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Cohering and decohering power of massive scalar fields under instantaneous interactions
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Employing a nonperturbative approach based on an instantaneous interaction between a two-level Unruh-
DeWitt detector and a massive scalar field, we investigate the ability of the latter to generate or destroy coherence
in the detector by deriving the cohering and decohering power of the induced quantum evolution channel. For a
field in a coherent state a previously unobserved effect is reported in which the amount of coherence that the field
generates displays a revival pattern with respect to the size of the detector. Extending previous results into the
nonperturbative regime of an arbitrary coupling strength, it is demonstrated that in the case of a thermal field with
a positive mass a detector initialized in a maximally coherent state experiences a smaller degree of decoherence
after its interaction with the field, compared to the massless case. In both examples for a suitable choice of
detector radius, field energy, and coupling strength it is possible to infer the mass of the field by either measuring
the coherence present in the detector in the case of an interaction with a coherent field or the corresponding
decoherence of a maximally coherent state in the case of a thermal field. In view of recent advances in the study
of Proca metamaterials, these results suggest the possibility of utilizing the theory of massive electromagnetism
for the construction of novel applications for use in quantum technologies.
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I. INTRODUCTION

Coherent systems, defined as those systems that can be
described by a superposition of different states, form the
backbone of the second quantum revolution brought about
by the advent of quantum information science and technol-
ogy [1,2]. Recast into the language of a quantum resource
theory [3–8], it was shown that coherence is closely re-
lated to entanglement [9–11], another important resource
which fuels applications, such as quantum dense coding [12],
unhackable cryptography [13], and teleportation [14], for ex-
ample. More recently an increasing amount of research has
been focusing on the importance of coherence in quantum
computing by studying its depletion during the execution
of algorithms [15–21]. Coherence plays a central part in
other physical contexts as well, such as in quantum metrol-
ogy [22,23], thermodynamics [24–28], and even possibly in
biological processes [29,30]. Because of its usefulness as a
resource, it is, therefore, of particular interest to study the
conditions under which coherence can be extracted or gener-
ated from other systems [31–34], as well as to devise methods
for its protection [35–37] against the decohering effects of the
environment [38–40].

In this paper we will examine the ability of a mas-
sive quantum field to generate or destroy coherence in a
two-level Unruh-DeWitt (UDW) detector under an instanta-
neous interaction [41–47] (for an analysis of the amount of
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coherence present in the modes of the field under a different
context see Refs. [48–51]). To accomplish this we will de-
termine the cohering and decohering power of the quantum
evolution channel induced by the action of the field on the
detector [52–59], taking into consideration the size of the
detector, the mass of the field, and its energy. Compared
to other approaches that use perturbative methods to study
coherence in a relativistic setting [33,34,60–64], a treatment
based on an instantaneous interaction permits the exact so-
lution of the final state of the detector for arbitrary coupling
strengths. This provides us with the opportunity of uncovering
novel effects otherwise hidden in the weak-coupling limit.
An example is given in Sec. IV where it is observed that
for specific values of the detector’s radius, the amount of
coherence generated by a coherent field vanishes, an effect
which is absent in a perturbative setting [34].

The possibility of measuring the amount of coherence
harvested by a detector from a coherent field as a means
of probing the mass of axion dark matter has recently been
proposed [64]. We show how, under a suitable choice of pa-
rameters, it is similarly possible to infer the mass of a scalar
field by measuring the cohering power of the coherent field. In
this case changes in coherence are easier to detect since they
are orders of magnitude larger than what is possible with a
weak interaction coupling.

The advantages in considering massive scalar fields be-
come more apparent in Sec. V where the decohering power of
a thermal field with inverse temperature β is presented. The
ability of the field to preserve part of the coherence stored
in a maximally coherent state of the detector is enhanced for
increasing values of its mass. This observation is an extension
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of similar perturbative results about the coherent behavior of
a pointlike atom immersed in a massive field [63] into the
regime of an arbitrary coupling strength for a detector of
any size and is in line with other reports on the advantages
of massive fields in the processes of entanglement harvest-
ing [65–67] and sensing [68–70]. Since decoherence presents
a major hurdle in practical uses of quantum computing,
such results may be of interest and could perhaps be lever-
aged with the use of massive electromagnetic fields in Proca
metamaterials [71].

We begin our investigation by giving a short introduction
to the resource theory of quantum coherence in Sec. II and
the UDW detector model in Sec. III. As is common practice,
throughout the paper we employ a natural system of units in
which h̄ = c = kB = 1.

II. COHERING AND DECOHERING POWER
OF QUANTUM CHANNELS

Coherence, i.e., the degree of superposition of a quantum
system [3,6,7] is dependent on the choice of basis of the
underlying Hilbert space which we use to describe the state
ρ of the system. For a state of the form

ρ =
∑
i, j

ρi j |i〉〈 j|, (1)

where {|i〉}d−1
i=0 is a finite set of basis states spanning the

d-dimensional Hilbert space Cd , we say that ρ represents a
coherent state if there exists, at least, one pair of indices i �= j
such that ρi j �= 0. A system which is incoherent is represented
by a diagonal matrix and satisfies

�(ρ) = ρ, (2)

where

�(ρ) =
∑

i

ρii|i〉〈i| (3)

denotes the dephasing operation in the chosen basis.
The set of quantum operations acting on a state is similarly

divided into those that are capable and those that are incapable
of creating coherence. The simplest set of incoherent opera-
tions, the so-called maximally incoherent operations (MIO)
are defined as those completely positive and trace-preserving
operations � that map the set of incoherent states I onto a
subset of itself,

�(I ) ⊆ I. (4)

The ability of a quantum channel � to generate coherence
out of incoherent states can be determined by calculating its
cohering power [52–55,59]. Before this can be defined it is
necessary first to introduce the notion of a coherence measure.
This is a non-negative real-valued function C on the set of
density matrices with the following properties:

(i) C(ρ) � 0 with equality if and only if ρ ∈ I.

(ii) C(�(ρ)) � C(ρ) for every � ∈ MIO.
(iii) C(

∑
i piρi ) � ∑

i piC(ρi ).
The first property requires the measure to be faithful so that
it can distinguish between coherent and incoherent states. The
second property reflects the restrictions of the theory. Since by
definition MIOs cannot generate coherent out of incoherent

states it makes sense to require the measure to be monotonic,
the amount of coherence in a state after the action of a (MIO)
operation should, therefore, always be less than before. This
property is what gives the theory the structure of a quantum
resource [72]. The final property, which requires the measure
to be convex, states that it is not possible to increase the
average amount of coherence in a quantum ensemble {pi, ρi},
where pi is the probability of obtaining state ρi by simply
mixing its elements.

Armed with a valid measure of coherence, we are now in
a position to define the cohering power of the channel as the
maximum amount of coherence obtained by the action of �

on the set of incoherent states,

C(�) = max
ρ∈I

C(�(ρ)). (5)

Because of convexity the maximum on the right-hand side
is actually reached by acting � on one of the basis states.
This simplifies considerably the calculation since the required
optimization is now performed over a discrete instead of a
continuous set. In this case,

C(�) = max
|i〉

C(�(|i〉〈i|)). (6)

Another property of interest for a quantum channel is the
amount of coherence that it destroys when it is applied on a
maximally coherent state, i.e., a uniform superposition, of the
form

ψd (θ) = 1√
d

d−1∑
j=0

eiθ j | j〉. (7)

Similar to Eq. (6) we now define the decohering power of the
channel as the maximum possible difference in the amount
of coherence before and after its action on the maximally
coherent state,

D(�) = max
θ

[C(ψd (θ)) − C(�(ψd (θ)))]. (8)

In what follows we will employ the oft-used �1-norm of coher-
ence as our measure. This is given by the sum of the absolute
values of the nondiagonal elements of the density matrix,

C�1 (ρ) =
∑
i �= j

|ρi j |. (9)

For the set of maximally coherent states,

C�1 (ψd (θ)) = d − 1 (10)

so in this case,

D�1 (�) = d − 1 − min
θ

C�1 (�(ψd (θ))). (11)

III. THE UNRUH-DEWITT DETECTOR MODEL

The UDW detector model is frequently employed as a
means of studying the interaction between a two-level system
(the detector) and a quantum field [73–75]. The interaction
induces transitions between the detector’s ground |g〉 and ex-
cited |e〉 states with an energy gap equal to 	, which depend
on the initial state of the field σφ as well as on the trajectory
of the detector and the structure of the underlying spacetime.
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Coupling the monopole operator of the detector,

μ̂(t ) = ei	t |e〉〈g| + e−i	t |g〉〈e|, (12)

to the field operator ϕ̂(t, x), evaluated at the detector’s posi-
tion x at time t , defines the UDW interaction Hamiltonian,

Ĥint (t ) = χ (t )μ̂(t ) ⊗ ϕ̂(t, x), (13)

where the real-valued switching function function χ (t ) de-
scribes the strength of the interaction at each instant in time.
For a massive scalar field with mass m, the field operator in
flat Miknowski spacetime is given by

ϕ̂(t, x) =
∫

d3k√
(2π )32ω(k)

(âkei[k·x−ω(k)t] + H.c.), (14)

where âk and â†
k denote the annihilation and creation oper-

ators, respectively, of a field mode with momentum k and
energy ω(k) =

√
|k|2 + m2 that satisfy the canonical commu-

tation relations,

[âk, âk′ ] = [â†
k, â†

k′ ] = 0, [âk, â†
k′ ] = δ(k − k′). (15)

The UDW Hamiltonian describes a pointlike interaction in
which the field interacts with the detector at a single point in
space each time. By averaging over a region in a neighborhood
of the detector’s position it is possible to extend the model in
order to take into account the finite size of the detector. For a
detector at rest at position x [76], Eq. (13) is then replaced by

Ĥint (t ) = χ (t )μ̂(t ) ⊗
∫

f (x − x′)ϕ̂(t, x′)d3x′. (16)

The real-valued smearing function f (x) with dimensions
(length)−3 reflects the shape and size of the detector [77–80]
with a mean effective radius R equal to

R =
∫

|x| f (x)d3x. (17)

By taking the pointlike limit f (x) = δ(x), (i.e., R → 0),
Eq. (13) is immediately recovered. Setting,

F (k) =
∫

f (x)e−ik·xd3x (18)

for the Fourier transform of the smearing function, we can
rewrite Eq. (16) as

Ĥint (t ) = χ (t )μ̂(t ) ⊗ ϕ̂ f (t, x), (19)

with a “smeared” field operator of the form

ϕ̂ f (t, x) =
∫

d3k√
(2π )32ω(k)

[F (k)âkei[k·x−ω(k)t] + H.c.].

(20)

A. Evolution under an instantaneous interaction

In order to obtain the final state of the detector after the
interaction has been switched off, we must first evolve the
combined system of detector and field with the unitary op-
erator Û generated by the time integral of the interaction
Hamiltonian,

Û = T exp

(
−i

∫ +∞

−∞
Ĥint (t )dt

)
, (21)

where T denotes the time-ordering operator. Tracing out the
field degrees of freedom induces a quantum evolution channel
on the initial-state ρ of the detector defined by

�(ρ) = trϕ[Û (ρ ⊗ σϕ )Û †]. (22)

Under a δ-switching function centered around t0,

χ (t ) = λδ(t − t0), (23)

with λ as a coupling constant with the same dimensions as the
length, it is possible to drop the time ordering in (21) [41–47].
In this case,

Û = exp[−iλμ̂0 ⊗ ϕ̂ f0 ], (24)

where μ̂0 = μ̂(t0) and ϕ̂ f0 = ϕ̂ f (t0, x). With a little bit of
algebra, it is easy to show that since μ̂2

0 = I , the evolution
operator can be rewritten as

Û = I − μ̂0

2
⊗ exp(iλϕ̂ f0 ) + I + μ̂0

2
⊗ exp(−iλϕ̂ f0 ). (25)

Inserting Eq. (25) into Eq. (22), we find that the action of
the channel on the detector,

�(ρ) = (1 − |z|)B(ρ) + |z|V ρV † (26)

is equal to a convex combination of a bit flip channel [1],

B(ρ) = ρ + μ̂0ρμ̂0

2
, (27)

and a unitary rotation,

V =
√

|z| + Re z

2|z| Î − i

√
|z| − Re z

2|z| μ̂0, (28)

where

z = trϕ[ei2λϕ̂ f0 σϕ]. (29)

B. Cohering and decohering power of scalar fields

According to Eqs (6) and (9), the �1-cohering power of the
channel induced by the UDW interaction of the detector with
the massive field is equal to the maximum amount of coher-
ence obtained by acting � on either the ground or excited state
of the detector. In both cases, this amount is the same and
equal to

C�1 (�) = ∣∣〈 sin
(
2λϕ̂ f0

)〉∣∣, (30)

where 〈X̂ 〉 = trϕ (X̂σϕ ) denotes the expectation value of field
operator X̂ . Equation (30) is, in fact, equal to the maximum
possible amount of coherence that can be obtained by acting �

on any state of the detector (for details consult the Appendix).
To obtain the �1-decohering power requires a little more

effort. Replacing the maximally coherent state,

ψ2(θ ) = 1√
2

(|g〉 + eiθ |e〉), (31)

in Eq. (26) we see that the coherence of the final state of the
detector is equal to

C�1 (�(ψ2(θ ))) =
√

cos2 (θ − 	t0) + (Re z)2 sin2 (θ − 	t0).
(32)

022420-3



KOLLAS, MOUSTOS, AND MUÑOZ PHYSICAL REVIEW A 107, 022420 (2023)

For a maximally coherent state with θ = 	t0 the amount of
coherence before and after the interaction has taken place is
frozen [81]. For this choice of phase, the state is a fixed point
of the evolution channel. This observation holds, in general,
and is independent of details, such as the mass of the field, its
initial state or the size of the detector.

It is straightforward now to show that the minimum in
Eq. (32) is obtained by setting θ = π

2 + 	t0. With the help
of Eq. (11) we, therefore, find that the �1-decohering power of
the field-induced channel is equal to

D�1 (�) = 1 − ∣∣〈 cos
(
2λϕ̂ f0

)〉∣∣. (33)

We now proceed to study the cohering and decohering
power of a field in a coherent and a thermal state, respectively.

IV. COHERING POWER OF COHERENT SCALAR FIELDS

A coherent state |a〉 of the field is described by a complex
valued coherent amplitude distribution a(k) such that the
action of the annihilation operator âk on the state is equal
to [41,82,83]

âk|a〉 = a(k)|a〉. (34)

Let us now decompose the field into two parts,

ϕ̂ f0 = â + â†, (35)

each containing only annihilation or creation operators,
respectively,

â =
∫

d3k√
(2π )32ω(k)

F (k)âkei[k·x−ω(k)t0], (36a)

â† =
∫

d3k√
(2π )32ω(k)

F ∗(k)â†
ke−i[k·x−ω(k)t0]. (36b)

By employing the Baker-Campbell-Hausdorff formula,

eX̂+Ŷ = eX̂ eŶ e−(1/2)[X̂ ,Ŷ ], (37)

which holds true when both [X̂ , [X̂ , Ŷ ]] = 0 and
[Ŷ , [X̂ , Ŷ ]] = 0, it can be shown that

〈ei2λϕ̂ f0 〉a = e−2λ2[â,â†]〈ei2λâ†
ei2λâ〉a.

= e−2λ2[â,â†]ei4λ Re 〈â〉a (38)

where

[â, â†] = 1

(2π )3

∫ |F (k)|2
2ω(k)

d3k, (39)

and a subscript in the expectation value of the field operator
is included in order to indicate its dependence on the coherent
amplitude distribution. From Eq. (30) it follows that the �1-
cohering power of a coherent scalar field is equal to

C�1 (�) = e−2λ2[â,â†]|sin(4λ Re〈â〉a)|. (40)

Assuming a static detector with a Gaussian smearing function,

f (x) = exp
[ − 4|x|2

πR2

]
(πR/2)3

, (41)

and a corresponding Fourier transform of the form

F (k) = exp

[
−π |k|2R2

16

]
, (42)

the commutator between â and â† is a function of the effective
radius of the detector and the mass of the field,

[â, â†] = 1

4π2

∫ ∞

0

k2e− πk2R2

8√
k2 + m2

dk

= m2

16π3/2
U

(
3

2
, 2,

πm2R2

8

)
, (43)

where

U (a, b, z) = 2

�(a)

∫ ∞

0
e−zt2

t2a−1(1 + t2)b−a−1dt (44)

denotes Tricomi’s confluent hypergeometric function [84] with
�(a) the Gamma function.

In order to further simplify calculations we will assume
from now on that the interaction between the detector and the
field takes place at time t0 = 0 with the detector positioned
at the origin of the coordinate system x = 0, and that the
coherent amplitude distribution of the field is given by a
skewed-Gaussian function,

a(k) =
√

|k|
ω(k)

exp
( − 2|k|2

πE2

)
(πE/2)3/2

, (45)

with mean energy E equal to the expectation value of the field
Hamiltonian,

Ĥφ =
∫

ω(k)â†
kâkd3k. (46)

With these assumptions in hand, the expectation value of
the real part of Eq. (36a) which now depends on the mean
effective radius of the detector, the mass, and the mean energy
of the field is equal to

Re 〈â〉a =
√

8

π4E3

∫ ∞

0

k5/2

√
k2 + m2

exp

[
− k2

2σ 2

]
dk,

= m

√
2m3

π4E3
�

(
7

4

)
U

(
7

4
,

9

4
,

m2

2σ 2

)
, (47)

where for ease of notation, we introduce the following quan-
tity with units of inverse square mass:

1

σ 2
= 4

πE2
+ πR2

8
. (48)

In Figs. 1(a)–1(c), we present for a detector with a fixed
radius the �1-cohering power of the field as a function of
its mean energy and the strength of its interaction with the
detector. As is to be expected, in the trivial cases where there
is no interaction with the field (λ = 0) and for an incoher-
ent field in the vacuum state (E = 0), the cohering power is
zero. We observe that a massless field is generally better at
generating coherence since the maximum amount that can be
obtained decreases for larger field masses. When the Compton
wavelength of the field is much smaller than the radius of the
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FIG. 1. (a)–(c) �1-cohering power of a massive scalar field in a coherent state interacting instantaneously with a static Unruh-DeWitt
detector with a fixed radius R as a function of the energy of field E and the coupling strength λ for three different values of the field’s mass.
(d) Oscillatory behavior of �1-cohering power for a massless field with a fixed energy E . The upper bound for the coupling strength such that
no coherence revival can occur is given by the dashed line.

detector,

R 
 2π

m
, (49)

the phase of the oscillating term in Eq. (40) becomes very
small and tends to zero in the asymptotic limit mR → ∞.
In this case 〈ei2λϕ̂ f0 〉a = 1, so the field has no effect on the
detector since the induced quantum channel is equal to the
identity operator �(ρ) = ρ which has zero cohering power.

In the other limit of a very strong coupling or equivalently
a pointlike detector,

λ 
 R, (50)

the exponential term in Eq. (40) now takes small values
and vanishes when either λ → ∞ or R → 0. In this case
〈ei2λϕ̂ f0 〉a = 0 and the induced quantum channel acts as the
bit flip channel �(ρ) = B(ρ) again with a zero cohering
power [52].

Due to its oscillatory behavior, the cohering power of the
field displays a revival pattern with respect to the radius of
the detector. Because of the exponential damping in Eq. (40)
this pattern is hard to spot by looking directly at the cohering
power but is easily discernible once this factor is ignored as in

Fig. 1(d), for example. If one wishes to utilize a scalar field to
generate coherence in a detector one, therefore, needs to take
into account its size. By demanding that 4λ Re 〈â〉a � π , and
noting that for a fixed mean-field energy and detector radius
the integral on the right-hand side of Eq. (47) is maximized
when m = 0, it can easily be shown that the region of the
parameter space for which no revival pattern can occur is
given by

λE

π
� (2π )

3
4

�(1/4)

[
1 + π2E2R2

32

] 5
4

. (51)

In Fig. 2, we demonstrate the dependence of the cohering
power on the field mass for different values of the coupling
constant for a field with a fixed mean energy E and a detector
with a mean effective radius equal to R = 1/E . Replacing π

with π/2 on the denominator of the left-hand side of Eq. (51),
it follows that when λE � 2.4 the cohering power of the field
is in a one-to-one correspondence with its mass. The value of
the cohering power in this case could, therefore, be employed
as a method of probing the value of the field’s mass.

022420-5



KOLLAS, MOUSTOS, AND MUÑOZ PHYSICAL REVIEW A 107, 022420 (2023)

FIG. 2. Dependence of �1-cohering power of the field as a func-
tion of mass for a fixed mean-field energy E and a detector with mean
radius equal to R = 1/E .

V. DECOHERING POWER OF THERMAL FIELDS

For a thermal field at an inverse temperature β,

σφ = e−βĤφ

Z
, (52)

with partition function Z = trϕe−βĤφ , let 〈X̂ 〉β denote the
dependence of the expectation value of field operator X̂ on
the temperature. Employing the same decomposition as in
Eq. (35), it can be shown that in this case,

〈ei2λϕ̂ f0 〉β = e−2λ2〈ϕ̂2
f0

〉β . (53)

To see this we must first rewrite the left-hand side following
the same steps that led to the derivation of Eq. (38),

〈ei2λϕ̂ f0 〉β = e−2λ2[â,â†]〈ei2λâ†
ei2λâ〉β. (54)

To compute the expectation value on the right-hand side, we
now Taylor expand e2iλâ and e2iλâ†

to obtain

〈ei2λâ†
ei2λâ〉β =

∞∑
m,m′=0

(i2λ)m+m′

(m!)(m′!)
〈(â†)m(â)m′ 〉β. (55)

Because the field is diagonal in the energy basis we only need
consider terms where m = m′ since any other term will be
equal to zero. We will now show that

〈(â†)m(â)m〉β = m!(〈â†â〉β )m. (56)

With the help of the following identity:

eX̂Ŷ e−X̂ = Ŷ + [X̂ , Ŷ ] + 1

2!
[X̂ , [X̂ , Ŷ ]]

+ 1

3!
[X̂ , [X̂ , [X̂ , Ŷ ]]] · · · , (57)

and the commutation relation between âk and the field
Hamiltonian,

[âk, Ĥϕ] = ω(k)âk, (58)

we find that

âke−βĤϕ = e−βω(k)e−βĤϕ âk. (59)

Using this and Eq. (15), it is straightforward to show that

〈â†
kâk′ 〉β = e−βω(k′ )

1 − e−βω(k′ ) δ(k − k′), (60)

which implies by induction that〈
m∏

i=1

â†
ki

m∏
j=1

âk′
j

〉
β

=
m∑

i=1

〈
â†

ki
âk′

m

〉
β

〈∏
i′ �=i

â†
k′

i

m−1∏
j=1

âk′
j

〉
β

. (61)

It follows now that

〈(â†)m(â)m′ 〉β = m〈â†â〉β〈(â†)m−1(â)m−1〉β, (62)

from which Eq. (56) can be obtained recursively. Finally,

〈ei2λâ†
ei2λâ〉β = e−4λ2〈â†â〉β = e2λ2[â,â†]e−2λ2〈ϕ̂2

f0
〉β , (63)

which completes the proof.
Looking back at Eq. (53) and noting that C�1 (�) = |Imz|

we observe, perhaps unsurprisingly, that a thermal field is
incapable of generating coherence through an instantaneous
interaction. On the other hand, its decohering power is equal
to

D�1 (�) = 1 − e−λ2I (β ), (64)

where

I (β ) = 1

(2π )3

∫ |F (k)|2
ω(k)

coth

(
βω(k)

2

)
d3k

= 1

2π

∫ ∞

0

k2e− πk2R2

8√
k2 + m2

coth

(
β
√

k2 + m2

2

)
dk. (65)

Since
∂I (β )

∂R
< 0,

∂I (β )

∂m
< 0,

∂I (β )

∂β
< 0, (66)

the decohering power decreases for increasing values of the
detector’s radius and the mass of the field, whereas it in-
creases with temperature. In Figs. 3(a) and 3(b), we present
the �1-decohering power of a thermal field as a function of
the detector’s mean radius and the temperature of the field
for a detector with the same Gaussian smearing function as in
Eq. (41). It can be seen that compared to a massless one a mas-
sive field performs better at preserving the coherence in the
detector. The loss of coherence of a qubit due to its interaction
with the environment is a major obstacle in quantum comput-
ing. By making a two-level system interact with a massive
instead of a massless field (such as an electromagnetic field in
plasma [85], a waveguide [86], or a Proca metamaterial [71]
for example) it might be possible to protect against this form
of decoherence.

As in the previous case of a coherent field, in the limit of
a detector much larger than the Compton wavelength of the
field, effectively no interaction takes place between the two, so
the detector loses no coherence and the decohering power of
the field is equal to zero, whereas in the limit of a pointlike de-
tector or a very strong coupling the quantum channel reduces
to the bit flip channel with unit decohering power. The same
conclusion also holds true when the temperature of the field
takes very large values,

β � λ. (67)
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FIG. 3. �1-decohering power of a massive scalar field with re-
spect to (a) the radius of the detector for a field with inverse
temperature λβ−1 = 2 and (b) with respect to temperature for a
detector with radius equal to R/λ = 1.

VI. DISCUSSION

Employing an instantaneous interaction between a two-
level UDW detector and a massive scalar field, we investigated
the ability of the field to generate or destroy coherence in
the detector. This nonperturbative approach permits an exact
examination of the effects that different parameters (such as
the strength of the coupling constant, the size of the detector,
the energy of the field, or its temperature, for example) have
on the cohering and decohering power of the induced quantum
evolution channel.

In the case of coherence generation by a coherent field
state it was demonstrated that the success of the process
depends on the size of the detector. More specifically, apart
from the pointlike limit R � λ where the mean radius of the
detector is much smaller than the coupling strength and the
macroscopic limit R 
 2π

m of a detector much larger than
the Compton wavelength of the field, there exist nontrivial
values of the detector’s radius for which it is impossible to
generate any amount of coherence between its energy levels.
This phenomenon demonstrates how the size of the system,
which we wish to bring into a superposition of states, needs to
be taken into consideration. For a suitable choice of detector
radius, field energy, and coupling strength it is also possible
to infer the mass of the field by measuring the amount of
coherence present in the detector. Massive fields have been
previously employed for distinguishing the kinematic state

of a detector [68] for determining the distance of closest ap-
proach between two accelerating detectors [70] or for probing
the mass of axion dark matter [64]. In all of these cases the
quantity of interest under study each time is very small since
it it is of the same order as the coupling constant or less. Even
though instantaneous interactions are based on δ- switching
functions and may appear as an idealization at a first glance,
they can nonetheless be obtained from a Gaussian switching
with an interaction duration which is much shorter than some
characteristic time interval [87]. As we have demonstrated, in
this case changes in coherence are no longer of the same order
as the coupling constant, so they are easier to observe. It is
expected that the above results directly apply in the generation
of other quantum resources from the field as in entanglement
harvesting [88–91], for example.

By calculating the decohering power of a thermal field, we
also investigated the degradation caused by the field on the
amount of coherence that is initially stored in a maximally
coherent state of the detector. It was shown that for fixed
values of the detector’s radius, the field’s temperature, and
the coupling constant between the two, a massive field is
better at preserving coherence. These results are a direct ex-
tension of similar perturbative observations [63] and suggest
that massive fields could be employed in protecting against
decoherence even in the case of a detector extended in space
for an arbitrary coupling constant.

It is known that the UDW Hamiltonian contains all of the
essential features of the interaction of matter with an electro-
magnetic field [79,80] where the analog of a massive field in
this case is a Proca field [92]. Since massive electromagnetic
theory can be realized as Maxwell theory in Proca metama-
terials [71], studying the effects of mass on the generation
and protection of coherence in a two-level system could po-
tentially lead to the construction of novel technologies, such
as new types of quantum memories, communication channels,
and sensors. For this reason, a more complete investigation of
cohering and decohering effects, of detectors interacting with
massive fields, by making use of other nonperturbative meth-
ods [93,94] permitting a full dynamical analysis are certainly
worth pursuing.
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APPENDIX: GENERALIZED COHERING POWER

Instead of the cohering power, one could enquire whether
it is possible to harness the coherence already present in a
state in order to obtain a greater amount of coherence from
the action of a quantum operation, than what would otherwise
be possible by only using incoherent states. In this case, one
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needs to specify the generalized cohering power of the chan-
nel defined by

Ĉ(�) = max
ρ

[C(�(ρ)) − C(ρ)]. (A1)

It is obvious that C(�) � Ĉ(�). Depending on the choice
of C as a coherence measure, there exist channels such that

the cohering power is strictly smaller than its generalized
definition. For the �1-norm of coherence in Eq. (9), it was
shown that for channels acting on qubits [53],

C�1 (�) = Ĉ�1 (�), (A2)

so this is, in fact, the maximum possible amount that can be
obtained by the action of �.
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