of the teleporta-
tion with PS increased significantly in the central part of the
work area. Thus, when teleporting the Schrödinger cat state,
the protocol with PS is more efficient than the original one.
However, as well for the squeezed input state, the fidelity for
the protocol with CPG is higher than for the others in almost
the entire working area. For protocol with CPG, the probabil-
ity density P(Ỹin, Ỹ1) for Schrödinger’s cat teleportation and
squeezed state teleportation has the same form.

To objectively compare the quality of all three protocols,
for each of the cases considered above, we calculate the aver-
aged fidelity of teleportation:

〈F 〉 =
∫∫

dYindE1 F (Yin, E1). (43)

The calculation results are shown in Fig. 6. We see that the av-
eraged fidelity of squeezed state teleportation for the protocol
with PS is slightly higher than for the original protocol. The
gain for the protocol with PS becomes more noticeable when
teleporting the more complex Schrödinger cat state. However,
the averaged fidelity for the protocol with CPG significantly
exceeds the averaged fidelity for the other protocols for both
the Gaussian input state and the non-Gaussian one.

Thus, under the same conditions, the teleportation protocol
with CPG is more efficient than the other protocols consid-
ered. In addition, it works deterministically, while for the
protocol with PS the probability of successful implementation
is only 0.4% [20].

IV. EVALUATING THE ROLE OF NON-GAUSSIAN
RESOURCES

In the previous section, we compared two schemes with
non-Gaussian resources, which were proposed earlier in
[20,21]. However, these schemes are fundamentally different
from each other. The PS scheme contains a non-Gaussian

operation in each of the resource channels, which leads to a
uniform error reduction in both quadratures of the teleported
state. At the same time, the proposed teleportation protocol
with CPG contains only one non-Gaussian operation. How-
ever, to create entanglement, it uses CZ gates that increase the
entanglement in the system. This allows us to simultaneously
reduce the teleportation error in both quadratures: In one due
to weight coefficients of CZ gates, and in the other due to the
non-Gaussian transformation.

The question arises whether it is possible to separate the
Gaussian processes affecting the error from the non-Gaussian
ones, and compare exactly non-Gaussian resources with each
other. To find out what role non-Gaussian resources play in
error reduction, we modify the scheme shown in Fig. 3 by re-
placing the entangling CZ gates with beam splitters. As before,

FIG. 6. Averaged teleportation fidelity: (a) squeezed state tele-
portation by the original protocol, (b) squeezed state teleportation by
the protocol with PS, (c) squeezed state teleportation by the protocol
with CPG, (d) Schrödinger’s cat state teleportation by the original
protocol, (e) Schrödinger’s cat state teleportation by the protocol
with PS, and (f) Schrödinger’s cat state teleportation by the protocol
with CPG.
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FIG. 7. The teleportation scheme with beam splitters and CPG.

one of the resource states is replaced by the non-Gaussian
state prepared using the CPG (Fig. 7).

Let us obtain an expression for the wave function of the
output state in such a teleportation scheme. In the first chan-
nel, a non-Gaussian state is used instead of a y-quadrature
squeezed state. This state is prepared in exactly the same way
as in the teleportation scheme with CPG considered above.
Thus, the wave function of the first resource oscillator ψ ′

1(x1)
is given by Eq. (30).

Further, with the help of beam splitters, the resource oscil-
lators and input state are entangled. The action of the beam
splitters on the quadratures is similar to the transformation
(11). The wave function of the system is transformed as fol-
lows:

ψ ′′
in,1,2(xin, x1, x2) = ψin

(
xin + x1√

2

)
ψ ′

1

(
xin − x1

2
+ x2√

2

)

× ψs

(
xin − x1

2
− x2√

2
; r

)
. (44)

Then, as in the original teleportation protocol, x1 and yin

quadratures are measured (X1 and Yin are measured quadrature
values, respectively). The un-normalized wave function of the
second oscillator after such a measurement has the form

ψ ′′′
2 (x2;Yin, X1) = 1√

π

∫
dxin e−2iYinxinψin

(
xin + X1√

2

)

× ψ ′
1

(
xin − X1

2
+ x2√

2

)

× ψs

(
xin − X1

2
− x2√

2
; r

)
. (45)

To complete the teleportation procedure, it remains to dis-
place the quadratures in the second channel according to the
measured quadrature values: The x quadrature displaced by√

2X1, and the y quadrature by
√

2Yin − √
4|X1|/(3γ ). Thus,

the wave function of the state at the output takes the form

ψout (x2;Yin, X1) = 1√
πP(Yin, X1)

∫
dxin e−2iYinxin

× e
2ix

(√
2Yin−

√
4|X1 |

3γ

)
ψin

(
xin + X1√

2

)

× ψ ′
1

(
xin − 3X1

2
+ x√

2

)

× ψs

(
xin + X1

2
− x√

2
; r

)
, (46)

where a normalization factor appeared before the integral,
restoring the normalization of the wave function and having

the meaning of the probability density of measuring the values
X1 and Yin in the first and input channels, respectively.

To correctly evaluate the quality of the protocols, the input
state should have two properties. It should be sufficiently
complex (preferably non-Gaussian), so that the gain from
using non-Gaussian states is more noticeable. It should also
be symmetric in both quadratures. The second requirement is
necessary because the teleportation protocol with PS reduces
the error in both quadratures, while the protocol with CPG
does only in one. A state with such properties will allow us
to objectively compare the gain from non-Gaussian resources.
Given the above, we chose the first Fock state ϕ1 as the input
state. We also increase the displacement value to α = 15 in the
teleportation protocol with CPG to compensate for the lack of
additional squeezing in the protocol. At the same time, we
leave the nonlinearity of the CPG unchanged. Despite the fact
that the CPG affects the error in only one channel, leaving the
error in the second channel untouched, as we can see from
Fig. 8 (see the average fidelity numbers for each teleportation
case), the gain from using CPG in the teleportation protocol
exceeds the gain from using PS.

It is worth noting that reducing the squeezing degree of
resource oscillators will reduce the quality of the teleportation
protocol. In this case, the gain from the use of additional
non-Gaussian resources will be more significant. Conversely,
at sufficiently high squeezing of resource oscillators, non-
Gaussian operations will not play such a significant role.

V. CONCLUSION

In our paper, we have compared the performance of three
teleportation protocols: The original protocol, the protocol
with PS, and the protocol with CPG. On the example of the
squeezed state and Schrödinger cat state, we have shown that
the protocol with CPG allows one to reach higher fidelity val-
ues. It should be noted that teleportation fidelity in the scheme
with CPG is almost independent of the type of teleported
state. This distinguishes it noticeably from other protocols. In
addition, the protocol with CPG works in a deterministic way,
unlike the protocol with PS.

It is worth noting that the implementation of the teleporta-
tion protocol with the CPG is technically more difficult than
implementing the other protocols considered. The key ele-
ment of this scheme is the CPG, the practical implementation
of which is still a challenge for experimenters. In addition,
the protocol assumes confusion of the fields using CZ trans-
formations. Such entanglement is more difficult to implement
in practice than entanglement on a beam splitter (see, for
example, [39]). Nevertheless, Gaussian and non-Gaussian re-
sources are currently being actively developed. In addition,
there has been significant progress in the generation of cubic
phase states [33]. Therefore, with the advent of better ways to
implement the CPG and CZ transformation, a protocol with the
cubic phase gate can give a significant advantage over other
teleportation protocols.

It is also important to note that in the paper, for the sake
of simplicity, we have taken into account the imperfections of
the schemes associated with the use of Gaussian resources, in
other words, imperfections arising from the use of oscillators
with a finite (nonideal) squeezing degree. To take into account
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FIG. 8. The probability densities of measurement values X1 and Yin (a)–(c) and teleportation fidelity (d)–(f) when teleporting the first
Fock state for (a), (d) original teleportation protocol, (b), (e) teleportation with PS, and (c), (f) teleportation with CPG in a scheme with beam
splitters. The average fidelity for each of the cases is given below.

imperfections of this type most honestly, we have considered
auxiliary oscillators with the same squeezing degree in all
schemes.

In addition to these imperfections, the scheme contains
imperfections associated with non-Gaussian resources. Cur-
rently, as it is known, such resources are difficult to implement
in practice [41,42]. In the photon subtraction scheme, the dif-
ficulty in creating non-Gaussian states is related to the use of
nonideal photon number detectors. In [20] the authors discuss
this imperfection. The main problem of the other circuit is
related to the lack (at present) of experimental methods for
implementing a cubic phase gate in the optical range. How-
ever, such a gate is already deterministically realized in the
microwave range [33], which gives hope for its realization
soon in the optical range as well. Since cubic phase gates
implement non-Gaussian operations deterministically, using

this resource to reduce teleportation errors will be more ad-
vantageous.

Despite the practical difficulties of implementing a CPG,
our paper shows its potential to enhance teleportation
schemes. We thus conclude that the CPG remains promising
for further implementation in one-way quantum computation
schemes.
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