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Quantum k-medoids algorithm using parallel amplitude estimation
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Quantum computing is a promising paradigm that can provide viable solutions to high-complexity problems.
The k-medoids algorithm is a powerful clustering method ubiquitously used in data mining, image processing,
pattern recognition, etc. The core of k-medoids algorithm is to perform cluster assignment and center update,
which are time-consuming for large data sets. Aïmeur et al. proposed a quantum k-medoids algorithm [Aïmeur,
Brassard, and Gambs, Mach. Learn. 90, 261 (2013)] by quantizing the center update. Nevertheless, it has a query
complexity O(N3/2) for one iteration, which is computationally expensive for a large N where N is the number
of points. In this paper, we propose a complete quantum algorithm for k-medoids algorithm. Specifically, in
cluster assignment, we devise a quantum subroutine to calculate the Manhattan distance between any two points
and then assign all points to the closest center in parallel, which is faster than what is achievable classically. In
center update, for a cluster, we use parallel amplitude estimation to calculate the average distance of each point
to all the others. It makes our algorithm polynomially faster than the algorithm of Aïmeur et al., whose sum of
distances of each point to all the others is computed by adding the distances one by one. Our quantum k-medoids
algorithm, with time complexity Õ(N1/2), achieves a polynomial speedup in N compared to the existing one.
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I. INTRODUCTION

Quantum computing can utilize quantum resources to pro-
cess massive amounts of data both efficiently and securely,
which has broad application prospects in information and
computing. Tremendous progress is continuously being made
both technologically and theoretically in it. Technologically,
quantum hardware is making considerable advances [1–4].
Theoretically, considerable quantum algorithmic work is un-
derway, such as cryptanalysis [5,6], to reduce the resources
needed for implementing important classical algorithms. In
recent years, a series of quantum algorithms were designed for
machine learning problems in attempting to achieve potential
quantum advantages, such as classification [7–9], clustering
[10–15], linear regression [16–18], dimensionality reduction
[19–23], matrix computation [24–26], and anomaly detection
[27]. More progress on quantum machine learning algorithms
can be found in Refs. [28,29].

Clustering is one of the most crucial unsupervised learning
tasks, which refers to separating observed data into groups
(i.e., clusters) with some quantified measurements, such that
objects within a cluster are similar to each other but are
dissimilar to objects in other clusters [30]. One of the most
popular clustering algorithms is k-means [31] which itera-
tively finds the k centroids and assigns every object to the
nearest centroid. The coordinate of each centroid is the mean
of the coordinates of the objects in the cluster. Neverthe-
less, k-means is known to be very sensitive to outliers and
noises. To avoid this problem, the k-medoids algorithm [32]
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is commonly used, where representative objects (or cluster
centers) called medoids are considered instead of centroids.
The medoid of a cluster is defined as the object within the
cluster whose average (or sum) dissimilarity to all the other
objects in this cluster is minimal. Similar to k-means, the core
of k-medoids is to perform cluster assignment and center up-
date. The k-medoids algorithm is widely used in such domains
as data mining, image processing, and pattern recognition.
But it works inefficiently for large data sets since its time
complexity is O(N2Mk) for one iteration, where N is the
number of points in the data set, M is the dimension of points,
and k is the desired number of clusters. Therefore, it would be
of great interest to design a quantum algorithm to reduce the
complexity of the classical k-medoids algorithm.

A. Result

We develop a quantum k-medoids algorithm based on the
Manhattan distance, in which we design two quantum sub-
algorithms to perform cluster assignment and center update,
respectively. In cluster assignment, we devise a quantum sub-
routine to compute the Manhattan distance between any pair
of points by quantum arithmetic operation [34–36] and then
assign every point to the nearest center by a circuit for finding
the minimum [33]. In center update, for a cluster, its new
cluster center can be found by computing for each point inside
the cluster its average (or sum) distance to all the other points
and taking the minimum. Here we use quantum techniques,
such as fixed-point quantum search [37] and parallel ampli-
tude estimation [38,39], to calculate the average distance of
each point to all the other points within the same cluster.
Our quantum algorithm can be summarized as the following
theorem.
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TABLE I. The comparisons between our algorithm and the classical and quantum versions of the k-means/k-medoids algorithm. Here X
is the data matrix, ε is an error parameter, xil denotes the (i, l ) entry of X , η = maxi(‖xi‖2), xi is the ith row of X , δ is a precision parameter, κ

is the condition number of X , μ = minp∈P[‖X‖F ,
√

s2p(X )s2(1−p)(X T )], where P ⊂ [0, 1] such that |P| = O(1) and sp(X ) := maxi∈[N] ‖xi‖p
p.

Algorithm Input Output Complexityd

Classical k-means [31] k, X ∈ RN×M k clusters and their centers O(kNM )
Quantum k-means [12] − a quantum state corresponding O[k log(kNM )]

to k clusters

Quantum k-means [33] k, X stored in a QRAM, k centers Õ[kM η

δ2 κ (μ + k η

δ
) + k2 η1.5

δ2 kμ]
other parametersa

Classical k-medoids [32] k, X k clusters and their centers O(kN2M )

Quantum k-medoids [10,11] k, a distance oracleb k clusters and their centers O( N3/2√
k

)

Our quantum k-medoids k, X stored in a QRAM, ε k centers and a quantum state Õ( k5/2M2N1/2 maxi,l |xil |
ε

)
corresponding to k clusters

k clusters and their centersc Õ(kNM + k5/2M2N1/2 maxi,l |xil |
ε

)

aThe other parameters here denote the new parameters introduced by the quantum k-means algorithm in Ref. [33].
bSee Sec. II B for more details.
cWe can get the classical k clusters by performing a classical cluster assignment after obtaining k centers.
dWe use time complexity to measure algorithm performance, except for the quantum k-medoids algorithm in Refs. [10,11], which use query
complexity. For simplicity, we only consider the complexity of one iteration and use log(·) to denote log2(·) throughout the paper. Note that
with Õ we hide polylogarithmic factors.

Theorem 1. Given the data matrix X ∈ RN×M stored in a
quantum random access memory (QRAM) [40] and the pa-
rameter ε, k > 0, the quantum k-medoids algorithm with high
probability outputs k cluster centers and a quantum state cor-

responding to the k clusters in time Õ( k5/2M2N1/2 maxi,l |xil |
ε

) per
iteration, where ε is the error parameter for average distance
estimation in center update and xil denotes the (i, l ) entry of X .

In conclusion, when k, maxi,l |xil | = O(1), M = log2 N
and let 1

ε
= O[log2(NM )], the time complexity of our quan-

tum k-medoids algorithm is Õ(N1/2) for one iteration, which
achieves a polynomial speedup in N compared to the existing
one [10,11], whose query complexity is O(N3/2) under the
same conditions. Note that our quantum algorithm can also be
generalized to perform k-medoids clustering based on other
distance measures such as Hamming distance and Chebyshev
distance.

B. Related work

There is some work in quantum computing involving
clustering problems. The quantum k-means algorithms in
Refs. [12,33] achieve an exponential speedup over the clas-
sical k-means. The former belongs to the adiabatic quantum
computing [41] and the latter utilizes the QRAM. The work
most similar to ours is the quantum k-medoids algorithm
proposed by Aïmeur et al. in Refs. [10,11], we call it the
ABG algorithm. Based on the black-box model [42], the
ABG algorithm uses a classical computer to perform cluster
assignment and then quantum techniques to perform center
update. It outputs the k clusters and their cluster centers. In
our work, a trade-off is made between the amount of classical
information obtained and the speed of the algorithm. Our
quantum k-medoids algorithm outputs the k clusters centers
and a quantum state corresponding to the k clusters. Unlike the
ABG algorithm, our algorithm is an entire quantum algorithm,

in which we redesign two quantum subalgorithms to perform
cluster assignment and center update, respectively. In center
update, the use of parallel amplitude estimation makes our
algorithm polynomially faster than the ABG algorithm, whose
sum of distances of each point to all the others is computed
by adding the distances one by one. Of course, we can also
obtain the classical information of k clusters by adding a
classical cluster assignment. No matter what information we
want to get, our quantum k-medoids algorithm will be faster
than the existing one. See Table I for the comparisons between
our algorithm and the classical and quantum versions of the
k-means/k-medoids algorithm in an end-to-end setting.

The remainder of the paper is organized as follows. In
Sec. II, we review the classical k-medoids algorithm and
the ABG algorithm in Secs. II A and II B, respectively. In
Sec. III A, we propose our quantum k-medoids algorithm
in Sec. III A and analyze its time complexity in Sec. III B.
Numerical simulations are reported in Sec. IV to validate the
performance of our algorithm in practice. The conclusion is
given in Sec. V.

II. REVIEW OF THE CLASSICAL k-MEDOIDS
ALGORITHM AND THE ABG ALGORITHM

In this section, we will briefly review the classical k-
medoids algorithm in Sec. II A, and the ABG algorithm in
Sec. II B.

A. Review of the classical k-medoids algorithm

Let X ∈ RN×M be a data set of points xi ∈ RM for i ∈ [N],
where [N] denotes an index set {1, 2, . . . , N}. For a pre-
determined parameter k, k-medoids clustering [32] aims to
partition these points into k clusters according to a similarity
measure, e.g., the Manhattan distance d (xi, xs) = ‖xi − xs‖1,
where ‖ · ‖1 is the �1 norm of a vector. See Fig. 1 for an
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FIG. 1. The original Iris data set (left) and the result by k-medoids clustering (right).

example of clustering the well-known Iris data set. In general,
the k-medoids problem is NP-hard to solve exactly for all
k � 2 [43]. As such, many heuristic solutions exist. Here, we
consider a Voronoi-iteration [31] k-medoids algorithm. The
algorithm starts by selecting k initial centers at random among
all points and then alternates between cluster assignment and
center update until convergence. The convergence condition
is that the minimum cost function is reached or the cluster
centers are stabilized (or quasi-stabilized) or the maximum
number of iterations is reached. Moreover, the k initial centers
can also be selected by an initialization subroutine [44]. At
iteration t , we denote the k clusters by the index sets Ct

j for j ∈
[k], and the cluster center of Ct

j by the point xct
j
. The process

of classical k-medoids algorithm is shown in Algorithm 1.
The time complexity of the classical k-medoids algorithm

is O(N2Mk) for one iteration, where N is the number of points

Algorithm 1. Classical k-medoids algorithm.

Input: Data matrix X , cluster number k.
Output: The k clusters and their cluster centers.

Step 1. Initialization
Select k initial centers at random among all points (or by
an initialization subroutine).
t = 0.
repeat

Step 2. Cluster assignment
for each i ∈ [N]

Compute the distances between point xi and k
cluster centers, and then attach xi to its closest center.

end for
Step 3. Center update
for each j ∈ [k] do

Find the medoid of the cluster Ct
j and make it its

new center.
end for
t = t + 1.

until convergence condition is satisfied.
return The k clusters and their cluster centers.

in the data set, M is the dimension of points, and k is the de-
sired number of clusters. It is computationally expensive when
dealing with a large number of points. The ABG algorithm in
the following subsection gives a feasible quantum acceleration
scheme.

B. Review of the ABG algorithm

In Refs. [10,11], the authors assume that the distance (or a
similarity measure) between points of the data set is available
solely through a black box (also called an oracle) as shown
in Fig. 2. Using this oracle, they build the quantum circuit
illustrated in Fig. 3, which takes |i〉 as the input, 1 � i � m,
and computes the sum of the distances between xi and all the
other points within the cluster {x1, x2, . . . , xm}. The quantum
minimum-finding algorithm [45] can then be used to find
the minimum such sum over all possible xi. It is possible to
compute the medoid of a cluster by using the quantum sub-
routine as described above. Based on this, they use a classical
computer to perform cluster assignment and then quantum
techniques to find the new cluster centers. Finally, the ABG
algorithm outputs the k clusters and their centers.

For simplicity, they assume that the clusters have roughly
the same size N

k . This yields a query complexity O( N3/2√
k

) for
one iteration [10,11]. The complexity of the ABG algorithm
depends on N3/2, which makes it unsuitable for large data sets.
In the following section, we will introduce a new quantum
k-medoids algorithm that can significantly reduce the com-
plexity of the ABG algorithm.

FIG. 2. Illustration of the distance oracle. The addition b +
d (xi, xs ) is performed in an appropriate finite group between the
ancillary register |b〉 and the distance d (xi, xs ).
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FIG. 3. Computing the sum of distances between xi and all the
other points within the cluster {x1, x2, . . . , xm}. The oracle S can be
obtained by repeating m times the oracle O described in Fig. 2 for s
ranging from 1 to m.

III. QUANTUM k-MEDOIDS ALGORITHM

In this section, we present a quantum k-medoids algorithm
in Sec. III A and analyze its complexity in Sec. III B.

Our quantum k-medoids algorithm follows the same steps
as the classical k-medoids algorithm. In step 1, we pick k
initial centers at random among all points and then store their
indexes in a QRAM. In step 2, we compute the Manhattan
distances between all points and the k cluster centers, then all
points are assigned to the closest center in superposition. In
step 3, for each cluster, we find the point within the cluster
whose average distance to all the other points in this cluster
is minimum, then we update the above QRAM with the in-
dexes of the k points we found, repeating the last two steps
until convergence. An overview of our algorithm is shown as
Algorithm 2.

A. Algorithm

Assume that the data matrix X ∈ RN×M is stored in a
QRAM [40] which allows the following mapping to be per-
formed in time O[log(NM )]:

OX : |i〉|l〉|0〉 → |i〉|l〉|xil〉, (1)

where xil denotes the (i, l ) entry of X .
In addition, at iteration t , the index vector ct :=

[ct
1, ct

2, ..., ct
k]T is stored in a QRAM, that is, the following

mapping can be performed in time O(log k):

Ot
c : | j〉|0〉 → | j〉∣∣ct

j

〉
, (2)

where ct
j is the index of the center of Ct

j .
For ease of understanding, here we introduce two lemmas

which are necessary for our quantum algorithm.
Lemma 1. (Manhattan distance calculation). Given a uni-

tary OX : |i〉|l〉|0〉 → |i〉|l〉|xil〉 which can be performed in
time O[log(NM )]. Then, there exists a quantum algorithm that
performs the following mapping:

Q1 : |i〉|s〉|0〉 → |i〉|s〉|d (xi, xs)〉 (3)

in time O[M log(NM )], where d (xi, xs) is the Manhattan dis-
tance between two points xi and xs.

Proof. See Appendix A. �
Lemma 2. (Circuit for finding the minimum [33]). Given

k different log q-bit registers
⊗k

j=1 |d j〉, there is a quantum
circuit that maps⎛⎝ k⊗

j=1

|d j〉
⎞⎠|0〉 →

⎛⎝ k⊗
j=1

|d j〉
⎞⎠∣∣∣ arg min

j
(d j )

〉
(4)

in time O(k log q).

Algorithm 2. Quantum k-medoids algorithm.

Input: Data matrix X stored in a QRAM. Cluster number
k, error parameter ε for average distance estimation.

Output: The k clusters centers and a quantum state corresponding
to the k clusters.
Step 1. Initialization
Select k initial centers at random among all points and store
the initial index vector c0 = [c0

1, c0
2, . . . , c0

k ]T in a QRAM.
t = 0.
repeat

Step 2. Cluster assignment
(2.1) Prepare the state

∑N
i=1

1√
N
|i〉⊗k

j=1(| j〉|ct
j〉|0〉⊗	log q
);

(2.2) Compute the distances between all points and the
k centers to get 1√

N

∑N
i=1 |i〉⊗k

j=1[| j〉|d (xi, xct
j
)〉];

(2.3) Find the minimum among {d (xi, xct
j
)} j∈[k] to create

the superposition of all points and their cluster labels:
|φt 〉 = 1√

N

∑N
i=1 |i〉| jt (xi )〉.

Step 3. Center update
for each j ∈ [k] do

(3.1) Perform the fixed-point quantum search
algorithm on the state |φt 〉|0〉|φt 〉 to prepare the state

1√|Ct
j |
∑

i∈Ct
j
|i〉|0〉 1√|Ct

j |
∑

s∈Ct
j
|s〉;

(3.2) For a given error ε, estimate the average
distance of xi to all the other points within Ct

j to create the

state 1√|Ct
j |
∑

i∈Ct
j
|i〉|

∑
s∈Ct

j
d (xi,xs )

|Ct
j |

〉;

(3.3) Find the minimum among {
∑

s∈Ct
j

d (xi,xs )

|Ct
j |

}i∈Ct
j

and then let ct+1
j = arg mini∈Ct

j
(

∑
s∈Ct

j
d (xi,xs )

|Ct
j |

);

end for
(3.4) Update the QRAM for the index vector with the

new vector ct+1 = [ct+1
1 , ct+1

2 , . . . , ct+1
k ]T .

t = t + 1.
until convergence condition is satisfied.
return The k clusters centers and a quantum state corresponding
to the k clusters.

The above lemma can be easily generalized to the follow-
ing quantum circuit:

Umin :

⎛⎝ k⊗
j=1

| j〉|d j〉
⎞⎠|0〉 →

⎛⎝ k⊗
j=1

| j〉|d j〉
⎞⎠∣∣∣ arg min

j
(d j )

〉
.

(5)

Now we detail the process of our quantum k-medoids al-
gorithm.

Step 1. Initialization
Here, we select k initial centers at random among all points

and then store the initial index vector c0 = [c0
1, c0

2, . . . , c0
k ]T in

a QRAM. Moreover, the initial cluster centers can be chosen
by a quantum initialization algorithm in Ref. [11].

Step 2. Cluster assignment
At iteration t , our quantum subalgorithm for cluster assign-

ment consists of the following three stages. Among them, we
first carry out stages (2.1) and (2.2) to compute the Manhattan
distances between all points and the k cluster centers, then
implement stage (2.3) to assign all points to the closest center
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FIG. 4. Quantum circuit of step 2 of our algorithm. Here the numbers 1, 2, . . . , k at the left-most denote the sequence of k sets of registers
in the tensor product state

⊗k
j=1(| j〉|0〉⊗	log N
|0〉⊗	log q
), (2.1), (2.2), and (2.3) denote the three stages of step 2, “/” denotes a bundle of wires,

H denotes the Hadamard gate, and dt
i j denotes d (xi, xct

j
).

in superposition. At the end of cluster assignment, we obtain
the superposition of all points and their cluster labels. The
details are as follows.

(2.1) Prepare the state

N∑
i=1

1√
N

|i〉
k⊗

j=1

(| j〉∣∣ct
j

〉|0〉⊗	log q
), (6)

where q = 2M maxi,l |xil |, 	·
 is the ceiling function, the ten-
sor product state

⊗k
j=1(| j〉|ct

j〉|0〉⊗	log q
) corresponds to the k
cluster centers and will be used to select the nearest center for
each point.

To get the above state, we first prepare the initial state

N∑
i=1

1√
N

|i〉
k⊗

j=1

(|0〉⊗	log k
|0〉⊗	log N
|0〉⊗	log q
). (7)

Then, we perform the unitary I⊗	log N
⊗k
j=1(C j ⊗

I⊗(	log N
+	log q
) ) on the above state to get

N∑
i=1

1√
N

|i〉
k⊗

j=1

(| j〉|0〉⊗	log N
|0〉⊗	log q
), (8)

where C is a circular shift operator that performs the mapping
C : | j − 1〉 → | j〉 for j ∈ [k]. After that, the target state can
be obtained by calling Ot

c.
(2.2) Compute the Manhattan distances between all points

and the k cluster centers by Q1 (lemma 1), and then discard all
|ct

j〉 to get the state 1√
N

∑N
i=1 |i〉⊗k

j=1 [| j〉|d (xi, xct
j
)〉].

(2.3) Invoke Umin to find the minimum distance among
{d (xi, xct

j
)} j∈[k] and then uncompute the redundant registers to

create the superposition of all points and their cluster labels:

|φt 〉 := 1√
N

N∑
i=1

|i〉| jt (xi )〉, (9)

where jt (xi ) = arg min j∈[k][d (xi, xct
j
)] is the cluster label of

point xi at iteration t .
The entire quantum circuit of step 2 is shown in Fig. 4.
Step 3. Center update
At iteration t , our quantum subalgorithm for center update

consists of the following four stages. Among them, we first
carry out stages (3.1)–(3.3) for each j ∈ [k] to find the k
medoids, then implement (3.4) to update the QRAM for the
index vector ct . The details are as follows.

(3.1) Prepare the state

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉|0〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉, (10)

where |Ct
j | denotes the number of points in cluster Ct

j .
Note that, at the end of stage (2.3) in step 2, we get the state

|φt 〉, which can be rewritten as

|φt 〉 =
k∑

j=1

√∣∣Ct
j

∣∣
N

⎛⎜⎝ 1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉

⎞⎟⎠| j〉. (11)

Based on this, we can first prepare the state |φt 〉|0〉|φt 〉. For the
target state having the same state, i.e., | j〉, as appears in the last
register of both |φt 〉, we apply the fixed-point quantum search
algorithm proposed in Ref. [37] to amplify the amplitude of
it. Ideally, we get the following state:

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉| j〉|0〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉| j〉. (12)

Also, in Appendix B, we discuss the case that the above
quantum state is obtained with a certain successful probability.
After that, we obtain the target state by discarding the second
and fifth registers.
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FIG. 5. Quantum circuit of stages (3.1)–(3.3) in step 3 of our algorithm. Here, Uφt is the unitary operation for preparing the quantum state
|φt 〉 and its quantum circuit is shown in Fig. 4, c = b + 	log N
 + 	log k
 and b = k(	log k
 + 	log N
 + 	log q
).

(3.2) Estimate the average distance of xi to all the other
points in Ct

j with error ε, then uncompute the redundant regis-
ters to create the state

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉
∣∣∣∣∣
∑

s∈Ct
j
d (xi, xs)∣∣Ct

j

∣∣
〉
. (13)

The core of stage (3.2) is a fast quantum method for com-
puting the average distance via the inner product, which we
couple with parallel amplitude estimation. We first prepare
a particular quantum state as shown in Eq. (C6), where the
distance information is stored as amplitudes of it. After that,
we perform parallel amplitude estimation on this quantum

state to get the value of the inner product

∑
s∈Ct

j
d (xi,xs )

q|Ct
j | , and

then get the average distance

∑
s∈Ct

j
d (xi,xs )

|Ct
j | through a reversible

circuit. The specific process is depicted in Appendix C.
(3.3) Invoke a quantum minimum-finding algorithm to find

the minimum among the set {
∑

s∈Ct
j

d (xi,xs )

|Ct
j | }i∈Ct

j
[13,45] and then

let ct+1
j = arg mini∈Ct

j
(

∑
s∈Ct

j
d (xi,xs )

|Ct
j | ).

The entire quantum circuit of stages (3.1)–(3.3) is shown
in Fig. 5.

(3.4) After performing stages (3.1)–(3.3) for each j ∈ [k],
we get ct+1

1 , ct+1
2 , . . . , ct+1

k which are the indexes of the k new
cluster centers (i.e., medoids). Then, we update the QRAM for
the index vector, i.e., update the index vector with the vector
ct+1 = [ct+1

1 , ct+1
2 , . . . , ct+1

k ]T , and store it in the QRAM for
the next iteration.

Step 2 and step 3 alternate until the convergence condition
is satisfied. Once we obtain the stable k centers, we get the
quantum state corresponding to all points and their cluster
labels by using the quantum subalgorithm for cluster assign-
ment. Finally, our quantum algorithm outputs the k centers
and a quantum state corresponding to the k clusters.

Note that if we want to obtain the classical information of
k clusters, we can perform a classical cluster assignment after
obtaining the stable k centers instead of using the quantum
subalgorithm.

B. Complexity analysis

The time complexity of our algorithm is mainly from steps
2 and 3. Now we respectively analyze their complexity and
discuss the overall complexity.

In step 2, for stage (2.1), we use 	log N
 Hadamard gates
to prepare the initial state and then implement k(k+1)

2 circular
shift operators. The target state can be obtained by calling Ot

c
for k times, with a run time of O(log k) for each call. The total
complexity is O(	log N
 + k(k+1)

2 + k log k). For stage (2.2),
we should invoke Q1 for k times to compute the distances
between all points and the k cluster centers, hence its com-
plexity is O[kM log(NM )] by lemma 1. By lemma 2, the cost
of finding the minimum is O(k	log q
) in stage (2.3). In total,
the time complexity of step 2 is O[kM log(NM )].

In step 3, similar to the ABG algorithm, we assume that
all clusters have roughly size �( N

k ). For stage (3.1), with
state |φt 〉|0〉|φt 〉, invoking O(k) times the fixed-point quantum
search is enough to obtain the target state. For stage (3.2), the
time complexity of Hadamard gates and controlled rotation
can be neglected compared with other subroutines. The time
complexity of implementing the Grover operator G is mainly
from the unitary U , which is equal to the complexity of stages
(3.1)–(3.2)(iii). Hence, the parallel amplitude estimation has
a query complexity of O[ 1

εA
(2 + 1

2η
)] and each query has a

time complexity O[k2M log(NM )], where εA is the error of
amplitude estimation and 1 − η is the probability to succeed.

Suppose we wish to approximate
θ t

i j1

π
or 1 − θ t

i j1

π
to an accuracy

2−n with probability of success at least 1 − η, we should
choose a = n + 	log(2 + 1

2η
)
 [46]. After the parallel ampli-

tude estimation, we obtain the value of
θ t

i j1

π
or 1 − θ t

i j1

π
with

error εt
i j , and then we can easily compute the average distance
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TABLE II. The time complexity of each step of our algorithm in
one iteration. Here we neglect the runtime of step 1 and stage (3.4).

Steps Stages Time complexity

Step 2 (2.1) O(	log N
 + k(k+1)
2 + k log k)

(2.2) O[kM log(NM )]

(2.3) O(k	log q
)

All stages O[kM log(NM )]

Step 3 (3.1) O[k2M log(NM )]

(3.2) O( k2M2 log(NM ) maxi,l |xil |
ε

)

(3.3) Õ( k3/2M2N1/2 maxi,l |xil |
ε

)

All stages Õ( k5/2M2N1/2 maxi,l |xil |
ε

)

∑
s∈Ct

j
d (xi,xs )

|Ct
j | = q(1 − 2 sin2 θ t

i j1) by Uf . And its error is

2q
∣∣ sin2

(
θ t

i j1 + πεt
i j

)− sin2 θ t
i j1

∣∣
= 2q

∣∣ sin
(
θ t

i j1+πεt
i j

)+sin θ t
i j1

∣∣∣∣ sin
(
θ t

i j1+πεt
i j

)−sin θ t
i j1

∣∣
� 2q

∣∣2 sin θ t
i j1 + πεt

i j

∣∣∣∣πεt
i j

∣∣
� 4qπ

∣∣εt
i j

∣∣+ 2q
(
πεt

i j

)2
,

� 4qπ |εA| + 2q(πεA)2, (14)

where the first inequality holds by sin(θ t
i j1 + πεt

i j ) �
sin θ t

i j1 + πεt
i j . If we want to have the average distance in

the end with an absolute error ε, we can control the er-
ror of parallel amplitude estimation as ε

4qπ
, that is, εA =

ε
4qπ

. Therefore, the total time complexity of stage (3.2) is

O( k2M2 log(NM ) maxi,l |xil |
ε

). For stage (3.3), given an oracle for

preparing the state 1√|Ct
j |
∑

i∈Ct
j
|i〉|

∑
s∈Ct

j
d (xi,xs )

|Ct
j | 〉 with the suc-

cessful probability 1 − η, the expected number of queries
made to find the minimum with failure probability at most

δ is bounded above by roughly 90
√

N/k	 log( 81
√

N/k(log
√

N/k+γ )
δ

)

2( 1
2 −η)2 
,

where γ ≈ 0.5772 is Euler’s constant. A detailed complexity
analysis is provided in Ref. [13]. For simplicity, here we
could simply choose δ, η = O(1), and the query complexity
of (3.3) can then be reduced to Õ(

√
N/k). Before stage (3.4),

we should perform stages (3.1)–(3.3) for each j ∈ [k], that is,
stages (3.1)–(3.3) should be repeated for k times to get the
k new cluster centers. The time complexity of (3.4) can be
omitted compared to other stages. In total, the time complexity

of step 3 is Õ( k5/2M2N1/2 maxi,l |xil |
ε

).
The complexity of each step of our algorithm in one itera-

tion is summarized as Table II.
As a conclusion, the overall time complexity of the

our algorithm is Õ( k5/2M2N1/2 maxi,l |xil |
ε

) for one iteration. If
maxi,l |xil | = O(1) and let 1

ε
= O[log(NM )], it can be reduced

to Õ(k5/2M2N1/2).
Assuming that there exists an oracle that can be used to

query the distance between two points, the query complexity
of ABG algorithm is O( N3/2√

k
) for one iteration [10,11]. The

FIG. 6. Purity evolution on the Iris data set under classical k-
medoids and quantum k-medoids (i.e., k-medoids with noise) with
different noises. We added noise on the average distance, in which
the noise is selected randomly from Gaussian noise with a mean of 0
and a standard deviation of σ .

time complexity of our quantum algorithm is Õ(N1/2) for
one iteration when k = O(1) and M = log N , which achieves
a polynomial speedup in N over the ABG algorithm whose
query complexity is O(N3/2).

Note that if we want to obtain the classical information of
k clusters rather than the quantum information, an additional
classical cluster assignment is needed. The time complexity of
the classical cluster assignment is O(kNM ). In this way, our
algorithm can obtain the classical information like in the ABG
algorithm but in a shorter runtime.

IV. NUMERICAL SIMULATIONS

In this section, we would like to demonstrate that our quan-
tum k-medoids algorithm provides good clustering results.
Limited by the capabilities of existing quantum computers,
these simulations are made with a classical computer. Our
quantum k-medoids algorithm follows the same steps as the
classical k-medoids algorithm, and only introduces the error
ε in the stage of average distance estimation. The complexity
analysis in Sec. III B provides theoretical evidence that the
value of ε is related to the time complexity of our algo-
rithm and we can run the algorithm long enough [roughly in
time Õ(N

1
2 )] to control it in an acceptable range. Thus, our

quantum k-medoids algorithm can be viewed as a quantum
equivalent of the classical k-medoids algorithm with noise.
Based on this, we used a classical computer to simulate
the quantum steps and introduced equivalent noise and ran-
domness in average distance. We ran the k-medoids and the
quantum k-medoids (i.e., k-medoids with noise) for different
values of noise on the well-known Iris data set. Experimental
results are shown in Fig. 6.

The Iris data set has three classes, i.e., setosa, virginica,
and versicolor, of size 50 each (four dimensions each). In
this numerical experiment, we used purity [47] to measure the
performance of the clustering algorithm. The purity of cluster-
ing is similar to the accuracy of classification. All experiments
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started with the same initial centers. It follows from Fig. 6 that
for different values of the noise, both k-medoids and quantum
k-medoids reached a similar purity after the fourth iteration.

V. CONCLUSION

In conclusion, we have proposed the quantum k-medoids
algorithm, which achieves a polynomial speedup in the num-
ber of points over the existing one under certain conditions.

Lemma 1 provided an efficient method to compute the
Manhattan distance between any two points, which can be
reused as a subroutine for other quantum algorithms. More-
over, it can also be modified to compute other distance
measures such as the Euclidean distance, Hamming distance,
and Chebyshev distance. Finally and most importantly, in step
3 of our algorithm, the reason we can calculate the average
distance of a point to all the other points inside the cluster
by the parallel amplitude estimation is that we have managed
to encode the distance information into the amplitude of the
computational basis states. The parallel amplitude estimation
is a powerful tool for solving the problem whose solution
can be encoded into the amplitude of a particular quantum
state. This is the main idea of step 3 of our algorithm. We
believe that this idea could also be applied to solve other ma-
chine learning problems, such as density estimation and data
classification. We hope the techniques and ideas we used in
this paper will inspire others in the field of quantum machine
learning.
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APPENDIX A: PROOF OF LEMMA 1

Here we show how to implement the unitary Q1 in
lemma 1. Let us start with the initial state

|i〉|s〉|0〉⊗	log q

M⊗

l=1

(|0〉⊗	log M
|0〉⊗(	log q1
+1)|0〉⊗(	log q1
+2)
)
,

(A1)

where q = 2Mq1 and q1 = maxi∈[N],l∈[M] |xil |. Using a unitary
Uf : |x〉|0〉⊗	log M
 → |x〉| f (x)〉 for M times, where f (x) can
be calculated efficiently in classical, we can perform the map-
ping

|i〉|s〉|x〉
M⊗

l=1

(|0〉⊗	log M
|0〉⊗(	log q1
+1)|0〉⊗(	log q1
+2)
)

→ |i〉|s〉|x〉
M⊗

l=1

(| f (x)〉|0〉⊗(	log q1
+1)|0〉⊗(	log q1
+2)). (A2)

Based on this, we get

|i〉|s〉|0〉⊗	log q

M⊗

l=1

(|l〉|0〉⊗(	log q1
+1)|0〉⊗(	log q1
+2)
)

(A3)

by performing Uf : |x〉|0〉⊗	log M
 → |x〉|x + l〉 on the initial
state for each l ∈ [M], where x = 0.

Then, we query the state preparation oracle OX to get

|i〉|s〉|0〉⊗	log q

M⊗

l=1

(|l〉|xil〉|xsl〉). (A4)

Next, we perform quantum arithmetic operation [34–36]
on the above state to get

|i〉|s〉|0〉⊗	log q

M⊗

l=1

(|l〉|xil〉|xil − xsl〉). (A5)

After that, we perform a QFT-based absolute value opera-
tion [36] to yield

|i〉|s〉|0〉⊗	log q

M⊗

l=1

(|l〉|xil〉||xil − xsl |〉). (A6)

Finally, we add up |xil − xsl | in each dimension by the
quantum arithmetic operation, and store the sum in the third
register. The target state |i〉|s〉|∑l |xil − xsl |〉 can be obtained
by discarding the redundant registers, where

∑
l |xil − xsl | =

d (xi, xs) is the Manhattan distance between two points xi

and xs.
We now analyze the time complexity and space complex-

ity of Q1. First, we should use Uf for M times. The time
complexity of Hadamard gates, quantum arithmetic opera-
tion, and absolute value operation can be omitted compared
with other steps. The time complexity of OX is O[log(MN )],
and we should query it for 2M times to get the state
|i〉|s〉|0〉⊗	log q
⊗M

l=1(|l〉|xil〉|xsl〉). At the final step, we should
perform quantum arithmetic operation for M times to ob-
tain d (xi, xs). Therefore, the total time complexity of Q1 is
O[M log(MN )].

As for the space complexity, M(	log M
 + 2	log q1
 +
3) auxiliary qubits are required to obtain the state
|i〉|s〉|d (xi, xs)〉.

APPENDIX B: DETAILED ANALYSIS OF THE
AMPLITUDE AMPLIFICATION IN STAGE (3.1)

The fixed-point quantum search algorithm [37] performs
the sequence of the generalized Grover operator to amplify the
success probability of a target state with an adjustable bound.
It can be used as a subroutine in any scenario where ampli-
tude amplification or Grover’s search is used. The obvious
advantage of it is that there is no need to hunt for the correct
number of iterations as in Ref. [38], and this consequently
eliminates the need to ever remake the initial state and restart
the algorithm.

Indeed, in stage (3.1), after performing the fixed-point
quantum search algorithm, we will get the following state:

√
p|t 〉 +

√
1 − p2|t

⊥〉, (B1)

where |t 〉 = 1√|Ct
j |
∑

i∈Ct
j
|i〉| j〉|0〉 1√|Ct

j |
∑

s∈Ct
j
|s〉| j〉, |t

⊥〉 is

a garbage state that is orthogonal to |t 〉. Let p0 be the
initial probability of |t 〉 before the amplitude amplification.
For a given σ ∈ (0, 1) and a known lower bound pmin of
p0, the condition L � log(2/σ )√

pmin
can ensure p � 1 − σ 2, where
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L = 2l + 1 and l is the number of generalized Grover iterate.
See Ref. [37] for more detailed analysis of p.

For convenience, in our quantum k-medoids algorithm, we
only consider the ideal case for p = 1 because our algorithm
still works in other cases. To see why this is so, here we first
review the following corollary in Ref. [13].

Corollary 1. Assume that for any j = 1, 2, . . . , m, a uni-
tary transformation

| j〉|0〉 → | j〉(√a|y j〉 +
√

1 − |a||y⊥
j 〉) (B2)

for 1
2 < |a0| � |a| � 1 can be performed using Q queries,

then the expected number of queries made to find min j y j

with failure probability at most δ is bounded above by

90
√

mQ	 log( 81m(log m+γ )
δ

)

2(|a0|− 1
2 )2 
, where γ is Euler’s constant.

For the case p �= 1, the probability to succeed in ampli-
tude estimation in stage (3.2) will become p(1 − η). In the
fixed-point quantum search algorithm, the pmin can be pro-
vided by using amplitude estimation. Then, the value of p is
related to the number of generalized Grover iterates, and we
can perform a sufficient number of iterations [roughly O(k)
times is enough] to ensure p � 3

4 . By Ref. [38], the successful
probability of the amplitude estimation is at least 8

π2 , that is,
(1 − η) � 8

π2 . Then

p(1 − η) � 6

π2
>

1

2
. (B3)

Based on the above inequality and corollary 1, in stage
(3.3) we can use the quantum minimum-finding algorithm to

find the minimum average distance among {
∑

s∈Ct
j

d (xi,xs )

|Ct
j | }i∈Ct

j

with failure probability at most δ, and its query complexity

is roughly 90
√

N/k	 log( 81
√

N/k(log
√

N/k+γ )
δ

)

2(p(1−η)− 1
2 )2 
. By simply choosing

δ, η = O(1), it can be reduced to Õ(
√

N/k). This is consistent
with the conclusion of our main text.

APPENDIX C: DETAILED PROCESS OF STAGE (3.2)

The specific process of stage (3.2) is depicted as follows.
(i) We start with the initial state

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉|0〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉|0〉⊗	log q
, (C1)

and apply a Hadamard gate to the second register, then per-
form a controlled Q1 with the first, third, and fourth registers
as the target, conditioned on the second register |0〉. Then, we
get

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉 1√
2

⎛⎜⎝|0〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉|d (xi, xs)〉

+|1〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉|0〉

⎞⎟⎠. (C2)

(ii) Add an ancillary qubit, and perform |0〉〈0|2 ⊗ R4,5 +
|1〉〈1|2 ⊗ I4,5 on the second, fourth, and fifth registers to get

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉 1√
2

⎡⎢⎣|0〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉|d (xi, xs)〉
⎛⎝d (xi, xs)

q
|0〉

+
√

1 −
(

d (xi, xs)

q

)2

|1〉
⎞⎠

+|1〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉|0〉⊗	log q
|0〉

⎤⎥⎦, (C3)

where R4,5 is a controlled rotation operator which rotates the

ancillary qubit from |0〉 to [ d (xi,xs )
q |0〉 +

√
1 − ( d (xi,xs )

q )2|1〉]
conditioned on |d (xi, xs)〉, I4,5 is the identity opera-
tor acting on the fourth and fifth registers, and q =
maxi,s∈[N](d[xi, xs)] = 2M maxi∈[N],l∈[M] |xil |. We now undo
the controlled Q1 to uncompute the fourth register. Then, we
obtain

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉 1√
2

⎡⎢⎣|0〉 1√∣∣Ct
j

∣∣ ∑
s∈Ct

j

|s〉
⎛⎝d (xi, xs)

q
|0〉

+
√

1 −
(

d (xi, xs)

q

)2

|1〉
⎞⎠+ |1〉 1√∣∣Ct

j

∣∣ ∑
s∈Ct

j

|s〉|0〉

⎤⎥⎦.

(C4)

(iii) The above state can be rewritten as

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉 1√
2

(|0〉∣∣ϕt
i j

〉+ |1〉∣∣ϕt
j

〉)
, (C5)

where

∣∣ϕt
i j

〉
:= 1√∣∣Ct

j

∣∣ ∑
s∈Ct

j

|s〉
⎛⎝d (xi, xs)

q
|0〉 +

√
1 −

(
d (xi, xs)

q

)2

|1〉
⎞⎠

and ∣∣ϕt
j

〉
:= 1√∣∣Ct

j

∣∣ ∑
s∈Ct

j

|s〉|0〉.

We then perform a Hadamard gate on the second register
to get

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉
[

1

2
|0〉(∣∣ϕt

i j

〉+ ∣∣ϕt
j

〉)+ 1

2
|1〉(∣∣ϕt

i j

〉− ∣∣ϕt
j

〉)]

:= 1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉( cos θ t
i j1

∣∣�t
i j0

〉+ sin θ t
i j1

∣∣�t
i j1

〉)
:= 1√∣∣Ct

j

∣∣ ∑
i∈Ct

j

|i〉∣∣�t
i j

〉
, (C6)

where |�t
i j0〉 = |0〉(|ϕt

i j〉 + |ϕt
j〉), |�t

i j1〉 = |1〉(|ϕt
i j〉 − |ϕt

j〉),
and θ t

i j1 ∈ [0, π
2 ]. For a given i, if we measure the first qubit
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FIG. 7. Quantum circuit of the Grover operator G in parallel
amplitude estimation of our algorithm. Here O = (2|0〉〈0| − I ) ⊗
I⊗(	log N
+1) and U is a unitary that performs the following mapping:

1√|Ct
j |
∑

i∈Ct
j
|i〉|0〉⊗(	log N
+2) → 1√|Ct

j |
∑

i∈Ct
j
|i〉|�t

i j〉.

of |�t
i j〉, the probability of getting 1 is Pt

i j1 = (sin θ t
i j1)2 =

1−〈ϕt
i j |ϕt

j〉
2 . It is worth noting that 〈ϕt

i j |ϕt
j〉 =

∑
s∈Ct

j
d (xi,xs )

q|Ct
j | . Once

the value of 〈ϕt
i j |ϕt

j〉 is obtained, we can get the average
distance of xi to all the other points inside the cluster Ct

j . It
means that we are able to calculate the average distance by
estimating the value of θ t

i j1.
(iv) Based on stages (i)–(iii), we first prepare the initial

state
1√∣∣Ct

j

∣∣ ∑
i∈Ct

j

|i〉∣∣�t
i j

〉|0〉⊗a|0〉⊗	log q
, (C7)

where the value of a determines the accuracy of amplitude
estimation and we discuss it in Sec. III B.

Then, we perform parallel amplitude estimation [38,39]
with Grover operator G on it to estimate the value of θ t

i j1,
where the quantum circuit of G is shown in Fig. 7.

After parallel amplitude estimation, we obtain

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉 1√
2

(
eıθ t

i j1
∣∣�t

i j+
〉∣∣∣∣∣θ t

i j1

π

〉

+ e−ıθ t
i j1
∣∣�t

i j−
〉∣∣∣∣∣1 − θ t

i j1

π

〉)
|0〉⊗	log q
, (C8)

where |�t
i j±〉 = 1√

2
(|�t

i j0〉 ∓ ı|�t
i j1〉), ı2 = −1 and |�t

i j〉 =
1√
2
(eıθ t

i j1 |�t
i j+〉 + e−ıθ t

i j1 |�t
i j−〉).

Finally, we perform a unitary Uf : |x〉|0〉⊗	log q
 →
|x〉| f (x)〉 on the last two registers to get

1√∣∣Ct
j

∣∣ ∑
i∈Ct

j

|i〉 1√
2

(
eıθ t

i j1
∣∣�t

i j+
〉∣∣∣∣∣θ t

i j1

π

〉

+ e−ıθ t
i j1
∣∣�t

i j−
〉∣∣∣∣∣1 − θ t

i j1

π

〉)∣∣∣∣∣
∑

s∈Ct
j
d (xi, xs)∣∣Ct

j

∣∣
〉
, (C9)

where f (x) = q[1 − 2 sin2(πx)], x = θ t
i j1

π
or 1 − θ t

i j1

π
. The tar-

get state can be obtained by discarding the redundant registers.
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