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Two-level quantum walkers on directed graphs. I. Universal quantum computing

Ryo Asaka ,* Kazumitsu Sakai ,† and Ryoko Yahagi ‡

Department of Physics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

(Received 4 May 2022; revised 11 December 2022; accepted 11 January 2023; published 13 February 2023)

In the present paper, the first in a series of two, we propose a model of universal quantum computation using a
fermionic or bosonic multiparticle continuous-time quantum walk with two internal states (e.g., the spin-up and
-down states of an electron). A dual-rail encoding is adopted to convert information: A single qubit is represented
by the presence of a single quantum walker in either of the two parallel paths. We develop a roundabout gate
that moves a walker from one path to the next, either clockwise or counterclockwise, depending on its internal
state. It can be realized by a single-particle scattering on a directed weighted graph with the edge weights 1 and
±i. The roundabout gate also allows the spatial information of the quantum walker to be temporarily encoded
in its internal states. The universal gates are constructed by appropriately combining several roundabout gates,
some unitary gates that act on the internal states, and two-particle scatterings on straight paths. No ancilla qubits
are required in our model. The computation is done by just passing quantum walkers through properly designed
paths. Namely, there is no need for any time-dependent control. A physical implementation of quantum random
access memory compatible with the present model will be considered in the second paper [R. Asaka et al.,
following paper, Phys. Rev. A 107, 022416 (2023)].

DOI: 10.1103/PhysRevA.107.022415

I. INTRODUCTION

Quantum walks were introduced as a quantum version of
random walks and have since been widely studied in various
fields of mathematics, physics, and computer science [1–9].
The time evolution of quantum walks is generated by a re-
versible unitary process, unlike classical random walks, which
evolve according to a stochastic process. Namely, the random-
ness stems from a quantum superposition state due to a unitary
evolution and its collapse into a particular state with a cer-
tain probability after an observation or measurement. Due to
their remarkable characteristics, most notably fast-spreading
properties caused by quantum interference, quantum walks
have been employed as quantum algorithms that significantly
reduce the computation time for solving practical problems:
a search problem [10–12], a hitting time problem [3,12–14],
an element distinctness problem [15,16], and a graph isomor-
phism problem [2,13,17–21].

On the other hand, quantum walks can also be viewed as an
architecture of quantum computing. Childs [22] has proposed
a novel model of universal quantum computation using a
continuous-time quantum walk. A quantum walker evolves
continuously in time t but discretely in space, according to a
unitary operator e−iA(G)t associated with the adjacency matrix
A(G) for an unweighted graph G. An n-qubit state is rep-
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resented by a superposition state in 2n-dimensional Hilbert
space, where the basis state is expressed as the presence of
a single quantum walker on any of the 2n semi-infinite paths
in G [see Fig. 1(a)]. The universal gates are implemented by
single-particle scattering processes on a subgraphs Ĝ con-
nected to 2n semi-infinite paths. That is, the outcome of the
computation corresponds to the final state of the following
process: (i) A quantum walker starts at one of the semi-infinite
paths (in superposition) and moves toward Ĝ, (ii) it scatters on
Ĝ, and (iii) it goes out to some of semi-infinite paths. Shortly
after that, Lovett et al. extended this idea to a discrete-time
version of the quantum walk [24,25].

While universal gates can be constructed via quantum
walks, they cannot be straightforwardly utilized as a practical
architecture for a quantum computer because of their lack of
scalability: 2n paths are required to express n qubits. [See
Fig. 1(a), for example.] To overcome the difficulty, intro-
ducing multiparticle continuous-time quantum walks, Childs
et al. designed a practical model of a quantum computer [23].
They used a so-called dual-rail encoding where a qubit is
denoted by the presence of a single quantum walker in either
of the two semi-infinite paths [see Fig. 1(b)]. Single-qubit
gates are implemented in the same way as the single-particle
universal computation. On the other hand, two-qubit gates are
realized by a particular combination of single-qubit gates and
two-particle scattering of a walker representing the logical
qubit from that for the ancilla qubit [see Fig. 6(b) for an imple-
mentation of the controlled-phase (CP) gate]. Consequently,
the graphs required for the architecture are exponentially
smaller than those for single-particle quantum walks. This
remarkable progress has been applied to various aspects of
quantum computation via quantum walks [26–33].

In another direction of application of quantum walks to
quantum computation, the authors of the present paper have
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FIG. 1. Information spatially encoded by the presence of a quantum walker. (a) Representation used in a single-particle architecture [22].
2n paths are required to express n-qubit information. (b) Dual-rail encoding used in [23] and the present work. In contrast to (a), only 2n paths
are necessary to represent n-qubit information. Instead, n walkers are required. Both (a) and (b) express the state |5〉 = |101〉. See (2.1) and
(2.2) for a more precise definition of the dual-rail encoding.

recently proposed a new algorithm for quantum random ac-
cess memory (QRAM) [34]. A QRAM is a quantum device
to access 2n m-qubit data |x(a)〉D ∈ (C2)⊗m (0 � a � 2n − 1)
stored in memory cells at addresses |a〉A ∈ (C2)⊗n and re-
trieve the data in superposition:

QRAM:
∑

a

|a〉A|0〉D �→
∑

a

|a〉A|x(a)〉D. (1.1)

In our algorithm, QRAM is defined on a perfect binary tree
with depth n, where data and addresses are dual-rail encoded
by quantum walkers. The walkers moving in QRAM have
two internal states, and depending on their states, a device
equipped at each node on the tree (hereafter referred to as a
roundabout gate) can properly send the walkers to the des-
ignated memory cells placed on the leaves of the tree. As
a result, our algorithm requires only O(n) steps and O(n +
m)-qubit resources to access and retrieve the 2n m-qubit
data. Characteristically, our algorithm promises to require no
time-dependent control: QRAM processing is accomplished
automatically by simply passing walkers through the binary
tree. However, the physical implementation of QRAM, es-
pecially how to realize the roundabout gate, has remained a
crucial open problem.

The main objectives of the series of two papers are a physi-
cal implementation of QRAM using continuous-time multiple
quantum walkers with two internal states and a design of
a universal quantum computer compatible with this QRAM.
The present paper provides a physical implementation of
roundabout gates and uses them to provide a universal set
of quantum gates. An efficient physical implementation of
QRAM will be presented in the following paper [35].

In our scheme, a single qubit is spatially represented by a
dual-rail encoding as in the above model [23]. On the other
hand, the quantum walker can have two internal states |0〉c

and |1〉c (e.g., the spin-up and -down states of an electron),
allowing the physical implementation of a roundabout gate
and simplifying the architecture. On the graph G, the quan-
tum walkers evolve according to e−iHGt , where HG is the

Hamiltonian associated with the adjacency matrix A(G) and
its complex conjugate A(G)∗. In contrast to the model in [23],
single-particle scattering on a subgraph Ĝ is used only to
implement the roundabout gate that moves a walker clockwise
or counterclockwise from one path to the next, depending on
the internal state of the walker. A feature of this model is
that the roundabout gate also allows the spatial information of
the quantum walker to be temporarily encoded in its internal
states. Some single-qubit gates are implemented by devices
equipped along linear paths, acting on the internal states of
walkers. The internal states |0〉c and |1〉c of a walker may
coexist only at the moment when the walker passes through a
single-qubit gate, and its coherence is completely independent
of the other gates.

To implement the roundabout gate, we must consider a
scattering on a directed weighted graph Ĝ, which is equivalent
to imposing an internal-state-dependent phase factor on the
Hamiltonian HG. That is, in the subgraph Ĝ, a walker with |0〉c

is evolved by e−iA(Ĝ)t , while a walker with |1〉c is evolved by
e−iA(Ĝ)∗t . This difference allows for the implementation of the
roundabout gate. A two-qubit gate is simply realized by an ap-
propriate combination of roundabout gates, single-qubit gates,
and two-particle scatterings of fermionic or bosonic walkers
with the same internal state. [For instance, see Fig. 6(a) for
the CP gate.] Notably, the calculation is achieved by simply
passing quantum walkers through adequately designed paths;
there is no need for any time-dependent control. Furthermore,
any ancilla qubit required in the model of [23] to imple-
ment the two-qubit gates is unnecessary for our architecture.
Consequently, we can simplify the architecture compared to
the model in [23].

The remainder of the paper is organized as follows. In the
subsequent section, we define continuous-time multiple quan-
tum walkers with two internal states. The roundabout gate,
playing a pivotal role in our work, is considered in Sec. III.
In Sec. IV the universal gates are physically implemented by
appropriate combinations of roundabout gates, single-qubit
gates, and two-particle scatterings. Section V describes how
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FIG. 2. Overview of our architecture for quantum computation. Initial information is represented by the positions of the quantum walkers
with internal state |0〉c [see Eqs. (2.1) and (2.2)], which are indicated by the red walkers on the left side of the figure. The walkers (wave packets)
have momenta k � −π/2 and move to the right along the semi-infinite paths with group velocity vg = E ′(−π/2) = 2, where E (k) = 2 cos k
[Eq. (A4)] is the energy of each walker. The quantum gates, set up like tunnels, act on the internal states of the walkers passing through them.
Some pair of red walkers are scattered from each other on a vertical path connecting two paths via roundabout gates represented by (2.3)
and (2.4). After the scattering, only the global phase of the two-particle wave function is changed. The position state of the quantum walkers
after passing through the graph corresponds to the outcome of the computation. Note that the colors of the walkers are temporarily mixed
only within single-qubit gates and are set to red otherwise. The colors do not change within the roundabout gates and during the two-particle
scatterings.

to construct a practical circuit using a set of quantum gates
developed in Sec. IV. Section VI is devoted to a summary.
Some applications using the roundabout gate are also dis-
cussed. Technical details about scattering theory required in
our paper are in the Appendix.

II. TWO-LEVEL QUANTUM WALKERS
ON DIRECTED GRAPHS

A. General overview

First, let us present a general overview of our quantum
computing architecture via continuous-time quantum walks
with two internal states. As shown in Fig. 2, a quantum circuit
is spatially designed on a graph on which multiple quantum
walkers evolve continuously in time t . The dual-rail encoding
is employed to represent a single-qubit state as the presence
of the quantum walker in one of the two parallel paths. More
specifically, a single-qubit state |qj〉 (q j ∈ {0, 1}) is given by

|q j〉 = δq j ,0|2 j〉p + δq j ,1|2 j + 1〉p ∈ C2, (2.1)

where | j〉p ( j ∈ {0, . . . , N − 1}) denotes the state in which a
quantum walker is located on the jth path. Thus an n-qubit
state |qn−1 · · · q0〉 can be expressed by which of the 2n paths
the n walkers are located on, namely,

|qn−1 · · · q0〉 =
n−1⊗
j=0

(δq j ,0|2 j〉p + δq j ,1|2 j + 1〉p) ∈ (C2)
⊗n

.

(2.2)

Note that here and in what follows we sometimes ignore
normalization factors for simplicity of the notation. In our
architecture, the quantum walkers have two internal states
|0〉c ∈ C2 and |1〉c ∈ C2, which are normally set to |0〉c ex-
cept during processing. For convenience, the quantum walker
whose internal state is |0〉c (|1〉c) is referred to as the red
quantum walker (blue quantum walker).

Roughly, the computation proceeds as follows. An n-qubit
input state is prepared by a position state of the red quantum
walkers (see the left side in Fig. 2). Then the walkers move
right along the paths, some of which are connected to round-
about gates consisting of a subgraph ĜR. The walker passing
through the roundabout gate moves from one path to the next
in a clockwise or counterclockwise direction, according to the
internal state of the walker. Its unitary operator explicitly reads

U (l)
R = |0〉〈0|cUR + |1〉〈1|cU †

R, U (r)
R = U (l)

R
†,

UR =
2∑

k,l=0

δl,k+1| jl〉〈 jk|p (k, l ∈ Z/3Z = {0, 1, 2}), (2.3)

where U (l)
R moves the red walker (blue walker) counterclock-

wise (clockwise) to the next path, while U (r)
R does the opposite

to U (l)
R . They can be graphically depicted as

j0

j1 j2

U
(l)
R = U

(r)
R = .

j0

j1 j2

(2.4)

For instance, the red walker (blue walker) entering the U (l)
R

(U (r)
R ) gate from path j1 ( j2) exits to path j2 ( j0):

j0

j1 j2

j0

j1 j2

in

out

out in
. (2.5)
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The actual implementation of the roundabout gate is
achieved by a scattering of a single walker with momentum
k = −π/2 from the graph ĜR (see Sec. III and the Appendix).
During the scattering, the internal state of the walker never
changes, but only by some quantum gates set up like tunnels
along the path. For instance, the actions of the Hadamard gate

Hc and the Pauli X gate Xc on the state |0〉c| j〉p are written,
respectively, as

Hc|0〉c| j〉p = 1√
2

(|0〉c + |1〉c)| j〉p, Xc|0〉c| j〉p = |1〉c| j〉p.

(2.6)
They are also graphically shown as

Hc Xc

|0 c |1 c|0 c
|0 c + |1 c√

2

j j

in out in out
Hc : X .c :

(2.7)

The roundabout gate also serves as an information encoder and decoder: Spatial information of the quantum walker can be
encoded in the internal state of the walker. For instance,

Xc

j
2j

2j + 1
encoder: in

out

|0 c
|2j p + |2j + 1 p√

2
|0 c + |1 c√

2
|j p

Xc

decoder:
in

j
2j

2j + 1

|0 c
|2j p + |2j + 1 p√

2

|0 .c + |1 c√
2

|j p

out

(2.8)

Namely, using the encoder and decoder, we can replace any
unitary transformation of single-qubit information with a
transformation of the internal state of the quantum walker.
Thus, in our architecture, the only nontrivial graph required
for quantum walks is the graph used in the roundabout gate,
simplifying the structure of the quantum circuit.

See Sec. IV for more details about the implementation.
Some pair of walkers with the same internal state may be
scattered from each other on a straight path (a vertical path in
Fig. 2) connecting two paths through roundabout gates. Since
the total energy and momentum are conserved, the individual
momenta of the two walkers are conserved even after the scat-
tering. As a result, only the global phase of the two-particle
wave function can be changed after the scattering. See Sec. IV
and the Appendix for the calculation of two-particle scattering
processes. The final state obtained after these processes (see
the right side in Fig. 2) corresponds to the outcome of the
computation. Note again that, in our architecture, the colors of
the walkers are in superposition only within each single-qubit
gate and are set to red otherwise. In other words, maintaining
the coherence of the colors is only necessary within individual
single-qubit gates. In actual quantum circuits, the quantum
gates must be arranged so that two-particle scatterings occur
at the appropriate positions, which will be discussed in Sec. V.

B. Quantum walkers on directed graphs

Now let us explain the details about the evolution of the
quantum walkers on directed weighted graphs. As indicated
earlier, the dynamics of the quantum walkers required for
the computation can be essentially decomposed into motions
on semi-infinite paths, single-particle scatterings on subgraph
ĜR, and scatterings of two walkers with the same internal
state. Hence, the procedure developed in [23,36] is directly
applicable to describe the spatial dynamics of our model. Here
and in the Appendix we summarize the procedure to make our
paper self-contained and set the notation.

To formulate the dynamics systematically, we consider the
time evolution of the multiple quantum walkers on a generic
graph G = (V, E ,w) as in [23,36]. Here V (G) denotes the set
of the vertices of G, E (G) ⊂ V ×V is the set of the edges,
and w : E → C is a function defined by w(x, y) = wxy [x, y ∈
V (G) and (x, y) ∈ E (G)] and here is assumed to be

wxy = eiθxy (θxy ∈ R), wyx = w∗
xy = e−iθxy , wxx = 0.

(2.9)

The weighted adjacency matrix A(G) = (axy) is defined by
axy := wxy. In this work, however, we only use the weights
wxy = 1 (θxy = 0) in the semi-infinite paths and wxy = 1 or
wxy = ±i (θxy = ±π/2) in a subgraph Ĝ, where (x, y) ∈
E (G). As shown in Fig. 3(a), G consists of a subgraph Ĝ com-
posed of internal vertices and N semi-infinite paths attached to
Ĝ at the terminal vertices of Ĝ [depicted them by white circles
in Fig. 3(a)]. Let (x, j) (x ∈ Z�0 and j ∈ {0, . . . , N − 1}) be
the label of the vertex on the jth semi-infinite path, located
at distance x from Ĝ. Here T := {(0, j) | 0 � j � N − 1}
denotes the set of terminal vertices of Ĝ.

Let us formulate the dynamics of quantum walkers on the
graph G, which is governed by the Hamiltonian

HG = KG + UG. (2.10)

Here KG is a kinetic term describing noninteracting walkers,
which is defined by

KG =
∑

c=0,1

∑
(x,y)∈E (G)

(ei(−1)cθxy a†
x,cay,c + e−i(−1)cθxy a†

y,cax,c),

(2.11)

and UG denotes multiple-particle interactions as explained
below [see (2.15)]. In the summation, we do not distinguish
between (x, y) and (y, x): The sum is taken over either (x, y) or
(y, x). In addition, a†

x,c and ax,c are, respectively, the creation
and annihilation operators of walkers of color c ∈ {0, 1} on
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FIG. 3. (a) Schematic graph G consisting of a subgraph Ĝ and N semi-infinite paths connected to Ĝ (depicted on the gray disk) at
the terminals denoted by the white circles. The vertices on the jth semi-infinite path are labeled by (x, j) (x ∈ Z�0, j ∈ {0, . . . , N − 1}).
(b) Example of the directed subgraph Ĝ and its adjacency matrix A(Ĝ). As shown in (2.13), in the subgraph Ĝ, a single red walker (c = 0)
evolves in time according to e−iA(Ĝ)t , while a blue walker (c = 1) evolves according to e−iA(Ĝ)∗t .

the vertex x ∈ V (G). The operators satisfy

[ax,c, a†
y,c′ ]∓ = δx,yδc,c′, [ax,c, ay,c′ ]∓ = [a†

x,c, a†
y,c′ ]∓ = 0,

(2.12)

where [·, ·]− and [·, ·]+ denote the commutator for the bo-
son operators and anticommutator for the fermion operators,
respectively. The creation operators a†

x,c generate the Hilbert
space H (m) for m quantum walkers on G: H (m) is spanned by
the basis vectors

{|c1 · · · cm〉c|x1 · · · xm〉 := a†
xm,cm

· · · a†
x1,c1

|0〉|c1, . . . , cm

∈ {0, 1}, x1, . . . , xm ∈ V (G)}, (2.13)

where |0〉 is the no-walker state (vacuum state) defined by
ax,c|0〉 = 0 [c ∈ {0, 1} and x ∈ V (G)]. The notation |x, j〉 is
also used to denote the walker at (x, j), i.e., at x ∈ Z�0 on path
j ( j ∈ {0, . . . , N − 1}). The time evolution of the m quantum
walkers on the graph G is described by the action of the
unitary operator e−iHGt on a vector in the Hilbert space H (m).
Information about the adjacency matrix A(G) = (eiθxy ) [θxy ∈
{0,±π/2} and (x, y) ∈ E (G)] of the graph G is incorporated
into the kinetic term KG (2.11) as

(KG)cc′, xy := c〈c|〈x|KG|c′〉c|y〉
= (eiθxyδc,0δc′,0 + e−iθxyδc,1δc′,1)δ(x,y)∈E (G)

= [A(G)]xyδc,0δc′,0 + [A(G)∗]xyδc,1δc′,1. (2.14)

Importantly, in the directed weighted graph Ĝ, the time evolu-
tion of a walker depends explicitly on its internal state: The
evolution of a red walker (i.e., c = 0) is described by the
unitary operator e−iA(Ĝ)t , while that of a blue walker (i.e.,
c = 1) is described by e−iA(Ĝ)∗t . [See also Fig. 3(b) for an
example of Ĝ.] It is this difference that makes the physical
implementation of the roundabout gate possible. Physically,
the weight wxy = eiθxy in (2.11) can be interpreted as a phase
factor under a local gauge transformation ax,c �→ eiϑx,c ax,c

(ϑx,c ∈ R), which may be achieved, for example, by applying
the Aharonov-Casher effect [37,38].

Two-qubit gates are realized by taking into account two-
particle scatterings of fermionic or bosonic walkers with the

same internal state. To this end, as in [23], we adopt the on-site
interaction (Bose-Hubbard model) for the bosonic case and
the nearest-neighbor interaction (extended Hubbard model)
for the fermionic case,

UG =
⎧⎨
⎩

u
2

∑
x∈V (G) nx(nx − 1) for the bosonic walkers

u
∑

(x,y)∈E (G) nxny for the fermionic walkers,
(2.15)

where nx := ∑1
c=0 a†

x,cax,c is the number operator.
As an actual implementation, we consider a quantum

walker as a wave packet |�, t〉 = e−iHGt |�〉 constructed by a
superposition of plane waves with momentum k close to a spe-
cific value of kp. For instance, a wave packet on a semi-infinite
path (the actual implementation uses a sufficiently long path)
toward a subgraph Ĝ is given by

|�, t〉 =
∑

x

1√
2π

∫
k�kp

dk f (k)e−ikx−iE (k)t |c〉c|x〉

�
∑

x

e−ikpx−iE (kp )t

√
2π

∫
k�kp

dk f (k)e−i(k−kp )[x+E ′(kp )t]|c〉c|x〉,
(2.16)

where f (k) is the Fourier coefficient with a sharp peak at k �
kp and E (k) = 2 cos k [Eq. (A4)] is the energy of the quantum
walker on the semi-infinite path. The wave packet moves with
the group velocity E ′(kp) = −2 sin kp. For our purposes in the
present work, we assign k � kp = −π/2 to the momentum of
each walker.

Quantum computation is performed by applying unitary
transformations to wave packets (2.16). What is crucial then is
how to add the overall phase factor to each wave packet [note
that simply translating the wave packet (2.16) as x �→ x + a
does not yield this] and how to superpose them. In our ar-
chitecture, for a single quantum walker, this manipulation is
essentially accomplished by unitary transformations to the in-
ternal state of the walker, and when two walkers are involved,
as in controlled gates, this is accomplished by two-particle
scattering. Single-particle scattering is used only for the im-
plementation of the roundabout gate whose primary role is to
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switch the position of the walker. (See Sec. IV for details.)
This is in contrast to the architecture [23] where all unitary
transformations are performed by single-particle and two-
particle scatterings. In the Appendix we summarize single-
and two-particle scatterings with a definite momentum k (i.e.,
scatterings of plane waves) which are key to understanding
the scattering processes of wave packets with momentum
close to k.

III. ROUNDABOUT GATE

The roundabout gate (2.3) or (2.4) is the most crucial ele-
ment in our architecture. As schematically depicted in (2.5),
the walker passing through the roundabout gate can move
from one path to the next. In this section we implement the
roundabout gate U (l)

R with single-particle scattering: We find
a graph ĜR such that the S matrix S(k) [S̃(k)] describing
the scattering of the red walker (blue walker) on ĜR satisfies

S(k) = UR [S̃(k) = U †
R] for some specific value of k, where

UR is defined by (2.3). In fact, the scattering process only for
the red walker is sufficient to study, because the S matrix S̃(k)
for the blue walker is nothing but the transpose of the S matrix
S(k) for the red walker, as shown in the Appendix [see Eq.
(A9)]. Additionally, the color of the walkers does not change
during the single-particle scattering, which can be seen by the
Hamiltonian (2.10), especially the kinetic term (2.11). A phys-
ical implementation of another type of roundabout gate U (r)

R

(:=U (l)
R

†) in (2.3) can be easily accomplished by replacing
the subgraph ĜR with Ĝ∗

R whose adjacency matrix is given
by A(Ĝ∗

R) = A(ĜR)∗.
The S matrix S(k) of the red walker characterizing the

scattering state is expressed in terms of the elements of the
adjacency matrix A(ĜR), as shown in (A7), which serves
as a clue to find the desired adjacency matrix. (See the
Appendix for scattering theory required in this section.) Using
(A7), we find that the three graphs

(3.1)

with the abbreviation of the directed weighted edge

(3.2)

all implement the roundabout gate up to the sign (the minus sign is necessary for Ĝ(1)
R ), when the momentum of the walker

passing through them is exactly k = −π/2: S(−π/2) = UR for the red walker and S̃(−π/2) = S(−π/2)T = U †
R [cf. (A9)] for

the blue walker. More explicitly, the matrix elements of S(k) = ∑
m,n Smn(k)|0, m〉〈0, n| are given by

S00(k) = −e4ik

1 + 2i tan k
, S10(k) = −2e7ik/2−iπ/4 cos

(
k
2 + π

4

)
2 − i cot k

, S20(k) = −2ie7ik/2−iπ/4 sin
(

k
2 + π

4

)
2 − i cot k

,

S11(k) = S00(k), S21(k) = S10(k), S22(k) = S00(k) (3.3)

for Ĝ(1)
R and

S00(k) = −e4ik

1 + 2i tan k
, S10(k) = 2e7ik/2−iπ/4 cos

(
k
2 + π

4

)
2 − i cot k

, S20(k) = 2e9ik/2−iπ/4 sin
(

k
2 + π

4

)
2 − i cot k

,

S11(k) = S00(k), S21(k) = 2e9ik/2+iπ/4 cos
(

k
2 + π

4

)
2 − i cot(k)

, S22(k) = e2ikS00(k) (3.4)

for Ĝ(2)
R and Ĝ(3)

R . The other elements are determined by the relation S(k) = S(−k)†, which holds for k ∈ R [see Eq. (A8)].
The probability that a walker entering ĜR from path m ∈ Z/3Z = {0, 1, 2} will be found on path n ∈ Z/3Z = {0, 1, 2} is

given by |Smn(k)|2, which is the same for all three cases in (3.1). We see that the walker with momentum k = −π/2 perfectly
transmits from n to m = n + 1. In Fig. 4 the momentum dependence of the transmission probabilities is shown. In summary,
the subgraphs G( j)

R and G∗( j)
R ( j = 1, 2, 3) are physical implementations of the roundabout gates U (l)

R and U (r)
R , respectively, for a
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quantum walker with momentum k = −π/2. Graphically,

Ĝ
(1)
R

=

(0, 0)

(0, 1) (0, 2)

U
(l)
R

(0, 0)

(0, 1) (0, 2)
=

,

.

(0, 0)

(0, 1) (0, 2)

U
(r)
R

(0, 0)

(0, 1) (0, 2)

Ĝ
∗(1)
R

(3.5)

The same is true for G( j)
R and G∗( j)

R ( j = 2, 3) as shown above. Note that Ĝ∗
R is obtained by reversing all the arrows in ĜR

[Eq. (3.1)], because A(Ĝ∗
R) = A(ĜR)∗.

In the actual implementation, we use a wave packet (2.16)
as a quantum walker and consider the scattering state on the
subgraph ĜR with sufficiently long (but finite length) paths
attached. The effective length of the subgraph ĜR can be
evaluated by the nontrivial phase shift of the wave packet
output from ĜR after scattering. The wave packet |�out, t〉
for the red walker exiting from (0, l ), which entered ĜR from
(0, j) [cf. (A1) and (2.16)], is given by

|�out, t〉 = 1√
2π

∫
k�kp

dkSl j (k) f (k)eikx−iE (k)t |0〉c|x〉

� Sl j (kp)eikpx−iE (kp )t

√
2π

×
∫

k�kp

dk f (k)ei(k−kp )[x−i(ln Sl j )′(kp )−E ′(kp )t]|0〉c|x〉.
(3.6)

Thus, the effective length

�l j (k) := −i(ln Sl j )
′(k) (3.7)

for the red walker is calculated by (3.3) or (3.4),

�l j

(
− π

2

)
= 3δl, j+1 for G(1)

R ,

�l j

(
− π

2

)
=

{
3δl, j+1 for j = 0

4δl, j+1 for j = 1, 2
for G(2)

R and G(3)
R ,

(3.8)

|S00(k)|2

|S10(k)|2

|S20(k)|2

k

−π − π

4
−π

2
−3π

4

0

1

4

1

2

3

4

1

FIG. 4. Momentum dependence of the probability |Sm0(k)|2
(m = 0, 1, 2) that a walker entering Ĝ( j)

R ( j ∈ {1, 2, 3}) (3.1) from
path 0 will be found on path m (m = 0, 1, 2). The walker with
momentum k = −π/2 completely transmits from path 0 to path 1.

where j, l ∈ Z/3Z = {0, 1, 2}. On the other hand, the effec-
tive length �̃l j (k) for the blue walker is given by the relation

�̃l j (k) = � jl (k) (k ∈ R), (3.9)

which follows from (A9). These effective lengths are neces-
sary for building actual finite-size quantum circuits, where a
synchronization of the motion of quantum walkers becomes
crucial. (See Sec. V for details.)

IV. ELEMENTARY QUANTUM GATES

In this section we describe how to implement a universal
quantum gate set via two-level quantum walkers. As described
in Sec. II, information is spatially encoded by the positions
of red quantum walkers. Information processing is carried out
by moving multiple quantum walkers to appropriate positions.
In our architecture, the internal state of the quantum walker
serves as a temporal storage medium during this process. Any
unitary transformation to a single-qubit state can be replaced
by a transformation to the internal state of the quantum walker.
There the roundabout gate not only switches the position of
the walkers but acts as an information encoder and decoder.
In addition, combining two-particle scattering on an infinite
path, one can implement a controlled gate.

A. Single-qubit gates

First, let us implement a unitary operator U acting on a
single-qubit state |q j〉 defined as (2.1). In our scheme, we
express the state as the position of the red quantum walker:

|0〉c|q j〉 = |0〉c|2 j + q j〉p ∈ C2 ⊗ C2. (4.1)

The information |q j〉 can be encoded into the internal state of
the walker passing through the following encoder UE, which
consists of the Pauli X gate Xc [Eq. (2.7)] and the roundabout
gate U (r)

R [Eq. (2.4)]:

Xc

2j

2j + 1 .
UE : j

e.g.,

. . .
. . .

. . .

U
(r)
R

(4.2)

Let us explain in detail. A red walker prepared on the (2 j)th
or (2 j + 1)th input path (possibly in superposition) moves
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toward the roundabout gate U (r)
R ; the red walker on the

(2 j + 1)th path changes color to blue at the Xc gate before en-
tering U (r)

R . The roundabout gate U (r)
R consists of the subgraph

Ĝ∗
R moving the red walker (blue walker) clockwise (coun-

terclockwise) to output path j′, as shown in the preceding
section. For example, the inset depicts Ĝ∗(1)

R [cf. (3.5)]. The
effective length of U (r)

R can be exactly the same for the red and
blue walkers, if the terminal vertices (0, j) ( j ∈ {0, 1, 2}) of
Ĝ∗

R as in (3.5) and (3.1) are connected to paths {2 j, 2 j + 1, j′}
in (4.2) so that (0, 0) → (0, 2 j), (0, 1) → (0, 2 j + 1), and
(0, 2) → (0, j′). More precisely, one finds

� j′,2 j

(
−π

2

)
= �̃ j′,2 j+1

(
−π

2

)
=

{
3 for Ĝ∗(1)

R

4 for Ĝ∗(2)
R , G∗(3)

R ,

(4.3)

where � j′,2 j (−π/2) and �̃ j′,2 j+1(−π/2) are the effective
lengths of U (r)

R for the red and blue walkers, respectively. This
is derived from (3.8), (3.9), and the fact that the S matrix for
Ĝ∗

R is given by the transpose of that for ĜR, as shown in (A9).
Equation (4.2) equivalently reads

(4.1)
Xc⊗(|2 j+1〉〈2 j+1|p )�−−−−−−−−−−−→ δq j ,0|0〉c|2 j〉p + δq j ,1|1〉c|2 j + 1〉p

U (r)
R�−−→ |q j〉c| j′〉p. (4.4)

Applying a unitary gate Uc to the internal state of the walker
moving in the right direction on path j′ and then applying
the decoder UD [Eq. (2.8)] realized by the reverse operation
of the encoder UE [Eq. (4.2)] (i.e., UD = U †

E ), we obtain the
desired state U |qj〉:

(4.4)
Uc�−→ (Uc|q j〉c)| j′〉p

UD=U †
E�−−−−→ |0〉c(U |q j〉). (4.5)

Graphically, the single-qubit gate is depicted as

(4.6)
It is known [39,40] that any single-qubit unitary gate U is

realized by

U = eiθ0 Rz(θ1)Ry(θ2)Rz(θ3) (θ j ∈ R), (4.7)

where

Ry(θ ) := exp

(
−i

θY

2

)
, Rz(θ ) := exp

(
−i

θZ

2

)
(4.8)

are the rotation operators about y and z axes of the Bloch
sphere, respectively; Y and Z are the Pauli matrices σy and σz,
respectively. Actually, for instance, in the spin-1/2 fermionic
system, the rotation gates acting on the spin state may be
implemented by applying a uniform magnetic field H in a
particular direction over a suitable interval of the path. See
Fig. 5 for a schematic description of a rotation gate Ry(θ )c

acting on the internal state of the walker. Since the Zeeman
energy Hex is given by Hex = HY/2 (Hex = HZ/2) for the
magnetic field H applied in the negative direction of the y axis
(z axis), the spin state of the walker passing through the device
over time t is transformed by the operator Ry(Ht )c = e−itHYc/2

j

= 2θ/H

θH

x

y

z
HHHH

Ry(θ)c

in out

FIG. 5. Schematic description of the rotation gate Ry(θ )c for the
spin-1/2 fermionic system. A uniform magnetic field H is applied in
the negative direction of the y axis in the device set up like tunnels
along the path. Since the speed of the walker is vg = 2 [Eq. (4.9)]
and the Zeeman energy Hex = Hσy/2 = HY/2, Ry(θ )c = e−iθYc/2 is
implemented by just setting the length of the device to � = 2θ/H .

[Rz(Ht )c = e−itHZc/2]. Because the (group) velocity vg of the
quantum walker with momentum k = −π/2 is

vg = E ′
(

−π

2

)
= −2 sin

(
−π

2

)
= 2 (4.9)

[see Eq. (A4)], Ry,z(θ )c can be implemented by just setting the
device length � so that θ = tH = �H/vg, i.e., � = 2θ/H .

B. Two-qubit gates

Appropriately combining the scattering of two walkers
with the same internal state and a single-qubit gate described
above, we can implement a two-qubit gate. The aforemen-
tioned single-qubit rotation gates and a controlled-NOT (CNOT)
gate are elements of a universal gate set [39,40]. In fact, the
CNOT gate CNOT j0 j1 acting on a two-qubit state |q j1〉|q j0〉 is
decomposed into

CNOT j0 j1 = Hj1 CP2
j0 j1 Hj1 , (4.10)

where Hj1 is the Hadamard gate on |q j1〉 and CP j0 j1 is a
controlled-phase gate on |qj1〉|q j0〉:

CP =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ±i

⎞
⎟⎟⎠. (4.11)

As explained earlier, the action of Hj1 can be replaced
by the action on the internal state of the quantum walker
moving along path j′1, which is connected to paths 2 j1 and
2 j1 + 1 by roundabout gates. The CP gate, on the other
hand, is implemented by two-particle scattering on an in-
finite path: Two particles, moving along paths 2 j0 + 1 and
2 j1 + 1, respectively, are switched by the roundabout gate
to the same infinite path and travel toward each other with
momenta k0 = −π/2 and k1 = π/2 to be scattered from each
other. Due to the conservation laws of energy and momentum,
the individual momenta are also conserved after scatter-
ing. As a result, only the global phase of the two-particle
wave function can be changed. In the Appendix we evaluate
the phase for both the bosonic and fermionic cases. For the
bosonic system with u = ∓4 in the interaction term (2.15), the
wave function acquires a phase S01(k0 = −π/2, k1 = π/2) =
±i after scattering [see (A15)]. For the fermionic case, a
global phase S01(k0 = −π/2, k1 = π/2) = ±i is acquired for
u = ∓2. Consequently, the CP gate is implemented by two
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H H HH

(a)

(b)

2ja

2ja + 1

2j0

2j0 + 1

2j1 + 1
2j1

2j0

2j0 + 1

2j1 + 1

2j1

FIG. 6. (a) Controlled-phase gate (4.11) implemented in the
present model. (b) Controlled-phase gate implemented in the model
[23]. In contrast to (b), single-particle scattering is used in (a) only
for the implementation of the roundabout gate. Since (a) does not
require ancilla qubits [corresponding to |2 ja〉p and |2 ja + 1〉p in (b)],
the architecture can be drastically simplified compared to (b).

roundabout gates as depicted in Fig. 6. Characteristically, our
architecture does not require any ancilla qubit; therefore, the
structure of controlled gates can be significantly simplified,
compared to those in [23]. Finally, we graphically represent
the CNOT gate (4.10) in Fig. 7.

In the actual implementation of the two-qubit gates, we use
wave packets (2.16) as quantum walkers and consider the scat-
tering state on a sufficiently long (but finite length) paths. The
effective length �(−π/2) for each walker in the two-particle
scattering is obtained via (A11), (A15), and (A18):

�

(
−π

2

)
= −i∂k0 ln S

(
k0 = −π

2
, k1 = π

2

)

= i∂k1 ln S

(
k0 = −π

2
, k1 = π

2

)

=
{

0 for bosons

−1/2 for fermions.
(4.12)

Finally, we would like to comment on the reversibility of
our architecture. Since the adjacency matrix of the graph used
in the current architecture is a Hermitian matrix, the time
evolution of the quantum walkers is of course described by a
unitary operator. In this sense, quantum computation using the
present model is as reversible as ordinary quantum computers.
However, simply reversing the motions of the walkers on
the output paths (i.e., giving them the opposite momenta) is
not enough to return them to their initial positions on the
input paths. To return them to their original positions, one
must not only reverse the motions of the walkers, but also re-
place the clockwise roundabout gates with counterclockwise
roundabout gates and vice versa. Alternatively, we can also
return them to the original positions by changing the colors
of the walkers on the output paths from red (spin-up) to blue
(spin-down), reversing the direction of all the magnetic fields
applied in the single-qubit devices (see Fig. 5), and reversing
the motions of the walkers (i.e., time-reversal symmetry).

Xc Xc

Hc
Xc Xc

Hc

2j0

2j0 + 1

2j1 + 1

2j1

FIG. 7. Graphical representation of the CNOT gate (4.10).

V. BUILDING A CIRCUIT

The quantum walker is effectively realized by a wave
packet consisting of plane waves with momentum close to
a specific value of k � kp [see (2.16), for instance]. As ex-
plained earlier, in our architecture, kp = −π/2 is assigned
to design quantum gates. To build a quantum circuit for
practical use, we must truncate the semi-infinite paths con-
nected to each subgraph and consider scatterings of wave
packets on a finite-size graph (circuit). There the timing of
the two-particle scatterings becomes crucial: The two-particle
scatterings must occur at the proper vertical paths. Here we
explain how to arrange the quantum gates to build a practical
circuit, according to the procedure developed in [23]. Also an
error bound is estimated. Let us build an n-qubit circuit. Any
quantum circuit can be designed by appropriately combining
blocks consisting of single-qubit gates (type 1 blocks) and
blocks consisting of CP gates (type 2 blocks), as depicted in
Fig. 8. The input and output n-qubit state |qn−1 · · · q0〉 (q j ∈
{0, 1}, j ∈ {0, . . . , n − 1}) of each block is dual-rail encoded
by n red quantum walkers [cf. (4.1)], given by the wave packet
of length L,

|qj〉 = 1√
L

2L−1∑
x=L

e±i(π/2)x|0〉c|x, 2 j + q j〉in (out), (5.1)

where |x, j〉in (out) denotes the position state of a particle on
the jth input (output) path and the positive and negative signs
in the exponential correspond to the input and output wave
packets, respectively. Also, the length of each input and output
path connecting to each block is set to 3L and the output paths
of one block are commonly used as the input paths for the
subsequent block. The state (5.1) is expressed as the wave
packet located in the center of each path. Incidentally, the
input wave packet (5.1) itself is given by the superposition
of plane waves (2.16) with the probability amplitude

f (k) =
√

2

Lπ

sin
[

L−1
2

(
k + π

2

)]
k + π

2

e(3L−1)/2(k+π/2)i. (5.2)

Now let us consider how the quantum gates in blocks of
type 1 and type 2 can be arranged so that the desired pair of red
walkers can meet simultaneously on a particular vertical path.
As shown in Fig. 8, a block of type 1 consists of n single-qubit
gates U0, . . . ,Un−1 (some of which may be identity gates), in
which (Uj )c acts on the internal state of the walker transferred
from path 2 j or 2 j + 1 by the leftmost roundabout gate. As
explained in Sec. IV, it is possible to make the effective
lengths of the roundabout gates for the red and blue walkers
exactly the same by incorporating the graphs ĜR and Ĝ∗

R in
the proper orientation. If the quantum gates are assembled in
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≈
≈

≈
≈

≈

Xc Xc
(U0)c

Xc Xc

Xc Xc

...

1
...

...

Xc Xc
(Uj )c

...
...

...
...

(Ui )c

(Un−1)c

2n−2

...

0

2n−1

type 1 type 2

2j0

2j0 + 1

2j1

2j1 + 1

3L 2L + 4 R

L

out/in out/in

≈

3L3L

≈ ≈

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

L

out/in

FIG. 8. In the actual n-qubit circuit, n wave packets of length L are employed as quantum walkers to represent an n-qubit state. Any circuit
can be built by a proper combination of type 1 and type 2 blocks. A block of type 1 consists of n single-qubit gates U0, . . . ,Un−1 (some
of which may be identity gates). A block of type 2 consists of a set of CP gates CP j0 j1 ( j0 �= j1, j0, j1 ∈ {0, . . . , n − 1}) constructed by four
roundabout gates. An identity gate in a block of type 2 is realized by simply connecting the input and output of the block with a straight path
of length 2L′ + 4�R, where L′ � 4L is the length of each vertical path connecting the upper and lower two roundabout gates within each CP

gate and �R is the effective length of the roundabout gate [see Eq. (3.8)]. Input and output paths of length 3L each are attached to each block,
where the output paths of one block are commonly used as the subsequent block.

such a manner, quantum walkers that simultaneously enter a
block of type 1 will exit that block at the same time. In other
words, type 1 blocks do not affect the order of walkers.

A block of type 2 consists of a set of CP gates CP j0 j1 ( j0 �=
j1 and j0, j1 ∈ {0, . . . , n − 1}) and identity gates. In contrast
to a block of type 1, an identity gate is realized by simply
connecting the input and output with a straight path. As a CP

gate, we employ

CP j0 j1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠

j0 j1

(5.3)

instead of (4.11), taking into account the effective length
(4.12) of the two-particle scattering of fermionic walkers. This
CP gate is achieved by placing four roundabout gates as shown
in Fig. 8. The right terminal vertex on path 2 j0 + 1 or 2 j1 + 1
of the left roundabout gate can be directly connected to the
right terminal vertex of the right roundabout gate without
compromising the function of the gate. Let us set the length
of each vertical path to L′ � 4L and denote the effective
length of each roundabout gate by �R [i.e., �R = 3 or 4 from
(3.8)]. Then if we set the length of the straight path of the
identity gate to 2L′ + 4�R, a particular pair of red walkers
simultaneously entering the block can be scattered within a
specific vertical path. In addition, for the fermionic walks,
we must take into account the effective length (4.12) of the
two-particle scattering: The scattered fermionic walkers in the
CP gate move ahead of other walkers by one vertex. In this
case, by increasing the number of vertices in each horizontal
and vertical path by one in the next type 2 block, the desired
two-particle scattering can occur within a specific vertical
path in the next block. Namely, in the mth type 2 block, the

number of vertices in each horizontal and vertical path should
be increased by m more than in the first.

As explained in Secs. III and IV, the roundabout gate and
the CP gate are designed based on single- and two-particle
scattering states of plane waves with a definite momentum
k = kp, which are defined on the subgraph with a semi-infinite
path and on the straight vertical path of infinite length,
respectively. Therefore, to ensure the reliability of the
architecture, it is also essential to estimate errors that occur in
an actual quantum circuit consisting of a finite-size graph on
which the wave packets move as quantum walkers. Let |�in〉
be an input state in superposition [cf. (5.1)],

|�in〉 = 1√
L

∑
{q j}

n−1⊗
j=0

(
2L−1∑
x=L

ei(π/2)x|0〉c|x, 2 j + qj〉in

)
, (5.4)

and e−iHtotτ |�in〉 be the output state after processing over time
τ in a circuit intended to implement a unitary operator U ,
where Htot is the total Hamiltonian for the circuit, consisting
of the kinetic term (2.11), interaction term (2.15), and Zeeman
energies used in the single-qubit gates (see Sec. IV). An error
bound between the desired state |�out〉,

|�out〉 = 1√
L

∑
{q j},{q′

j }
〈q′

n−1 · · · q′
0|U |qn−1 · · · q0〉

n−1⊗
j=0

(
2L−1∑
x=L

e−i π
2 x|0〉c|x, 2 j + q′

j〉out

)
, (5.5)

and the actual output state e−iHtotτ |�in〉 is estimated by di-
rectly applying the method in [23] (see also [41]). It yields

‖|�out〉 − e−iHtotτ |�in〉‖ = O(gn3L−1/4), (5.6)
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where g is the total number of type 1 and type 2 blocks.
This error bound is obtained by multiplying an error bound
O(gnL−1/4) due to the use of wave packets by an error bound
O(n2) due to truncation of the semi-infinite paths in each
block [23]. Note that errors in the gates acting on the internal
states |c〉c can be neglected for the following reasons. These
gates, for instance, Xc and Hc as in (2.6) or (2.7), are designed
for a wave packet with group velocity vg = 2 (see Fig. 5).
Errors in these gates mainly come from a distortion of the
wave packet by higher-order dispersion effect: The velocity
of the wave packet is corrected as

v � E ′(kp) + 1

2
(k − kp)E ′′(kp)

+ 1

6
(k − kp)2E ′′′(kp) = vg + O

(
1

L2

)
, (5.7)

where we have used kp = −π/2, E (k) = 2 cos k, and also
|k − kp| = O(1/L), which follows from (5.2). Thus, the error
caused by the correction (5.7) is estimated to be O(nL−2) at
each block, which is negligible compared to the above error
bound O(nL−1/4) due to scatterings of wave packets.

As pointed out in [23], the error bound estimated in (5.6)
is almost surely not optimal; a significant improvement can
be expected. Nevertheless, by setting L = O(g4n12), one finds
that universal quantum computation of arbitrary precision
can be achieved with polynomial overhead. Namely, the total
number of vertices in the architecture is O(g5n13) and the
total computational time is O(g5n12), which are formally the
same as the architecture in [23]. However, a feature of our
architecture is that the number of blocks g can be significantly
reduced by using O(ng) gates acting on the internal states, as
shown in Fig. 6, which is expected to enable more efficient
implementation for universal computation than in [23].

VI. SUMMARY AND DISCUSSION

We have proposed a model of universal quantum com-
puting using a multiparticle continuous-time quantum walk.
Quantum information is dual-rail encoded by the quantum
walkers with two internal states (colors) |0〉c (red) and |1〉c

(blue). To process the information spatially, we have newly
developed the roundabout gate that moves the quantum walker
from one path to the next, clockwise or counterclockwise,
depending on the color of the quantum walker. Any single-
qubit unitary transformation is converted to a transformation
for the color of the quantum walker. In this transformation, the
roundabout gate acts as an information encoder and decoder.
Two quantum walkers can be scattered from each other on an
infinite path to change a global phase of the two-particle wave
function. An appropriate combination of a single-qubit gate
and two-particle scattering yields a two-qubit controlled gate.

Our approach has several advantages. (i) Two-level quan-
tum walkers can be realized with very mundane particles such
as electrons and spin-1 bosons. The Bose-Hubbard model
(bosonic walks) and the extended Hubbard model (fermionic
walks) employed in the architecture are models commonly
used in many-particle physics. (ii) Simplification of design
is possible. The single-particle scattering is only applied to
implement the roundabout gate. Instead, a single-qubit gate
is realized by a quantum device that acts on the color of the

U

ON/OFFXc

FIG. 9. Example of a circuit that serves as a quantum memory.
Information can be stored and retrieved at will by switching on the
Pauli X gates installed on the loop. Iterative calculations can also be
easily carried out by simply placing unitary gates on the loop, which
may be helpful to perform, for instance, the Grover algorithm.

quantum walker. The subgraph ĜR for the roundabout gate
can be designed to be as simple as possible: The total number
of vertices is at most 7, the maximum degree of Ĝ is 3, and
the edge weights of the graph take only 1 and ±i [see (3.1)
and (3.5)]. The colors of the walker coexist temporarily within
the individual single-qubit gates. In other words, maintaining
the coherence of the colors is only required within individual
single-qubit gates. The two-particle scattering necessary to
realize a two-qubit gate occurs only between a pair of red
walkers and only in a straight path. For the implementation,
any ancilla qubit is unnecessary. (iii) An automatic quantum
computation is possible: The computation is done by just pass-
ing quantum walkers through appropriately designed paths.
(iv) A unified design of quantum computing compatible with
an automatic QRAM is possible.

Here we would like to discuss some possible applications
using our architecture. A crucial and nontrivial application is
a physical realization of a QRAM, as briefly introduced in the
Introduction and above. The details will be proposed in the
following paper [35]. Some simple quantum memory can also
be constructed by a suitable combination of the roundabout
gate, as in Fig. 9. The quantum walkers, which represent the
result of the calculation, can be led into the loops by the
roundabout gates and stored as information. The information
can be freely retrieved by switching on the Pauli X gates
installed on the loops. Iterative calculations can also be easily
carried out by simply placing unitary gates on the loop. It
might be helpful to efficiently perform information processing
such as the Grover search [42], the quantum phase estimation
[43], and the quantum version of fast Fourier transform [44].

The roundabout gate is essential in the present architecture
and automatic QRAM. Theoretically, this can be realized by
imposing an internal-state-dependent gauge factor as shown
in (2.11). Experimentally, it may be possible to achieve this,
e.g., by applying the Aharonov-Casher effect [37,38], but this
still remains open.
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APPENDIX: SINGLE- AND TWO-PARTICLE SCATTERING

In this Appendix, to make our paper self-contained, we
summarize single- and two-particle scattering states of indis-
tinguishable quantum walkers.
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1. Single-particle scattering on a graph

First, we consider the single-particle scattering on the
graph G defined in Fig. 3, using the procedure introduced in
[23,36]. Since the color of a single walker does not change
[see (2.11)], the single-particle scattering can be considered
independently in the case of a red walker and a blue walker.
Therefore, first, we fix the color of the walker to red (c = 0)
[correspondingly, we only consider the part of c = 0 in the
kinetic term (2.11)] and omit the internal state |0〉c to simplic-
ity the notation. Later we will show that the single-particle S
matrix of the blue walker is nothing but the transpose of that
for the red walker.

Consider the process in which an incident walker (wave
packet) with a momentum near a specific value of k ∈ (−π, 0)
passes through the jth semi-infinite path toward the graph Ĝ
and exits to some semi-infinite paths l (in superposition) after
scattering from Ĝ. Since an arbitrary wave packet is given by
the superposition of plane waves of momentum close to k as
in (2.16), the scattering state |ϕ j (k)〉 with a definite k gives us
information about how the wave packet scatters from Ĝ. It is
generally written as

|ϕ j (k)〉 =
∞∑

x=0

e−ikx|x, j〉 +
N−1∑
l=0

∞∑
x=0

Sl j (k)eikx|x, l〉

+
∑

x∈V (Ĝ)\T

ψ j (x; k)|x〉, (A1)

where |x, j〉 denotes a walker at x on the jth semi-infinite
path [i.e., the walker at (x, j)], V (Ĝ) \ T is the set of the
M internal vertices of Ĝ, Sl j (k) ∈ C is the element of the S
matrix, and ψ j (x; k) ∈ C is the wave function on Ĝ, which
can be determined by the Schrödinger equation

〈x|KG|ϕ j (k)〉 = E (k)〈x|ϕ j (k)〉 [x ∈ V (G)]. (A2)

Here KG is the kinetic term defined as (2.11). Note that the in-
teraction term (2.15) does not contribute to the single-particle
scattering and the color of the walker is implicitly assumed
to be red (|0〉c), as explained above. In particular, for (x, l )
(x � 1), we have

〈x, l|KG|ϕ j (k)〉 = 2 cos k〈x, l|ϕ j (k)〉,
〈x, l|ϕ j (k)〉 = e−ikxδl, j + eikxSl j (k), (A3)

which determines the energy E (k):

E (k) = 2 cos k. (A4)

On the other hand, the Schrödinger equation (A2) for x ∈ Ĝ is
written as(

A B†

B D

)(
IN + S(k)

ψ (k)

)
+

(
e−ikIN + eikS(k)

0

)

= E (k)

(
IN + S(k)

ψ (k)

)
, (A5)

where

S(k) :=
N−1∑
l=0

N−1∑
j=0

Sl j (k)|0, l〉〈0, j| ∈ End(CN ),

ψ (k) :=
∑

x∈V (Ĝ)\T

N−1∑
j=0

ψ j (x; k)|x〉〈0, j| ∈ Hom(CN ,CM ),

(A6)

and the matrix consisting of A ∈ End(CN ), D ∈ End(CM ),
and B ∈ Hom(CN ,CM ) is the adjacency matrix A(Ĝ): A =
A† and D = D† are the adjacency matrices of the N terminal
vertices and the M internal vertices, respectively, and B is
the adjacency matrix between the terminal and the internal
vertices. Solving (A5), one straightforwardly finds

S(k) = −e2ikQ−1(k)Q(−k),

Q(k) :=
[

1 − eik

(
A + B† 1

2 cos k − D
B

)]
. (A7)

For k ∈ R, the S matrix satisfies

S(k)†S(k) = S(−k)S(k) = 1 (k ∈ R), (A8)

which can be easily seen by noting that A and D are Hermitian,
Q(k)† = Q(−k), and [Q(k), Q(−k)] = 0.

Finally, let us show that the single-particle S matrix of the
blue walker (c = 1) [denote it by S̃(k)] is given by S̃(k) =
S(k)T for k ∈ R, which is the transpose of the S matrix of
the red walker. By the property (2.13), S̃(k) can be obtained
by simply replacing A(Ĝ) with A(Ĝ)∗. More explicitly, it is
given by replacing {A, B, D} with {A∗, B∗, D∗} in (A7). This
replacement changes S(k) to S(−k)∗ (k ∈ R). Using S(k)† =
S(−k) (k ∈ R) derived from (A8), we arrive at

S̃(k) = S(−k)∗ = [S(k)†]∗ = S(k)T. (A9)

2. Two-particle scattering on an infinite path

Next we consider the two-particle scattering on an infinite
path: The walker (wave packet) with a momentum close to
a specific value of k0 ∈ (−π, 0) moves right (down) toward
the walker which moves left (up) with a momentum close
to k1 ∈ (0, π ). Since, in our architecture, we are concerned
with the scattering of red walkers, here we only consider the
spatial part of the states as in the single-particle scattering.
The two-particle scattering process can be characterized by
the scattering state |ψ (k0, k1)〉 with definite values of (k0, k1).
More explicitly,

|ψ (k0, k1)〉 =
∑

x0,x1∈Z
ψ (x0, x1; k0, k1)|x0, x1〉, (A10)

where x0, x1 ∈ Z are vertices on an infinite path and the wave
function ψ (x0, x1; k0, k1) is written as

ψ (x0, x1; k0, k1)

=
{

eik0x0+ik1x1 ± S01(k0, k1)eik1x0+ik0x1 (x0 < x1)

S01(k0, k1)eik0x0+ik1x1 ± eik1x0+ik0x1 (x0 > x1).

(A11)

Here S01 ∈ C is the scattering amplitude and the + and −
signs correspond to bosons and fermions, respectively. For the
bosonic case, ψ (x, x) is given by setting formally x0 = x1 = x
in Eq. (A11).

The form of the wave function (A11) is followed by the
following facts.

(i) The individual momenta k0 and k1 are conserved after
the scattering, due to the conservation law of the total energy
2(cos k0 + cos k1) and momentum k0 + k1. The two walkers
only acquire a phase factor S01(k0, k1) after the scattering.
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(ii) The wave function is symmetric (antisymmetric) under
particle exchange, reflecting the Bose (Fermi) statistics.

(iii) Interactions are limited to on-site or nearest-neighbor
pairs.

Indeed, for x0 �= x1 (x0 �= x1 + 1) in the bosonic
(fermionic) case, one can easily check that the wave function
(A11) satisfies the Schrödinger equation

〈x0, x1|HG|ψ (k0, k1)〉 = 2(cos k0 + cos k1)ψ (x0, x1; k0, k1),

(A12)

where HG [Eq. (2.10)] with the interaction term (2.15) is
defined on an infinite path, i.e., θ jk = 0. Below, solving (A12)
at x0 = x1 (x0 = x1 − 1) for the bosonic (fermionic) case, we
determine the scattering amplitude S01(k0, k1).

a. Bosonic walkers

We adopt the on-site (Bose-Hubbard) interaction (2.15)
for the bosonic quantum walkers. The left-hand side of the
Schrödinger equation (A12) at x0 = x1 =: x gives

ψ (x, x + 1; k0, k1) + ψ (x − 1, x; k0, k1)

+ ψ (x, x − 1; k0, k1) + ψ (x + 1, x; k0, k1)

+ uψ (x, x; k0, k1)

= [2(eik1 + e−ik0 ) + u + S01(k0, k1){2(eik0 + e−ik1 ) + u}]
× ei(k0+k1 )x. (A13)

Because the right-hand side of (A12) is given by

2(cos k0 + cos k1)[1 + S01(k0, k1)]ei(k0+k1 )x, (A14)

we arrive at

S01(k0, k1) = 2(sin k0 − sin k1) + iu

2(sin k0 − sin k1) − iu
. (A15)

b. Fermionic walkers

For the fermionic quantum walkers, we employ the
nearest-neighbor interaction (2.15). The left-hand side of the
Schrödinger equation (A12) at x0 = x1 − 1 =: x gives

ψ (x − 1, x + 1; k0, k1) + ψ (x, x + 2; k0, k1)

+ uψ (x, x + 1; k0, k1)

= {(eik1 + e−ik0 + u)eik1 − S01(k0, k1)

× [(eik0 + e−ik1 + u)eik0 ]} ei(k0+k1 )x. (A16)

Also, we find the right-hand side of (A12) is given by

2(cos k0 + cos k1)[eik1 − S01(k0, k1)eik0 ]ei(k0+k1 )x, (A17)

and therefore

S01(k0, k1) = 1 + ei(k0+k1 ) − eik1 u

1 + ei(k0+k1 ) − eik0 u
. (A18)
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