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Multiqubit noise deconvolution and characterization
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We present a noise deconvolution technique for obtaining noiseless expectation values of noisy observables
at the output of multiqubit quantum channels. For any number of qubits or in the presence of correlations,
our protocol applies to any mathematically invertible noise model, even when its inverse map is not physically
implementable, i.e., when it is neither completely positive nor trace preserving. For a generic observable affected
by Pauli noise it provides a quadratic speedup, always producing a rescaling of its Pauli basis components. We
show that it is still possible to achieve the deconvolution while experimentally estimating the noise parameters,
whenever these are unknown (bypassing resource-heavy techniques such as quantum process tomography). We
provide a simulation, with examples for both Pauli and non-Pauli channels.
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I. INTRODUCTION

Noise in quantum systems can affect the measure-
ment outcome of any observable, modifying the results of
measurement-based protocols or procedures, such as state and
process tomography [1–4] or quantum simulator experiments
[5]. This has also important consequences in quantum compu-
tation: Noise sensitivity remains one of the main drawbacks
that prevents quantum computers from outperforming their
classical counterparts. Several noise mitigation techniques
have been considered in the literature, aimed to reduce errors
and potential loss of data in the computation process [6–8].
Recently, a noise deconvolution technique was illustrated for
observables of single-qubit systems [9], by means of a tomo-
graphic reconstruction formula that acts like a postprocessing
operation on the noisy data, without introducing modifications
to the system.

In this paper we discuss a deconvolution technique that
applies to any multiqubit (possibly correlated) noise model
[10–14], provided its inverse map exists, even if not physically
implementable [15]. We modify the point of view of [9],
adopting an operational framework that is more suitable for
multiqubit implementations. Unlike other approaches in the
literature [6,7], our protocol is passively implemented at the
data processing stage: It does not require further experimental
(or circuital) configurations, nor active modifications of the
original system. For this reason, its range of applicability
is not limited to quantum computing: It applies to generic
quantum measurements on noisy states, e.g., it can be used
to reverse open quantum dynamics [16,17].

Our method works in general, e.g., it does not require
Markovian correlations. In the specific but important case
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of Pauli channels [18], it provides a quadratic speedup over
other reconstructions. Given an observable O, we show that
its noiseless expectation value can be tomographically recon-
structed by performing local measurements on those elements
of the Pauli basis for which O takes nonzero components
and by rescaling them in terms of the corresponding entries
of the Pauli transfer matrix (PTM) of the channel [19–21].
This procedure works for any number of qubits and does
not require the complete inversion of the noise map, nor the
complete calculation of its PTM. For n-qubit Pauli channels
the computational complexity of our procedure, i.e., the num-
ber of factors required to complete the deconvolution, scales
with the number r = 1, 2, . . . , d2 of nonzero components of
O in the Pauli basis, with d = 2n the Hilbert space dimension
(r = 1 represents an observable made by exactly one basis
element, while r = d2 represents the worst cases in which
O has all nonzero components). This scenario is summarized
in Fig. 1. Then we discuss a characterization of the noise
map that provides the necessary PTM entries in term of a
few measurements on the Pauli basis, without running a full

Pauli

(a)

Pauli

(b)

FIG. 1. (a) Expectation value of a multiqubit observable O, af-
fected by Pauli noise N . (b) The same scheme is applied to the
nonzero components of O. Deconvolution is achieved by rescaling
the noisy data with the corresponding diagonal entry of the Pauli
transfer matrix �N .
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process tomography of the system. This represents an efficient
alternative whenever the theoretical computation of the PTM
is not doable, e.g., when the noise parameters are unknown.
Finally, we show that our protocols apply also to non-Pauli
channels, with reduced efficiency. In this case, we provide the
deconvolution from the complete inversion of the PTM and
we show that it scales as d4 in the worst case. So, in essence,
our procedure experiences a quadratic gain (d2 vs d4) for Pauli
channels.

In Sec. II we review the vectorization of operators and
channels. In Sec. III we present noise deconvolution for
multiqubit Pauli channels, addressing their characterization
whenever the noise parameters are unknown. Then we gen-
eralize our discussion to the non-Pauli case. In Sec. IV we
consider the explicit deconvolution of n-qubit bit-flip and
depolarizing correlated noises, simulating the latter for n = 3.
As a non-Pauli example, we consider a two-qubit amplitude
damping correlated channel, which models qubits losses in-
side devices.

II. VECTORIZATION

We consider the Hilbert space of an n-qubit system. The
basis for the set of operators is{

σα1 ⊗ σα2 ⊗ · · · ⊗ σαn

∣∣α1, α2, . . . , αn = 0, 1, 2, 3
}
, (1)

with σ0 = 12, σ1 = σx, σ2 = σy, and σ3 = σz. We write the
Pauli basis in the notation

{Pk | k = 0, 1, 2, 3, . . . , d2 − 1}, (2)

with d = 2n and Pk denoting the generic element of Eq. (1)
in lexicographic order. We introduce the vectorized represen-
tation [19], in which each element of the basis Pk is mapped
to a vector |k〉〉. In this space, an operator A is represented as
a 1 × d2 column vector

|A〉〉 =
d2−1∑
k=0

Ak|k〉〉, (3)

with Ak = 〈〈k|A〉〉 given by the Hilbert-Schmidt inner product

〈〈A|B〉〉 := 1

d
Tr[A†B], (4)

with B any operator on this Hilbert space.
Consider a quantum system in the state ρ. A quantum

channel is a linear completely positive and trace-preserving
(CPTP) map that modifies the system state as ρ → �(ρ). In
the vectorized framework, a channel � is represented by a
d2 × d2 matrix

�� =
d2−1∑
j,q=0

� jq| j〉〉〈〈q|, (5)

with components given by the Hilbert-Schmidt inner product

� jq = 〈〈 j|��|q〉〉 = 1

d
Tr[P j�(Pq)]. (6)

This is called the Pauli transfer matrix of the channel [19]. In
this representation, the action of the channel �(A) is given by

a matrix-vector multiplication

|�(A)〉〉 = ��|A〉〉 =
d2−1∑
j,q=0

� jqAq| j〉〉. (7)

The CPTP condition guarantees that �0q = δ0q, with δ jq the
Kronecker delta. For unital channels, i.e., when �(1) = 1, it
holds also that � j0 = δ j0.

Consider a channel �, its adjoint �∗ is the map satisfying

〈〈A|�∗(B)〉〉 = 〈〈�(A)|B〉〉. (8)

This implies that the adjoint PTM, here denoted by �∗
�, is

precisely the Hermitian conjugate of ��.

III. NOISE DECONVOLUTION

Noise in open quantum systems is modeled in terms of
quantum channels [1], namely, linear CPTP operations N that
map the ideal, i.e., noiseless, state ρ into a noisy one ρ ′ =
N (ρ). Different choices of N correspond to different noise
models, e.g., the bit-flip, the dephasing, the depolarizing, or
the amplitude damping noises [1]. With the state modified
by N , any measurement performed on an observable O be-
comes noisy, namely, its expectation value 〈O〉ρ is mapped
to 〈O〉ρ ′ . In this section we introduce noise deconvolution as
a technique that provides the ideal expectation value 〈O〉ρ of
arbitrary operators, using the noisy data obtained on ρ ′. Our
protocol applies to any mathematically invertible noise model,
i.e., one for which �−1

N exists, even when the inverse channel
is not physically implementable, i.e., when N−1 is not CPTP.

We consider the noise deconvolution equation derived
in [9],

〈O〉ρ = 〈N ∗−1
(O)〉ρ ′ , (9)

which yields the ideal (i.e., noiseless) expectation value of an
arbitrary observable 〈O〉ρ (or even of a non-observable opera-
tor) by evaluating instead the inverted adjoint map N ∗−1

(O)
over the noisy state ρ ′ = N (ρ). In other proposals [22],
similar inversions are implemented physically (often only
approximately) by introducing suitable modifications to the
channel. Here instead we just use the noisy measured data to
calculate the noiseless value. In other words and in contrast
to previous proposals, our noise-inversion reconstruction is
implemented entirely and solely at the data processing stage.
In the vectorized framework, Eq. (9) reads

〈〈ρ|O〉〉 = 〈〈
ρ ′∣∣�∗−1

N
∣∣O〉〉

, (10)

where �∗−1

N is the inverse adjoint PTM.
We start with the deconvolution of multiqubit Pauli chan-

nels, for which the vectorization guarantees a quadratic
speedup in efficiency over the general case (treated below).
The current method generalizes and supersedes the single-
qubit analysis presented in [9]. In this case we derive a
reconstruction formula without completely inverting the noise
channel, instead using only some components of the PTM. We
first apply this procedure to an observable made by one of the
possible n-fold tensor products of the Pauli matrices, i.e. one
of the elements of the basis; then we extend our considerations
to the expectation value of a generic observable that takes
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all the contributions from the Pauli basis. At the end of the
section, we generalize our discussion to the non-Pauli case.

In the Pauli basis, the Kraus representation [1] of an n-qubit
Pauli channel is [18]

N (ρ) =
d2−1∑
j=0

β jP jρP j, (11)

with
∑

j β j = 1 and β j � 0 ∀ j. Such channels represent an
example of random unitary maps [23], where each unitary P j

is applied with probability β j . In the case of Eq. (11), this
produces a depolarizing contraction of the Bloch hypersphere,
whose intensity and direction depend on the choice of β j [24].

A Pauli channel yields a diagonal PTM

�N =
d2−1∑
j=0

λ j | j〉〉〈〈 j|, (12)

where λ j = 〈〈 j|�N | j〉〉. As the only requirement, we ask �N
to be mathematically invertible, i.e., that λ j 	= 0 ∀ j.1 For now,
we also assume that the noise parameters are known so that a
theoretical computation of the PTM is always possible. This
last assumption simplifies our analysis, but it is not necessary.
We discuss the case of unknown noise in the following para-
graphs.

Since all the Kraus operators in Eq. (11) are Hermitian, the
adjoint of the Pauli channel is the channel itself [9], yielding
�∗−1

N = �−1
N . Then the inverse PTM is diagonal too and its

components read 1/λ j .
First, consider an observable given by the kth element

of the basis, which in vectorized notation corresponds to a
column vector with only one nonzero component |O〉〉 = |k〉〉.
The action of the inverse PTM yields

�−1
N

∣∣O〉〉 = �−1
kk

∣∣k〉〉 = 1

λk
|k〉〉. (13)

Using Eq. (10), the expectation value follows as 〈〈ρ|k〉〉 =
λ−1

k 〈〈ρ ′|k〉〉, which in standard nonvectorized notation reads

〈Pk〉ρ = d

Tr[PkN (Pk )]
〈Pk〉ρ ′ . (14)

This shows that for an n-qubit Pauli channel, the deconvo-
lution of the expectation value of the kth element of the
basis is always obtained as a rescaling of the noisy outcome,
which depends on the kth element on the diagonal of the
inverse PTM.

We now discuss the deconvolution of a generic observable
O subject to an arbitrary n-qubit Pauli channel. We expand O
in terms of the basis vectors |O〉〉 = ∑

k Ok|k〉〉 to compute the
right-hand side of Eq. (10). Applying the same strategy, each
component Ok must be rescaled by the corresponding element
on the diagonal of the inverse PTM. Then the reconstructed

1An example of a noninvertible map is represented by a depolariz-
ing channel with p = 1, for which the Bloch hypersphere collapses
to a single point.

measurement outcome reads

〈O〉ρ =
d2−1∑
k=0

d

Tr[PkN (Pk )]
Ok〈Pk〉ρ ′ . (15)

Namely, we obtain the ideal noiseless outcome, i.e., over ρ, by
processing the noisy expectation values, i.e., over ρ ′ = N (ρ),
of those Pauli basis elements Pk that contribute to the expan-
sion of O.

This procedure works for any number n of (even cor-
related) qubits and it involves only local measurements on
each element of the basis. The computational complexity,
i.e., the number of factors required, scales with the number
r = 1, 2, . . . , d2 of nonzero elements of the expansion of O
on the Pauli basis. In the trivial case in which O is exactly
an n-qubit Pauli matrix, the deconvolution always requires a
single measurement and one PTM entry, for any number of
qubits. On the other hand, when O is a generic observable,
the deconvolution requires a measurement on the entire basis
and the computation of all the d2 diagonal components of
the PTM. In any case, this considerably reduces the number
of computations of the PTM entries over the inversion-based
method of [9], which for n qubits always requires d4 opera-
tions.

So far we have considered n-qubit Pauli channels whose
parameters are known a priori. Although it simplifies the anal-
ysis, this assumption is not necessary: We can still estimate
these parameters without running a full process tomography
of the channel [1,3], which is intractable for large n. For
a general n-qubit Pauli channel N , with unknown Kraus
representation coefficients in Eq. (11), the deconvolution is
achieved by means of the following characterization. Prepare
the system in the state

ρk = 1 + Pk

d
for k 	= 0, (16)

with 1 the n-qubit identity operator (see the Appendix for a
discussion on positivity). Assuming that ρk evolves to ρ ′

k =
N (ρk ), i.e., that the channel acts independently of the prepa-
ration scheme of Eq. (16), unitality guarantees that

ρ ′
k = 1 + N (Pk )

d
. (17)

The diagonal entries of the PTM then read

�kk = 〈Pk〉ρ ′
k

for k 	= 0, (18)

with 〈Pk〉ρ ′
k
= Tr[PkN (ρk )], which can be used in the decon-

volution formula (14) or (15). This means that, even without
knowing the noise parameters, we can still obtain the recon-
struction factors by measuring the kth element of the Pauli
basis over a noisy state initially prepared as in Eq. (16). Again,
this requires at most r operations, with r = 1, 2, . . . , d2 the
number of nonzero components of O in the Pauli basis. We
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summarize the entire procedure in Protocol 1.

Protocol 1 Multiqubit Pauli channel deconvolution.

Input: Observable O Optional: Pauli channel N
Result: Noiseless expectation value 〈O〉ρ

1: construction of the basis � {Pk} for k = 0, 1, . . . , d2 − 1
2: projection of O on the basis � Ok = Tr[OPk]/d
3: for k such that Ok 	= 0 do
4: noisy measurement on the basis � 〈Pk〉N (ρ )

5: if N is known then
6: get PTM � �kk ← Tr[PkN (Pk )]/d
7: else
8: state preparation � ρk = (1 + Pk )/d
9: PTM characterization � �kk ← 〈Pk〉N (ρk )

10: noise deconvolution � 〈O〉ρ ← ∑
k �−1

kk Ok〈Pk〉N (ρ )

Before considering the applications, we discuss the case
of noise channels that cannot be expressed in the form of
Eq. (11), i.e., whose Kraus representation contains at least
one operator that is different from a Pauli Pk . These chan-
nels describe purely quantum mechanical processes, e.g., a
“spontaneous emission”, which is modeled by the amplitude
damping channel [1].

Non-Pauli channels are not self-adjoint and have a nondi-
agonal PTM, so �∗−1

N cannot be simply obtained as in Eq. (13).
In this case, the tomographic reconstruction formula of a
generic observable O reads

〈O〉ρ =
d2−1∑
j,q=0

(�∗−1
) jqOq〈P j〉ρ ′ , (19)

which, in the case of O = Pk , i.e., O = |k〉〉 in the vectorized
notation, reduces to

〈Pk〉ρ =
d2−1∑
j=0

(�∗−1
) jk〈P j〉ρ ′ . (20)

In this case, the deconvolution procedure still works, although
less efficiently: It requires more computations and the com-
plete calculation of the inverse adjoint PTM �∗−1

N . For Pauli
channels, both equations consistently reduce to Eqs. (14) and
(15). In the next section we consider the explicit deconvolu-
tion of a two-qubit amplitude damping correlated channel.

When noise is not described by a Pauli channel, as it often
occurs in real devices, the quadratic speedup of Eq. (15) is
not achievable. However, generic noise models are usually
split in terms of Pauli and non-Pauli (but simpler) contribu-
tions. See, for example, [9], where the decoherence of Rigetti
Aspen-9 is modeled as a composition of a dephasing (Pauli)
and an amplitude damping (non-Pauli) channel. In the vec-
torized representation, the composition of multiple channels
reduces to the product of their PTM. Even in this case, their
deconvolution can be separately treated, with still a quadratic
advantage on the Pauli terms, which then act as a rescaling of
the non-Pauli rows or columns. Alternatively, twirling tech-
niques can be employed to remove the off-diagonal elements
of the PTM [18,25], thus mapping the original channel to an
effective Pauli one.

Similarly to the diagonal case, a straightforward character-
ization can be employed whenever the channel is unital and
its parameters are unknown. Prepare the system in the state ρk

of Eq. (16) evolved to Eq. (17) and then iterate Eq. (18) for all
the elements P j of the Pauli basis, yielding the PTM as

� jk = 〈P j〉ρ ′
k

for j, k 	= 0, (21)

which can be inverted and substituted in Eq. (19) or (20).
Both Eqs. (18) and (21) provide a direct tomographic

reconstruction of the channel PTM, as long as the channel
is unital. This represents an alternative to the standard ap-
proach that recovers the channel Kraus representation through
standard quantum process tomography (a generalization of
this procedure to nonunital channels and a comparison with
quantum process tomography will be discussed in [26]).

IV. APPLICATIONS

In this section we discuss noise deconvolution of several
examples of Pauli and non-Pauli noise models. To analyze
correlations we demonstrate our general method on a spe-
cific class of channels, in which a parameter μ measures the
amount of correlations [10–12,27,28].

We start with the class of Pauli correlated channels defined
in [10–12], whose Kraus representation reads

N (ρ) =
3∑

{αi}=0

pα1α2···αn Aα1α2···αnρA†
α1α2···αn

, (22)

with i ∈ {1, 2, . . . , n} and Kraus operators

Aα1α2···αn = σα1 ⊗ σα2 ⊗ · · · ⊗ σαn , (23)

with pα1α2···αn = pα1 pα2|α1 · · · pαn|αn−1 given by the Markov
chain [12,29]

pα j |αi = (1 − μ)pα j + μδαiα j , (24)

�p = [1 − p, px, py, pz]
T , (25)

with p = px + py + pz. This kind of correlation is not a re-
quirement of our deconvolution technique; it provides only
an example to test our protocol. The parameter μ ∈ [0, 1]
represents the degree of correlation between couple of qubits.
On the one hand, μ = 0 represents a memoryless channel,
which is when the qubits are completely uncorrelated. On
the other hand, μ = 1 describes a full-memory channel, i.e.,
when the qubits are completely correlated. The Pauli channels
generalize noise models such as the bit-flip, the bit-phase-flip,
the dephasing, and the depolarizing which can be reobtained
from Eq. (22) by a proper choice of �p. For example, we
obtain the bit-flip channel when �p = [1 − p, p, 0, 0]T or the
depolarizing channel when �p = [1 − p, p/3, p/3, p/3]T .

As the first example, consider the n-qubit observable σ⊗n
z ,

whose expectation value is affected by a bit-flip correlated
noise [1,12], i.e., with �p = [1 − p, p, 0, 0]T . In this case, the
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(a) (b)

FIG. 2. (a) Simulated noise effect on 〈σ⊗3
z 〉 for a three-qubit depolarizing correlated channel, where the degree of correlation is

parametrized by μ ∈ [0, 1] and with probability q = 0.000 52. The system is initially prepared in the noiseless state ρ = |000〉〈000|. The
ideal expectation value 〈σ⊗3

z 〉ρ = 1 is represented by a dashed horizontal line. The simulation is performed using QISKIT AER for 8192 shots,
with respect to the number m of subsequent applications of the noise map N m(ρ ). The noise effect is plotted for different values of μ. Note
that when the value of μ decreases, the correlation of qubits increases and the effect of the noise decreases. (b) Simulated deconvolution of the
noise channel for μ = 0.25. We compare the noisy output with the noiseless one, recovered with the noise deconvolution procedure presented
here.

deconvolution formula yields〈
σ⊗n

z

〉
ρ

= fn(p, μ)
〈
σ⊗n

z

〉
ρ ′ , (26)

where the reconstruction factor is given by

fn(p, μ) = 2n

Tr
[
σ⊗n

z N
(
σ⊗n

z

)] . (27)

By direct computation, we obtain

f1(p, μ) = 1

1 − 2p
, (28)

f2(p, μ) = 1

1 + 4(μ − 1)(1 − p)p
, (29)

f3(p, μ) = 1

(1 − 2p)[1 + 4(μ − 1)2(p − 1)p]
. (30)

For a depolarizing correlated channel [10,12], i.e., when �p =
[1 − 3q/4, q/4, q/4, q/4]T , the same computation gives

f1(q, μ) = 1

1 − q
, (31)

f2(q, μ) = 1

1 + (μ − 1)(2 − q)q
, (32)

f3(q, μ) = 1

(1 − q)[1 + (μ − 1)2(q − 2)q]
. (33)

When the qubits are completely uncorrelated (μ = 0), the
noise deconvolution factorizes in terms of the single-qubit
contributions. For qubits that are completely correlated (μ =
1), the noise has no effect when n is even, while it is corrected
by a single-qubit contribution when n is odd. In Fig. 2(a)
we plot the effect of a three-qubit depolarizing correlated
channel on 〈σ⊗3

z 〉 with respect to the number of subsequent
applications of the noise map, parametrized in terms of μ. In
Fig. 2(b) we perform a simulation of the deconvolution, which
successfully reproduces the noiseless expectation value.

As a non-Pauli example, we consider a two-qubit ampli-
tude damping correlated channel [27,28]. For a single-qubit
system, the amplitude damping channel is defined in terms of
two Kraus operators

E0 =
(

1 0
0

√
η

)
, E1 =

(
0

√
1 − η

0 0

)
, (34)

where 1 − η represents the probability of the system losing a
qubit, e.g., by emitting a photon [1], and it plays the role of
channel transmissivity, e.g., in the case of optical fibers [28].

The two-qubit amplitude damping correlated channel can
be obtained as a convex combination of a memoryless ampli-
tude damping channel N0 with a memoryful one N1,

N (ρ) = (1 − μ)N0(ρ) + μN1(ρ), (35)

where

N0(ρ) =
3∑

j=0

AjρA†
j , N1(ρ) =

1∑
j=0

BjρB†
j , (36)

with Kraus operators A0 = E0 ⊗ E0, A1 = E0 ⊗ E1, A2 =
E1 ⊗ E0, A3 = E1 ⊗ E1, and

B0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
η

⎞
⎟⎟⎠,

B1 =

⎛
⎜⎜⎝

0 0 0
√

1 − η

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (37)

Consider the two-qubit observables σ⊗2
x , σ⊗2

y , and σ⊗2
z with

noisy state ρ ′ = N (ρ). From the deconvolution formula
and the computation of the inverse adjoint PTM it follows

022419-5



RONCALLO, MACCONE, AND MACCHIAVELLO PHYSICAL REVIEW A 107, 022419 (2023)

that 〈
σ⊗2

x

〉
ρ

= f (η,μ)
{
[2η(1 − μ) + μ(

√
η + 1)]

〈
σ⊗2

x

〉
ρ ′

+ μ(
√

η − 1)
〈
σ⊗2

y

〉
ρ ′
}
, (38)

while 〈σ⊗2
y 〉ρ is obtained from Eq. (38) through the index

exchange x ↔ y, and that〈
σ⊗2

z

〉
ρ

= g(η,μ)
[
(μ − 1)2(η − 1)2 + 〈

σ⊗2
z

〉
ρ ′

− (μ − 1)(η − 1)
〈
1 ⊗ σz + σz ⊗ 1

〉
ρ ′
]
, (39)

with

f (η,μ) = 1

2[μ(η − √
η) − η][μ(η − 1) − η]

, (40)

g(η,μ) = 1

[η + μ(1 − η)]2
. (41)

Note that when the qubits are completely uncorrelated (μ =
0) the noise deconvolution factorizes in terms of the single-
qubit contributions.2 When the two qubits are completely
correlated (μ = 1) the noise has no effect on 〈σ⊗2

z 〉.

V. CONCLUSION

We illustrated a procedure for the deconvolution of multi-
qubit noise described by mathematically invertible quantum
channels: It returns the ideal expectation value of arbitrary
observables from the noisy data.

In the case of Pauli channels, our prescription bypasses the
inversion of the noise map, providing the deconvolution from
a set of Pauli measurements rescaled by a few components
of the PTM (where the number of factors is quadratically
reduced with respect to the general scenario). As discussed
and shown in the simulation, this analysis can be applied to
any example of multiqubit Pauli noise, e.g., the bit-flip or
the depolarizing correlated channels. Then we presented a
characterization technique that provides the necessary PTM
entries as a set of Pauli measurements on a specific class
of input states, guaranteeing the deconvolution whenever a
theoretical approach is not possible, e.g., when the parameters
of the channel are unknown.

Finally, we discussed the deconvolution of noise that does
not belong to the class of multiqubit Pauli channels. Our
procedure successfully applies also to these cases, while less
efficiently and requiring the complete computation (and inver-
sion) of the adjoint PTM.
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APPENDIX: POSITIVITY OF THE
CHARACTERIZATION STATE

In this Appendix we show that the operator used in the
noise characterization procedure fulfills all the requirements
of a density operator, i.e., Hermiticity, unit trace, and positive
semidefiniteness [1], namely, that it represents a state of the
n-qubit system.

Consider the operators of Eq. (16), with k =
1, 2, . . . , d2 − 1. While Hermiticity is straightforward,
unit trace follows from Tr[Pk] = 0 for k 	= 0.

To prove positive semidefiniteness, we refer to the charac-
terization of density operators in terms of the coherence vector
representation discussed in [30]. Let Sm be the coefficients of
the characteristic polynomial of the d × d matrix representa-
tion of ρ,3 given by

Sm = 1

m

m∑
j=1

(−1) j−1Tr[ρ j]Sm− j, (A1)

with S0 = 1 and m = 0, 1, . . . , d .4

A necessary and sufficient condition for ρ being positive
semidefinite is that Sm � 0 ∀m.

Theorem 1. The operator ρ = (1 + Pk )/d is positive
semidefinite.

Proof. Consider the operator A = (1 + Pk )/2, which is
positive semidefinite if and only if ρ does. A direct compu-
tation yields Aj = A and Tr[Aj] = d/2. For A, Eq. (A1) reads

Sm = d

2m

m∑
j=1

(−1) j−1Sm− j . (A2)

Extracting the first term of the series and collecting a minus
sign, we get

Sm = d

2m

⎛
⎝Sm−1 −

m∑
j=2

(−1) j−2Sm− j

⎞
⎠. (A3)

Translating j → j + 1 (with the sum now running from 1 to
m − 1) and writing Eq. (A2) for Sm−1, we obtain a recursive

3In this Appendix we use the standard operator framework rather
than the vectorized representation.

4Here Eq. (A1) is obtained by writing Eq. (24) from [30] as a
series, with S0 = 1 the coefficient of the highest-order term in the
characteristic polynomial of A.
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relation

Sm = d

2m

(
1 − 2(m − 1)

d

)
Sm−1. (A4)

With δ = 1 + d/2, this yields

Sm > 0 for 0 � m < δ, (A5)

Sm = 0 for δ � m � d, (A6)

which implies that Sm � 0 ∀ m. This result does not depend on
k, nor do the coefficients Sm and the roots of the characteristic
polynomial, i.e., the eigenvalue of A. Hence, A is positive
semidefinite for any choice of Pk and consequently so is ρ.�
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