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Two-level quantum walkers on directed graphs. II. Application to quantum random access memory
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This is the second paper in a series of two. Using a multiparticle continuous-time quantum walk with two
internal states, which was formulated in the first paper [R. Asaka et al., preceding paper, Phys. Rev. A 107,
022415 (2023)], we physically implement a quantum random access memory (QRAM). Data with address
information are dual-rail encoded into quantum walkers. The walkers pass through perfect binary trees to access
the designated memory cells and copy the data stored in the cells. A roundabout gate allocated at each node
serves as a router to move the walker from the parent node to one of two child nodes, depending on the internal
state of the walker. In this process, the address information is sequentially encoded into the internal states so that
the walkers are adequately delivered to the target cells. The present QRAM, which processes 2n m-qubit data,
is implemented in a quantum circuit of depth O(n log(n + m)) and requires O(n + m) qubit resources. This is
more efficient than the conventional bucket-brigade QRAM that requires O(n2 + nm) steps and O(2n + m) qubit
resources for processing. Moreover, since the walkers are not entangled with any device on the binary trees,
the cost of maintaining coherence can be reduced. Notably, by simply passing quantum walkers through binary
trees, data can be automatically extracted in a quantum superposition state. In other words, any time-dependent
control is not required.

DOI: 10.1103/PhysRevA.107.022416

I. INTRODUCTION

This is the second paper in a series of two in which we
consider a multiparticle continuous-time quantum walk with
two internal states. In the present paper we propose a physical
implementation of a quantum random access memory, using
some devices developed in the preceding paper [1], in which
an architecture of universal quantum computation using the
quantum walk was provided.

A number of quantum algorithms exploiting quantum-
mechanical effects have been proposed to achieve significant
speedups over their classical analogs [2]. Algorithms for
quantum phase estimation [3,4], quantum amplitude ampli-
fication [5–8], and quantum Hamiltonian simulation [9–18]
are the most notable and are used as subroutines in, for
example, Shor’s algorithm for factorizing large integers [3]
and Grover’s algorithm for searching unsorted databases [7].
However, one should be careful about claiming that quan-
tum algorithms are superior to classical counterparts in some
cases. As an example, let us take the search problem of finding
a particular item in an unstructured set consisting of N items.
Grover’s algorithm incorporates the process of accessing and
querying the database as an oracle (a black box that answers
yes or no) and completes the search with only O(

√
N ) oracle
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queries, achieving a quadratic speedup over a classical ex-
haustive search. In practice, however, the oracle subroutines,
i.e., converting data into a quantum superposition state and
accessing and reading them, may be a cumbersome overhead
that offsets the quantum speedup [19]. Namely, reducing the
cost to the oracle is crucial for applications of quantum com-
putation to search problems, Hamiltonian simulations, and
machine learning for big data sets [20–38].

A quantum random access memory (QRAM) was intro-
duced as a quantum counterpart of a random access memory,
promising to efficiently access data and convert them into
superposition states [39,40]. Conceptually, a QRAM is a
quantum device comprising the following three principal
schemes: (i) a routing scheme to access the specified memory
cells whose addresses are given by an n-qubit superposition
state ∑

a

|a〉A =
∑
{a j}

|an−1 · · · a0〉A ∈ (C2)⊗n,

a ∈ Z�0, a j ∈ {0, 1} (0 � j � n − 1), (1.1)

(ii) a querying scheme to read the classical information x(a) ∈
Z�0 stored in the ath cell,1. and (iii) an output scheme to
retrieve the data in an m-qubit superposition state

∑
a |x(a)〉D.

Here the subscripts A and D stand for the quantum versions of
an address register and a data register, respectively. Explicitly,
a QRAM is defined as a function

QRAM :
∑

a

|a〉A|0〉D �→
∑

a

|a〉A|x(a)〉D. (1.2)

1A QRAM can also process the quantum information where |x(a)〉
consists of a superposition of states (see Sec. V). For the moment,
however, we restrict ourselves to the classical case for convenience
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FIG. 1. The GLM bucket-brigade scheme defined on a binary tree with depth n = 3. A qutrit is installed at each node to route to the
specified memory cells. For instance, to route to the cell at address |110〉A, the three qutrits must be activated from wait to left or right.

Giovannetti, Lloyd, and Maccone proposed a remarkable
QRAM architecture using the so-called bucket-brigade rout-
ing scheme [39,40]. The Giovannetti-Lloyd-Maccone (GLM)
architecture is defined on a perfect binary tree with depth n
on which N = 2n data are stored in the memory cells placed
on the leaves of the binary tree (see Fig. 1). Each node in
the tree is equipped with a qutrit with three energies labeled
wait, left, and right, and all the qutrits are initially in the wait
state. The qutrit acts as a router: The value an−1−� ∈ {0, 1}
(0 � � � n − 1) in the address register (1.1) is delivered to
one of the 2� nodes at the �th level of the binary tree and
if an−1−� = 0 (an−1−� = 1) activates the qutrit from wait to
left (right) to route the subsequent an−2−� to one of the two
child nodes. After O(n2) = O(log2 N ) steps, a unique route
is assigned from the root to the specified memory cell, as
schematically depicted in Fig. 1. A quantum bus then arrives
at the cell through the assigned route, the data stored in the
cell is coherently loaded onto the bus, and the bus loaded
with the data returns to the root via the route it came from.
Finally, reverting the activated qutrits to wait, sequentially
from the last level, yields output on the right-hand side of
(1.1). For each memory call, the overall computational cost
and qubit resources required to process N = 2n m-qubit data
are O(n2 + nm) and O(2n + m), respectively.

It is worth noting that the number of qutrits to be activated
is only O(n), which drastically reduces the cost of maintaining
the quantum coherence compared to the fan-out scheme (most
commonly used in a classical random access memory) that
activates O(2n) qutrits. In fact, a high resilience of the bucket-
brigade QRAM to generic noise was recently proved in [41].
The GLM QRAM has been improved and is realized effi-
ciently by quantum circuits as in [42–44]. Some experimental
implementations have also been proposed in [40,45–48].

More recently, the authors of the present paper have pro-
vided a novel QRAM algorithm that works on a perfect binary
tree but does not require entanglement with any quantum
device on the nodes [49]. In this sense, this algorithm promises
to reduce the cost of maintaining quantum coherence com-
pared to the bucket-brigade scheme, but its implementation
has remained open until now. The purpose of this paper is to
physically implement this QRAM algorithm using a multipar-
ticle continuous-time quantum walk with two internal states.

Our QRAM architecture is roughly sketched as follows.
First, quantum information is dual-rail encoded into quantum
walkers moving on parallel paths; single-qubit data is repre-
sented by the presence of a walker on one of the two parallel

paths. Namely, the arbitrary m-qubit data associated with n-
qubit address information is represented by a set of n + m
quantum walkers traveling on half of 2(n + m) paths. Second,
each walker possesses two internal states (e.g., the spin-up and
-down states of an electron). Depending on the internal state,
the roundabout gate allocated at each node of the binary trees
passes the walker to one of the two child nodes. The address
information is sequentially encoded into the internal states so
that the set of walkers is properly delivered to the designated
memory cells. Finally, the data in the cell is copied by simply
changing the positions of the walkers in the data register. The
set of the walkers carrying the data is retrieved by the reverse
operation of the routing scheme.

In the above implementation, the roundabout gate can be
actually realized by the scattering of the walker from a di-
rected graph [1]. The encoder, which converts the positional
information of the path traveled by the specified walkers into
the internal states of the walkers, is implemented by a com-
bination of roundabout gates and single-qubit gates acting
on the internal state of the walkers. The main advantages of
our architecture are as follows. (i) The processing is fully
parallelized without using any ancilla qubit and can access
and retrieve the m-qubit data associated with n-qubit address
information in O(n log(n + m)) steps. The qubit resources
necessary for the processing are O(n + m). (ii) The walkers
are not entangled with any device on the binary trees, thus
reducing the cost of maintaining the quantum coherence. (iii)
It does not require any time-dependent control: The QRAM
process is automatically achieved by just passing the walkers
through binary trees. (iv) Using the model developed in the
preceding paper [1], it is possible to design a unified universal
quantum computer that is compatible with the QRAM devel-
oped in this paper.

The rest of this paper is outlined as follows. Section II
describes the general setup and gives an overview of our
QRAM architecture. Some devices developed in the preceding
paper [1], which are required in the present paper, are also
summarized. A physical implementation of the QRAM is pro-
vided in Sec. III. In Sec. IV an alternative QRAM scheme that
transforms a trivial state into a superposition of information
stored in the specified memory cells,

˜QRAM : |0〉A|0〉D �→
∑

a

|a〉A|x(a)〉D (1.3)

[cf. (1.2)], is proposed. Section V is devoted to a summary and
discussion, where we briefly explain how to extract quantum
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FIG. 2. Dual-rail encoding of the state |q2q1q0〉 = |110〉

information (i.e., information in quantum superposition) in the
designated cells instead of classical information.

II. PRELIMINARIES

This section gives an overview of the QRAM architecture,
which is a physical realization of the algorithm developed in
[49]. The architecture uses some quantum gates implemented
by multiparticle continuous-time quantum walks [1].

A. Setup and layout of the QRAM

Our QRAM architecture employs a dual-rail encoding in
which data and address information are represented as the
positions of the paths on which the quantum walkers moving;
a single-qubit state |q j〉 ∈ C2 is expressed by the presence of
a quantum walker in one of two parallel paths

|q j〉 = δq j ,0|2 j〉p + δq j ,1|2 j + 1〉p (0 � j � n + m − 1),

(2.1)

where |2 j〉p ∈ C2 (|2 j + 1〉p ∈ C2) indicates that a walker is
moving on the 2 jth [(2 j + 1)th] path. Correspondingly, an
(n + m)-qubit state is given by

|qn+m−1 · · · q0〉 = |qn+m−1〉 ⊗ · · · ⊗ |q0〉

=
n+m−1⊗

j=0

(
δq j ,0|2 j〉p + δq j ,1|2 j + 1〉p

) ∈ (C2)⊗(n+m).

(2.2)

Figure 2 shows an example of a dual-rail encoded state. For
our purposes, we assign the first n qubits and the remaining m

qubits to the address and data registers, respectively:

|a〉A = |an−1 · · · a0〉A = |an−1〉An−1 ⊗ · · · ⊗
|a0〉A0 = |qn−1 · · · q0〉 ∈ (C2)⊗n,

|x(a)〉D = ∣∣x(a)
m−1 · · · x(a)

0

〉
D = ∣∣x(a)

m−1

〉
Dm−1

⊗ · · · ⊗
∣∣x(a)

0

〉
D0

= |qn+m−1 · · · qn〉 ∈ (C2)⊗m. (2.3)

The n + m quantum walkers (in superposition) access the
specified memory cell(s) through half of the 2(n + m) parallel
paths and retrieve the data stored in the cell(s). To this end,
we prepare 2(n + m) parallel sheets on each of which two
perfect binary trees of depth n are arranged so that the 2n

memory cells are sandwiched between the two sets of 2n

leaves, as schematically shown in Fig. 3. (See also Fig. 4 for
a detailed description of a perfect binary tree.) A set of n + m
walkers (possibly in superposition) at input (output) terminals
of the first (second) binary trees corresponds to the input
(output) state. Let (w, �) (0 � w � 2� − 1 and 0 � � � n)
be the wth node from the left at the �th level of the perfect
binary tree and let |w, �〉B ∈ C2n+1−1 denote that a set of n + m
walkers (called a bus) is moving toward the node (w, �) from
its parent node [the parent node for the root node (0,0) de-
notes the input and output terminal (see Fig. 4)]. Namely, the
bus that passes between these two nodes, carrying m-qubit
data |x(a)〉D associated with an n-qubit address |a〉A, is rep-
resented as |a〉A|w, �〉B|x(a)〉D.

All the n + m quantum walkers possess two internal states
(e.g., the spin-up and -down states of an electron). Let |c〉Cj ∈
C2 (c ∈ {0, 1} and 0 � j � n + m − 1) be the internal state
of the jth walker; we call the walker with |0〉Cj and |1〉Cj

a red walker and a blue walker, respectively. In principle,
we assume that the internal states are initialized to be red
|0〉Cj (0 � j � n + m − 1) before processes. All the walkers
at the input and output terminals are colored red [|0〉C :=
⊗n+m−1

j=0 |0〉Cj ∈ (C2)⊗(n+m)], and just before or just after pass-
ing through the nodes, all the walkers are colored red or blue
[|2n+m − 1〉C := ⊗n+m−1

j=0 |1〉Cj ∈ (C2)⊗(n+m)] according to the
address information (1.1). The address information is tem-
porarily encoded in the internal states by a unitary gate E(w,�)

that intersects perpendicular to the paths between two levels
� − 1 and � (0 � � � n − 1) (� = −1 denotes the input termi-
nals), as shown in Fig. 3. (See the next section for more details
about E(w,�).) A roundabout gate is set up at each node to move
a red walker (blue walker) to the left child node (right child
node) in the routing scheme and do exactly the opposite in the
output scheme. The data stored in the memory cells are loaded
to the walkers in the data register, which is simply realized
by changing their positions, as described in the subsequent
section. The walkers loaded with the data are retrieved in
the output scheme, which is accomplished by reversing the
routing scheme. That is a layout of our QRAM given by a
function

QRAM :(C2)⊗[2(n+m)+log2(2n+1−1)] −→ (C2)⊗[2(n+m)+log2(2n+1−1)]

∈ ∈∑
a∈A

|a〉A|0, 0〉B|0〉C |0〉D �−→
∑
a∈A

|a〉A|0, 0〉B|0〉C |x(a)〉D,

(2.4)
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FIG. 3. Overview of the current QRAM architecture. Due to the dual-rail encoding [see (2.1), (2.2), and Fig. 2], the architecture is designed
on 2(n + m) sheets. Each sheet has two perfect binary trees of depth n (cf. Fig. 4), with their 2 × 2n leaves sandwiching the 2n memory cells.
The n + m red quantum walkers at the left back (right front) represent the input (output) state. In the routing scheme, the roundabout gate is
set up at each node of the trees so that it passes a red walker (blue walker) to the left (right) child node. The address information |an−1−�〉An−1−�

is encoded in the internal state of all the n + m walkers as ⊗n+m−1
j=0 |an−1−�〉Cj while they move to the node (w, �) (0 � w � 2� − 1 and

0 � � � n − 1) from its parent node [the parent node for the root node (0,0) denotes the input terminal]. This process can be accomplished by
the device E(w,�) intersecting perpendicular to the paths between two levels � − 1 and � (0 � � � n − 1) (� = −1 denotes the input terminals).
The data x(a) stored in the memory cell at address a is loaded to the walkers arriving at the cell. By reversing the routing scheme, the walkers
loaded with the data (in superposition) are retrieved as the output.

FIG. 4. Perfect binary tree with depth n = 3. At level � (0 � � �
n) of the binary tree, the wth node counting from the left is labeled as
(w, �) (0 � w � 2� − 1 and 0 � � � n). Each node (w, �) has two
child nodes (2w, � + 1) (left child) and (2w + 1, � + 1) (right child)
for 0 � � � n − 1. The input or output terminal is connected to the
root node (0,0) by a path.

where A ⊂ {0, . . . , 2n − 1} denotes the set of addresses of
the specified memory cells.

B. Quantum gates

Next we briefly introduce several elementary quantum
gates developed in the preceding paper [1] that are necessary
for the design of the current QRAM architecture.

1. Single-qubit gates

Arbitrary single-qubit gates are universally realized by a
combination of roundabout gates and rotation gates acting on
the internal states of the walker. The roundabout gate serves
as a router that moves a walker either clockwise or counter-
clockwise from one path to the next according to the internal

022416-4



TWO-LEVEL QUANTUM WALKERS ON DIRECTED GRAPHS. … PHYSICAL REVIEW A 107, 022416 (2023)

state of the walker:

U (l)
R = |0〉〈0|CjUR + |1〉〈1|CjU

†
R, U (r)

R = U (l)
R

†,

UR =
2∑

k,l=0

δl,k+1| jl〉〈 jk|p (k, l ∈ Z/3Z = {0, 1, 2}). (2.5)

Here U (l)
R and U (r)

R are unitary operators that move a red walker
(a walker with the internal state |0〉Cj ) and a blue walker (a
walker with |1〉Cj ) clockwise and counterclockwise, respec-
tively, to the next path. Graphically, they are represented as

(2.6)

For example, the motion of a red or blue walker that enters the U (l)
R or U (r)

R gate from path j0 is graphically given by

(2.7)

Physically, the roundabout gate can be implemented by a single-particle scattering from a directed graph as shown in Sec. III in
[1].

Let us pictorially denote a quantum gate UCj acting on the internal state |c〉Cj of the jth quantum walker as

(2.8)

An arbitrary single-qubit gate UCj is universally realized by UCj = eiθ0 Rz(θ1)Ry(θ2)Rz(θ3) [θk ∈ R (k = 0, 1, 2, 3)] [2,50], where
Ry(θ ) := e−iθY/2 [Rz(θ ) := e−iθZ/2] is the operator that rotates the Bloch vector around the y axis (z axis) by a given angle θ . For
example, the Pauli X gate is represented as XCj = Ry(π )Cj whose action on the states |0〉Cj and |1〉Cj are graphically represented
as

(2.9)

For the spin-1/2 fermionic quantum walks, the operator Ry(θ ) [Rz(θ )] is physically realized by applying a magnetic field H in
the direction of the y axis (z axis) with a specific strength depending on the angle θ . (See Fig. 5 in the preceding paper [1].)

Combining the roundabout gate and the gate UCj , one can construct the single-qubit gate Uj acting on the state |q j〉, i.e.,
Uj (|0〉Cj |q j〉) = |0〉Cj (Uj |q j〉) as given in [1],

(2.10)
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FIG. 5. Schematic description of the output states through the gates CXA jCj and CXCjCk and the corresponding input states.

where a red walker is considered as an input walker, i.e., |0〉Cj |q j〉. For instance, a walker passing through the Pauli X gate Xj is
depicted as

(2.11)

2. Two-qubit gates

Any arbitrary quantum gate can be implemented by a
proper combination of single-qubit gates described above and
the controlled-NOT (CNOT) gate [2,50]. The CNOT gate CX jk

acting nontrivially on |q j〉 ⊗ |qk〉 is decomposed to

CX jk = HkCP jkHk, (2.12)
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where Hk [=iRy(π/2)kRz(π )k] is the Hadamard gate acting on
|qk〉, which is achieved by setting UCk = HCk in (2.10). Here
CP jk is a controlled-phase gate

CP jk =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠

jk

, (2.13)

which is physically realized by the scattering of two walkers
with the same internal state on an infinite path [1] (see Sec. IV
in [1] for another controlled-phase gate),

(2.14)

where the input state is assumed to be (|0〉Ck |qk〉) ⊗
(|0〉Cj |q j〉).

III. PHYSICAL IMPLEMENTATION OF qRAM

Now we describe an implementation of the QRAM that
realizes an algorithm formulated in [49]. Let us explain the

details in the order of (i) the routing scheme F , (ii) the query-
ing scheme Q, and (iii) the output scheme F†. Our QRAM
architecture is implemented by these schemes:

QRAM = F†QF . (3.1)

(i) Routing scheme F . The routing scheme is a scheme to
deliver the n + m quantum walkers (in superposition) to the
desired memory cell(s):

F :
∑
a∈A

|a〉A|0, 0〉B|0〉C |0〉D �→
∑
a∈A

|a〉A|a, n〉B|0〉C |0〉D.

(3.2)
The input state

∑
a∈A

|a〉A|0, 0〉B|0〉C |0〉D =
∑
a∈A

|an−1 · · · a0〉A|0, 0〉B|0〉C |0〉D

(3.3)
is dual-rail encoded into the positions of the n + m red quan-
tum walkers at input terminals as in Figs. 2 and 3. The n + m
walkers start moving simultaneously toward leaves.

The roundabout gate U (l)
R is installed at each node (w, �)

(0 � w � 2� − 1 and 0 � � � n − 1) so that it routes the red
walkers (blue walkers) to the left (right) child node (2w, � +
1) [(2w + 1, � + 1)]:

(3.4)

Formally, this process is given by the operator R(w,�):

R(w,�) : |w, �〉B ⊗
n+m−1⊗

j=0

|c〉Cj �→ |2w + c, � + 1〉B ⊗
n+m−1⊗

j=0

|c〉Cj (c ∈ {0, 1}). (3.5)

The internal states of all the walkers moving to the node (w, �) (0 � w � 2� − 1 and 0 � � � n − 1) must be |0〉Cj (|1〉Cj )
(0 � j � n + m − 1) for an−1−� = 0 (an−1−� = 1) so that the walkers passing through the routers at (w, �) move to the left
(right) node. Namely, the positional information of the path traveled by the (n − 1 − �)th walker should be encoded to the
internal states of all the walkers. This encoding process is formally written by the operator E(w,�) (0 � � � n − 1):

E(w,�) :
n−1⊗
j=0

|a j〉Aj ⊗
n+m−1⊗

j=0

|w mod2〉Cj �→
n−1⊗
j=0

|a j〉Aj ⊗
n+m−1⊗

j=0

|an−1−�〉Cj . (3.6)

As shown immediately below, the operator E(w,�) is achieved by a CNOT gate CXAjCj (0 � j � n − 1),

CXAjCj : |a j〉Aj ⊗ |c j〉Cj �→ |a j〉Aj ⊗ (δa j ,0|c j〉Cj + δa j ,1XCj |c j〉Cj ), (3.7)
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and a multiple actions of a CNOT gate CXCjCk (k 
= j and 0 � j � n + m − 1), defined as

CXCjCk : |c j〉Cj ⊗ |ck〉Ck �→ |c j〉Cj ⊗ (δc j ,0|ck〉Ck + δc j ,1XCk |ck〉Ck ). (3.8)

Their graphical representations are given, respectively, by

(3.9)

and

(3.10)

(Also see Fig. 5.) Now we describe an implementation of the operator E(w,�). Let us assume that

n + m = 2p, p ∈ Z�0 (3.11)

for simplicity. (An extension to generic n and m is straightforward.) Under this assumption, the operator E(w,�) can be
decomposed to

E(w,�) = E�X(w,�), X(w,�) :=
n+m−1∏

j=0

(δw∈2Z + δw∈2Z+1XCj ),

E� := E (p|p−1)
� · · · E (2|1)

� E (1|0)
� CXAn−1−�Cn−1−�

. (3.12)

The operator X(w,�) resets the color of the blue walkers to red. The operator CXAn−1−�Cn−1−�
(3.7) encodes the information an−1−�

into the internal state of the (n − 1 − �)th walker as |an−1−�〉Cn−1−�
, and the operator E (k+1|k)

� copies the color |an−1−�〉Cn−1−�
to

another particle (see Fig. 6 to gain intuition), which is constructed by

E (1|0)
� = [r, r + 2p−1],

E (k+1|k)
� =

2k−1−1∏
s=0

[r − s2p−k, r − s2p−k − 2p−k−1][r + 2p−1 − s2p−k, r + 2p−1 − s2p−k − 2p−k−1] (k � 1). (3.13)

Here we set r := n − 1 − �, qj+n+m := q j , and Cj+n+m := Cj and used the abbreviation

[ j, k] := CXCjCk (3.14)

to simplify the notation. Note here that the colors of the walkers are mixed only during this encoding process; otherwise all
they are set to either red or blue. Thus, the quantum walkers appropriately move to the paths connecting two nodes (w, �) and
(2w + an−1−�, � + 1) (0 � w � 2� − 1 and 0 � � � n − 1) by

F (�+1|�) : =
2�−1∑
w=0

R(w,�)E(w,�),

F (�+1|�) : |a〉A|w, �〉B ⊗
n+m−1⊗

j=0

|an−�〉Cj ⊗ |0〉D

�→ |a〉A|2w + an−1−�, � + 1〉B ⊗
n+m−1⊗

j=0

|an−1−�〉Cj ⊗ |0〉D, (3.15)
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FIG. 6. Pictorial representation of the action of E(w,�) defined by (3.12) [see also (3.6)] for w ∈ 2Z, � = 2, n = 8, m = 8, p = log2(n +
m) = 4, |10110110〉A, and |00000000〉D. After O(p) steps, the positional information |an−1−�〉An−1−�

= |1〉A5 is encoded to the colors of all the

walkers:
⊗15

j=0 |0〉Cj �→ ⊗15
j=0 |1〉Cj . The number of devices necessary for the processing is O(n + m). Note that the colors of the walkers are

mixed only during this encoding process; otherwise all they are set to either red or blue.

where an := 0. Recursively applying F (�+1|�) to the walkers
that started moving toward (w, �) from its parent node and
finally resetting the colors of the walkers to red, namely,
performing the operator

F =
2n−1∑
w=0

X(w,n)F (n|n−1) · · ·F (2|1)F (1|0), (3.16)

we properly deliver the walkers (in superposition) to the desig-
nated memory cells, as given by (3.2). The depth of the circuit
required for the routing scheme is O(np) = O(n log(n + m)).

(ii) Querying scheme Q. The querying scheme Q is a
scheme that loads the data x(a) stored in the memory cell at
the address a,

Q :
∑
a∈A

|a〉A|a, n〉B|0〉C |0〉D �→
∑
a∈A

|a〉A|a, n〉B|0〉C |x(a)〉D,

(3.17)
which is formally realized by

Q =
∑
a∈A

|a, n〉〈a, n|B ⊗
m−1⊗
i=0

(XDi )
x(a)

i . (3.18)

In our architecture, this scheme is implemented by sim-
ply exchanging the appropriate paths in the data register or
alternatively by placing the Pauli X gates [see (2.10)], as
pictorially shown in Fig. 7.

(iii) Output scheme F†. The output scheme is a procedure
to retrieve the data in superposition. In the present approach,
this scheme is achieved by just applying the reverse operation
of the routing scheme, i.e.,

F† :
∑
a∈A

|a〉A|a, n〉B|0〉C |x(a)〉D �→
∑
a∈A

|a〉A|0, 0〉B|0〉C |x(a)〉D.

(3.19)
As shown in Fig. 3, the scheme can be implemented simply
by arranging all devices used in the routing scheme so that
their positions are perfect mirror images across the memory
cells (without changing the direction of the arrows on the
roundabout gates).

In summary, the present architecture processes 2n m-
qubit data in O(n log(n + m)) steps, which requires O(n + m)
qubit resources and O((n + m)2n) quantum devices. Table I
compares the number of computational steps and quantum
resources required for the present QRAM architecture and the
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FIG. 7. Pictorial representation of the querying scheme (3.17) for |0000〉D �→ |1001〉D, which can be achieved by (a) exchanging paths or
(b) placing the Pauli X gates.

original bucket-brigade architecture. Compared to the original
bucket-brigade QRAM, the advantages of our architecture are
that it requires fewer computation steps and qubit resources
and does not require time-dependent control. On the other
hand, the trade-off for these advantages is that it requires more
space and quantum gates, as shown in Figs. 3 and 6.

IV. MODIFICATION OF THE ROUTING SCHEME

By the definition (1.2) of QRAM, the address information
in superposition, namely,

∑
a |a〉A, is prepared beforehand,

with no mention of how it is actually constructed. Here we
propose an alternative QRAM architecture that transforms a
trivial state into a superposition of information stored in the
desired memory cells

˜QRAM : |0〉A|0, 0〉B|0〉C |0〉D

�→ 1√|A |
∑
a∈A

|a〉A|0, 0〉B|0〉C |x(a)〉D (4.1)

[cf. Eq. (2.4)], which is accomplished by modifying the rout-
ing and querying scheme slightly. Note that, in (4.1), the
normalization factor 1/

√|A | is written down explicitly to
improve the perspective of the discussion here.

First we construct the routing scheme F̃ ,

F̃ : |0〉A|0, 0〉B|0〉C |0〉D �→ 1√|A |
∑
a∈A

|0〉A|a, n〉B|0〉C |0〉D

(4.2)
[cf. (3.2)]. Note that, in this routing scheme F̃ , the ad-
dress information is not encoded in the address state, which

actually remains |0〉A during the routing. Instead, to deliver the
n + m walkers to the memory cells at A , the Hadamard-like
gates are appropriately placed in the first binary tree on the
top sheet, where the zeroth walker travels. Let l(w,�) (r(w,�))
(0 � w � 2� − 1 and 0 � � � n − 1) be the number of des-
ignated memory cells whose ancestor is the left child node
(2w, � + 1) [right child node (2w + 1, � + 1)] of (w, �) (see
Fig. 8 for a simple example). Then we define the Hadamard-
like gate H(w,�) acting on the internal state of the zeroth walker
that moves to the node (w, �) from its parent node,

H(w,l ) := 1√
l(w,�) + r(w,�)

(√
l(w,�)

√
r(w,�)√

r(w,�) −√
l(w,�)

)
C0

, (4.3)

which is given by eiθ Ry(θ )Rz(π ) for θ =
2 tan−1(

√
r(w,�)/l(w,�) ) and is reduced to the standard

Hadamard gate if l(w,�) = r(w,�) = 1 (θ = π/2). Using
this gate with R(w,�) and X(w,�) defined in (3.5) and (3.6), we
can actually realize F̃ ,

F̃ =
2n−1∑
w=0

X(w,n)F̃ (n|n−1) · · · F̃ (2|1)F̃ (1|0),

F̃ (�+1|�) :=
2�−1∑
w=0

R(w,�)Ẽn−1H(w,�)X(w,�), (4.4)

where Ẽ� is defined by slightly modifying E� [Eq. (3.12)] as

Ẽ� := E (p|p−1)
� · · · E (2|1)

� E (1|0)
� . (4.5)

TABLE I. Comparison of the number of computational steps and quantum resources required for the present method and the original
bucket-brigade method (from [39,40]).

Method No. of computational steps No. of qubits No. of quantum gates

quantum walk O(n log(n + m)) O(n + m) O((n + m)2n)
bucket-brigade O(n2 + nm) O(2n + m) O(2n)
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FIG. 8. Graphical representation of the modified routing scheme F̃ defined in (4.2) on the top sheet for A = {1, 3, 6} = {001, 011, 110}.
On the top sheet, the Hadamard-like gate H(w,�) [Eq. (4.3)] is equipped on each pass to the node (w, �) (0 � w � 2� − 1 and 0 � � � n − 1 =
2). The internal state generated by passing through H(w,�) is entangled with that of each walker by the gate Ẽn−1.

Namely, Ẽn−1 entangles the internal states of the zeroth walker
with those of the other walkers:

Ẽn−1 :
∑

c

|c〉C0

n+m−1⊗
j=1

|0〉Cj �→
∑

c

n+m−1⊗
j=0

|c〉Cj (c ∈ {0, 1}).

(4.6)
In Fig. 8 we pictorially show an example of the modified
routing scheme on the top sheet.

To properly retrieve the walkers loaded with the data using
output scheme F†, the address information |a〉A must be en-
coded in the positions of the quantum walkers. Note that once
the data has been loaded, it is no longer possible to retrieve
the walkers using F̃†. The querying scheme Q̃ corresponding
to (3.17) is modified to encode the data as well as the address
of the cell where the data is stored:

Q̃ :
1√|A |

∑
a∈A

|0〉A|a, n〉B|0〉C |0〉D

�→ 1√|A |
∑
a∈A

|a〉A|a, n〉B|0〉C |x(a)〉D. (4.7)

Explicitly it reads

Q̃ =
∑
a∈A

|a, n〉〈a, n|B ⊗
n−1⊗
i=0

(
XAi

)ai ⊗
m−1⊗
i=0

(
XDi

)x(a)
i , (4.8)

which is accomplished by exchanging the specified paths in
the address and data register or alternatively by placing the
Pauli X gates, as explained in the preceding section.

Finally applying the output scheme F† defined in (3.19),
we obtain the desired QRAM architecture (4.1) in the form

˜QRAM = F†Q̃F̃ . (4.9)

V. SUMMARY AND DISCUSSION

A QRAM (2.4) or (4.1) has been physically realized by
combinations of several elementary quantum devices, includ-
ing the roundabout gate (2.6) developed in the preceding paper
[1]. The 2n m-qubit information can be retrieved in superpo-
sition by simply passing the n + m quantum walkers through
the perfect binary trees, as schematically shown in Fig. 3. The
advantages of the present QRAM architecture compared to
the original bucket-brigade QRAM are summarized as fol-
lows. (i) The procedure is completely parallelized without
using any ancilla qubit. The 2n m-qubit information can be
retrieved after O(n log(n + m)) steps. The qubit resources and
the quantum gates required for the processing are O(n + m)
and O(2n(n + m)). (ii) The walkers do not entangle with any
device on the binary trees, which promises to reduce the cost
of maintaining quantum coherence. (iii) Our QRAM architec-
ture is free from any time-dependent control. In other words,
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FIG. 9. Physical realization of the process (5.1). Quantum information is represented as the internal states of quantum walkers, which can
be stored in the memory cell using a quantum memory developed in the preceding paper [1]. The information stored in the memory cell is
transferred by the encoder (decoder) UE (U †

E ) and the SWAP gate consisting of the CNOT gates defined in (3.10).

information in quantum superposition can be composed by
just passing the walkers through the binary trees. On the other
hand, the trade-off for these advantages is that it requires more
space and quantum gates. Since the actual implementation
uses wave packets as quantum walkers, there will be errors
due to their finite-size effects [51] as the quantum walkers
pass through the devices. However, we can control this type
of error with arbitrary precision by changing the system size
(see Sec. V in the preceding paper [1] for details).

Finally, let us discuss how to generalize the present ar-
chitecture to be able to process quantum information (i.e.,
information stored in the cell consists of a superposition of
states). In the querying scheme described in Sec. III, m-bit
classical information stored in a memory cell can be directly
copied to an m-qubit state of the data register [see (3.17) and
(3.18)], which can be achieved by exchanging the appropriate
paths in the data register or by placing the Pauli X gates. For
the quantum case, however, quantum information cannot be
replicated due to the no-cloning theorem [52,53]. Instead, by
a SWAP gate, the quantum information can be transferred to the
state in the data register. In our architecture, m-qubit quantum
information stored in the cell at address a can be represented
as the internal states of m quantum walkers, each moving in a
circle, as shown in Fig. 9. (This may be realized by a quantum
memory developed in Sec. VI in the preceding paper [1].)

Explicitly, it is expressed as
∑

x |x(a)〉Cm , where the index Cm

stands for the colors of the quantum walkers in the memory
cell. As shown in Fig. 9, combining an encoder UE [see
Eq. (4.2) in the preceding paper [1] for a precise definition],
which encodes the position of the quantum walker into the
internal state of the walker, and the SWAP gate consisting of
the three CNOT gates CXCjCk in (3.10), we can correctly trans-
fer the quantum information in the memory cell to the data
register:

∑
x

|x(a)〉Cm �→
∑

x

|x(a)〉D. (5.1)

The combination of the model of universal quantum com-
putation achieved in the preceding paper [1] with the current
QRAM architecture is expected to enable efficient processing
of quantum information such as the quantum phase estimation
[3], Grover’s algorithm for searching unsorted databases [7],
and the quantum version of the fast Fourier transform [54].
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