
PHYSICAL REVIEW A 107, 022414 (2023)

Nondestructive verification of entangled states via fidelity witnessing
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Assessing the quality of an ensemble of noisy entangled states is a central task in quantum information
processing. Usually, this is done by measuring and hence destroying multiple copies, from which state tomogra-
phy or fidelity estimation can be employed to characterize states. Here we propose several methods to directly
distinguish between two different sets of states, e.g., if their fidelity is above or below a certain threshold value.
This turns out to be significantly more efficient and importantly keeps the verified states intact. We make use
of auxiliary entanglement or an ensemble of larger size, where we operate on the whole ensemble, but measure
only a small fraction where information has been concentrated. For certain state families, we demonstrate that
such an approach can even outperform optimal methods that collectively measure directly a fixed fraction of the
ensemble.
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I. INTRODUCTION

Quantum entanglement is the key resource for multiple
applications in quantum technology, including quantum com-
munication and cryptography [1,2], quantum networks [3–5],
distributed computation [6–8], and distributed sensing [9–11].
However, in any realistic scenario channels and devices
are imperfect, and resulting states will be noisy. Assessing
whether the quality of produced or maintained entangled
states is sufficient for the desired application is hence a central
task for all these applications.

The typical approach to determine the quality of an en-
semble of mixed states is to perform local measurements on
some individual copies, from which features of the states
can be assessed. Multiple strategies for certifying entangled
states have been proposed [12–16]. The approaches differ
in the amount of information learned from the states, which
is generally related to the amount of resources spent in the
process. The existing strategies range from a complete char-
acterization of the states via state tomography [17,18], to the
learning of some specific properties such as the fidelity as in
fidelity estimation [19]. In this work we consider a still less
information-demanding problem, consisting in determining
whether the fidelity of an entangled state is above or below
a certain threshold value, a natural and realistic extension of
the state verification problem [20–26]. We denote this deci-
sion problem as fidelity witnessing, which can be relevant in
multiple scenarios, whenever it suffices to know if the quality
of the states of an ensemble is large enough to perform the
desired task. For instance, in a communication scenario, the
fidelity directly indicates the error rate of transmitted quantum
information via teleportation, but also if the states can be used
to expand a secure secret key. The main advantage of such an
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approach lies in the reduced required resources as compared
to schemes that acquire more information.

Here, in contrast to many previous approaches [15,25],
we assume that we have access to the whole ensemble, and
not just individual copies that are processed locally and in-
dividually, and also consider entanglement-assisted protocols.
While this poses additional experimental challenges, we find
that these approaches have significant advantages: First, they
are more efficient and can lead to up to exponential enhance-
ments as compared to previous schemes, even outperforming
optimal, nonlocal methods that measure all states from an
ensemble of fixed size. Second, certified states are not de-
stroyed; the remaining states are directly certified, without the
necessity to assume a tensor product structure of the initial
ensemble. The key element is an information transfer from
multiple copies of the states in the ensemble to a certain
subset, or to some auxiliary entangled states, where only these
few copies are subsequently measured and hence destroyed.
In this way, a much larger fraction of an ensemble can be left
intact, while still deciding if the remaining states are suitable
for the desired application. We also take care of properly
accounting for additional entanglement resources, by relat-
ing auxiliary entanglement to the required number of noisy
copies.

We introduce three different protocols, which are com-
pared with the typically considered case of sequential
measurements of single copies of identical, noisy entangled
states ρ⊗n. We propose strategies that rely on collective oper-
ations which allow us to transfer information about the noise
of several copies into a few auxiliary state(s), in the spirit of
[27,28]. By partially or completely measuring the auxiliary
system(s), one can access the information of the accumu-
lated noise with increased efficiency, in such a way that the
copies that are certified are not consumed in the process.
We make use of this powerful tool and introduce several ap-
proaches, each of which works better in specific situations. To
this aim we consider different state families, including noisy
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ensembles that result from maximally entangled states af-
fected by decay noise, phase-flip noise, or depolarizing noise,
mimicking relevant situations such as distributing entangle-
ment through noisy channels or storing entangled states for
some time in an imperfect quantum memory. The main find-
ings can be summarized as follows:

(i) We introduce three different protocols for the decision
problem of distinguishing between two state families of noisy
entangled states with respect to their fidelity.

(ii) We demonstrate that auxiliary entanglement can be
used to increase the performance of this task.

(iii) We show that collective but local operations per-
formed on the whole ensemble can be used to transfer and
concentrate information into a few copies, thereby signifi-
cantly reducing the number of states that need to be measured
and hence destroyed, while maintaining more and fully certi-
fied states.

(iv) We find that for decay noise, our protocols per-
form exponentially better than optimal, global, and collective
strategies that only operate on ensembles of a fixed size where
all states are measured.

The paper is organized as follows. We review some basic
concepts and operations in Sec. II, while the problem setting
is formally defined in Sec. III. In Sec. IV we introduce the
different strategies we propose to solve the fidelity witnessing
problem, where we also analyze and compare their efficiency
and performance. Finally, we present some concluding re-
marks in Sec. VI.

II. BACKGROUND

We discuss here the basic notions and operations we make
use of throughout this work.

A. Maximally entangled states

Bell states. Bell states are maximally entangled quantum
states shared by two qubits. The set of Bell states form a basis
of C2

A ⊗ C2
B given by the elements

|�i j〉AB ≡ 1 ⊗ σ j
x σ i

z

( |00〉AB + |11〉AB√
2

)
,

where i, j ∈ {0, 1} and σk is the kth Pauli operator. These
states are a fundamental resource for multiple applications
such as, e.g., superdense coding [29], quantum teleportation
[30,31], quantum key distribution (QKD) [1,2], or distributed
quantum computation [6,7].

Higher-dimensional maximally entangled states. Qudits
are natural extensions of qubit systems for d-dimensional
systems. A bipartite system of qudits is associated with the
Hilbert space HAB = Cd

A ⊗ Cd
B, where we can define an or-

thonormal basis of maximally entangled states of the form
[30]

∣∣�d
mn

〉
AB ≡ 1√

d

d−1∑
k=0

ei2πkm/d |k〉A|k � n〉B, (1)

where m, n ∈ Zd are called the phase and amplitude index of
the state, respectively, and where k � n ≡ (k − n)mod d and
d is the dimension of the qudit systems.

B. Fidelity of quantum states

The fidelity of two quantum states ρ, σ is a measure of
how close the two states are, with respect to the probability
of identifying one as the other with an optimal measurement.
Formally, it is defined as

F =
[
tr
√√

ρσ
√

ρ
]2

. (2)

We use fidelity as a natural figure of merit to measure the
amount of noise affecting a quantum state. Since we mainly
deal with maximally entangled states, the fidelity in our case
refers to the distance between some state ρ and the max-
imally entangled state |�00〉, such that Eq. (2) reduces to
F = 〈�00|ρ|�00〉.

C. Families of states

We introduce here the different families of states we make
use of throughout this work as probe states to be verified or
witnessed. All of them correspond to dominant noise pro-
cesses relevant in many physical scenarios.

1. Bell diagonal states

Any arbitrary bipartite mixed state ρ can be always de-
polarized into a state diagonal in the Bell basis with local
operations. This is achieved by implementing a quantum map
with Kraus operators DBD = { 1

2 σi ⊗ σi}3
i=0, i.e.,

DBD : ρ =
1∑

i1, j1,i2, j2=0

αi1 j1i2 j2 |�i1 j1〉〈�i2 j2 |

	→ ρBD =
1∑

i, j=0

αi ji j |�i j〉〈�i j |.

Note that the fidelity of the state remains unchanged.

2. Werner states

Further depolarization is possible by making all but one of
the diagonal elements equal and transforming the state into a
Werner state [32], i.e.,

ρw = q|�00〉〈�00| + 1 − q

4
14, (3)

while keeping the fidelity F = (3q + 1)/4 unchanged. This is
accomplished by suitable twirling techniques (see, e.g., [33]),
i.e.,

Dw : ρ 	→
∫

(U ⊗ U ) ρ (U ⊗ U )† dU = ρw,

where dU is the Haar measure. Depolarization can also be
achieved using only local operations drawn from a discrete
set [34]. Werner state can be conceived as the worst case in
terms of the noise of the states, where with some probability
no information about the state is left.

3. Dephasing-type states

A less general family of states is given by rank-2 Bell
diagonal states. These states are local unitary (LU) equivalent
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to a Bell state, where one of the parties is affected by a bit-flip
noise, i.e.,

1 ⊗ NF : |�00〉〈�00|
	→ ρd = F |�00〉〈�00| + (1 − F )|�10〉〈�10|, (4)

where Np = {√p1,
√

1 − p Z}. Notice that states resulting
from local dephasing noise are formally equivalent, where
both qubits may be affected by Pauli σz noise. This kind of
noise is relevant, e.g., when there are fluctuating fields or
phase references.

4. Amplitude-damping-type states

A different class of states corresponds to amplitude-
damping type. These states are the result of sending each
party of a perfect Bell state |�11〉 through an ampli-
tude damping channel with Kraus operators Ap = {|0〉〈0| +√

p |1〉〈1|, √
1 − p |0〉〈1|} [35], i.e.,

AF ⊗ AF |�11〉〈�11|
	→ ρ = F |�11〉〈�11| + (1 − F )|00〉〈00|,

where the state is LU equivalent to

ρa = F |�00〉〈�00| + (1 − F )|01〉〈01|. (5)

This kind of state is relevant in scenarios where one describes
decay processes of, e.g., atoms in a quantum memory.

D. Counter gate

In several of the strategies introduced in this work, we
make use of a quantum gate introduced in [27,36] which
allows us to transfer information from an ensemble of entan-
gled qubit states into a higher-dimensional entangled state by
means of local operations. The so-called counter gate [27,36]
is a bilateral qubit-qudit controlled operation that takes a two-
dimensional entangled state as control and a d-dimensional
entangled state as a target. Given a target system consisting
of a maximally entangled state with phase index zero [see
Eq. (1)], its action is given by

bCXAB
1→2|mn〉1

∣∣�d
0 j

〉
2

= |mn〉1

∣∣�d
0, j�m⊕n

〉
2
, (6)

where |mn〉 are the computational basis states, bCX(d )
1→2 =

CXA1A2
1→2 ⊗ CXB1B2

1→2, and

CX1→2 = |0〉〈0| ⊗ 1d + |0〉〈1| ⊗ Xd

is the hybrid controlled-X gate [37], where the action of Xd

in the computational basis is given by Xd |k〉 = |k � 1〉. We
denote as type-1, type-2, and type-3 error states the states cor-
responding to |01〉, |10〉, and |�10〉, respectively. The action
of the counter gate taking a type-1 (-2) error state acting as
control leads to an amplitude index value of the auxiliary state
increased (decreased) by one, whereas it is left invariant for
the type-3 error state.

We denote the operation consisting in applying the counter
gate, Eq. (6), from each of the states of an ensemble of n
copies into a d-dimensional auxiliary state, as error number
gate (ENG), i.e.,

ENG =
n∏

k=1

bCXk→aux. (7)

The name is motivated by the action of the gate on ensembles
with only |01〉 error states, where the number of error states in
the ensemble can be determined in this way.

E. Entanglement cost and relation to resources

In this work, we consider entanglement-assisted protocols
that make use of (small) amounts of extra entanglement. In
order to make a comparison with protocols that only measure
states directly, we need to relate these entangled states with
the states of the noisy ensemble. First, we point out that
the amount of entanglement that is contained in a noiseless
Bell state constitutes the basic unit of bipartite entanglement,
usually denoted as ebit of entanglement. The number of ebits
contained in a maximally entangled state of dimension d is
given by E (|�d

00〉) = log2 d . Therefore, in an ensemble of n
maximally entangled states the number of ebits is given by
E (|�d

00〉⊗n) = n log2 d .
The evaluation of the amount of entanglement, in terms of

the number of ebits, contained in mixed states is, however,
not clear. The distillable entanglement ED [38], i.e., the frac-
tion of maximally entanglement states that can be distilled
from many noisy copies by means of local operations and
classical communication is a suitable entanglement measure
in this context. It tells us that from m noisy copies of the
state ρ, one can generate mED ebits of entanglement. This
provides the desired relation between noisy copies and ebits.
However, ED is hard to compute in general, and only some
upper bounds [39,40] and lower bounds [41] are known. Here
we make use of reachable lower bounds provided by entan-
glement purification protocols [34,40,42,43]. We compute the
yield Y of a combination of the recurrence protocol [42] and
hashing [40], i.e., the fraction maximally entangled states over
initial noisy states, which is a lower bound for ED [44]. While
the recurrence protocol allows one to increase the fidelity of
remaining pairs, hashing is only applicable for sufficiently
high fidelities, but has a nonzero yield. Both protocols operate
on states diagonal in the Bell basis, where any state can be
transformed to such form as discussed above. The yield of
the hashing protocols for Bell diagonal states ρBD is given by
[1 − S(ρBD)], and one can obtain a smooth curve as a function
of the initial fidelity F by mixing strategies, i.e., consider a
mixture of states resulting from a certain number of rounds
of the recurrence protocol, and apply Hashing to the resulting
one.

So whenever auxiliary entanglement of m ebits is required,
we assume that it is generated from the noisy ensemble by
consuming �m/Y  states from the ensemble, where Y is the
yield of the entanglement purification protocol. Notice that
we do not optimize over entanglement purification protocols,
so we provide a conservative bound, thereby underestimating
the operational advantage of entanglement-assisted protocols.

III. PROBLEM SETTING

Quantum state certification and verification have been stud-
ied and analyzed in different directions, ranging from learning
more information about a state, as in state tomography, to
less information as in fidelity estimation. The problems we
study here are closely related to quantum state verification of
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FIG. 1. Fidelity witnessing (upper right) and fidelity discrimina-
tion (lower right) problems. Given an ensemble of identical copies
ρ⊗n, with some unknown local fidelity F (i.e., the fidelity of each
copy, corresponding to their reduced density operator), the task of
fidelity witnessing is to determine whether the fidelity is below or
above certain threshold F0 up to some additive error λ. Similarly, if
there exists the promise that the ensemble states fidelity is either F1

or F2, the task of fidelity discrimination reduces to deciding which of
the two cases is present.

entangled states [13–15,28,45], where the task is to verify
whether some ensemble of entangled states consisting of n
identical copies is indeed maximally entangled. In terms of
the fidelity of the states, state verification solves the prob-
lem of deciding whether the fidelity of the states is F =
〈�00|ρ|�00〉 = 1 or not (i.e., F � 1 − ε).

The problems we analyze enclose more realistic situations
[13–15,25], where a certain level of noise is in general un-
avoidable, and therefore entangled states cannot be strictly
verified with previous methods. The task reduces to a decision
problem of determining whether the fidelity of an entangled
state is above or below some threshold value, or corresponds
to one out of two possible values. We define and analyze these
two closely related problems, denoted as fidelity witnessing
and fidelity discrimination (see Fig. 1).

Notice that it is not required to learn the actual value of
F to solve the underlying decision problem which essentially
requires only learning one bit of information. This learning
of a minimum amount of information can be enough and
useful in many contexts and applications, for which the parties
sharing the entanglement just require a minimum fidelity of
the states to operate. In contrast to other methods, e.g., fidelity
estimation or state tomography, fidelity witnessing and fidelity
discrimination have the benefit of a significant reduction in the
amount of consumed resources. We construct strategies that
avoid measuring and hence destroying copies of the state in
order to obtain information about it. As we show later, directly
measuring copies of the state generally provides additional
information that is not required to solve the witnessing prob-
lem, making such a strategy wasteful in terms of the required
resources.

We consider an ensemble of identical copies of some
noisy state, i.e., ρ⊗n, where we can collectively operate on
the copies in a local way. All the strategies we propose and
analyze rely on the only use of local operations, such that
each state is not accessible or operated in a global way. We
remark that our approaches do not only restrict to ensembles
of the form ρ⊗n, but may also be extended to work with, e.g.,
non-IID ensemble states.

Fidelity witnessing. The witnessing problem consists in
determining, with only the assistance of local operations and
classical communication, if the fidelity of a certain noisy
entangled state ρ is above or below a specific threshold value
F0, i.e., F > F0 + λ

2 or F < F0 − λ
2 , up to some additive error

λ (see Fig. 1). This problem has been partially analyzed in
the context of extending quantum state verification to more
realistic settings [20–25].

Observe that there exist four different regimes or scenarios
that need to be analyzed with any approach. On the one hand,
if a protocol output determines that the fidelity is below the
threshold, there is some probability of succeeding, i.e., the fi-
delity is actually below, or failing. Analogously, the other two
regimes consist of the protocol determining that the fidelity
is above and being right or failing. Each strategy we analyze
can exhibit better performance, sometimes tunable, on some
of these regimes at the expense of the others.

Fidelity discrimination. We also analyze a slightly mod-
ified problem, denoted as fidelity discrimination. Given an
ensemble of identical entangled states shared by parties A and
B, with the promise that the fidelity of the states is either F1

or F2, with F1 > F2, the task is to discern which of the two
fidelities correspond to the ensemble copies by consuming
the minimum number of states (see Fig. 1). Since this task
also entails a decision problem with simpler promises, all the
protocols we introduce in the following are directly applicable
with, in general, enhanced efficiency. In particular, the block-
ing strategy (protocol P3, see below) allows us to overcome
optimal bounds in solving the fidelity discrimination problem.

IV. FIDELITY WITNESSING STRATEGIES

We propose different approaches to solve the fidelity
witnessing and discrimination problems for ensembles of
identical bipartite entangled states. While the most direct
approach, a direct extension of strategies applied in fidelity
estimation and verification [19,45], relies on a copy-by-copy
measurement of a certain part of the ensemble, the remaining
approaches make use of different tools in order to transfer
information about the noise of the ensemble into auxiliary
registers without destroying the original copies. The auxiliary
registers are subsequently manipulated to extract the required
information and solve the decision problems.

We remark that the protocols we introduce are suited
for different state families. While protocol P0 (individual
measurements) and P3 (blocking strategies) are suitable for
all families, the error-counting protocol P1 and the coarse-
graining protocol P2, are essentially only applicable to states
of the from ρa resulting from decay or amplitude damping.

A. Protocol P0: Individual measurements

Reference [25] discusses how to perform fidelity witness-
ing by extending the strategy for verification of Bell states.
In state verification [20–26], an arbitrary noisy ensemble is
given and one aims to distinguish between either the states
being perfect, i.e., ρ = |�00〉〈�00|, or being noisy up to some
fidelity, i.e., 〈�00|ρ|�00〉 � 1 − ε ≡ F . The optimal solution
in this case consists in performing random copy-by-copy and
local two-outcome measurements [see Fig. 2(a)], given by
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FIG. 2. (a) Schematic representation of the individual measure-
ments protocol P0, which consists in individually measuring each
of the copies. (b) An illustrative description of the underlying idea
behind the strategies we introduce P1, P2, and P3, where some
information of the ensemble is transferred into an auxiliary state
that is then manipulated to learn the required information without
destroying the verified ensemble copies.

{
i,1 − 
i}, such that


i|�00〉 = |�00〉,
where the label “pass” (“fail”) is assigned to the outcome
corresponding to 
i (1 − 
i). The measurement can then be
described by


 =
∑

i

pi 
i,

where {pi} is a probability distribution. The probability that
one state passes the measurement test is given by

p = 1 − ε ν(
),

where ν(
) is the spectral gap between the largest and the
second largest eigenvalues of 
. Therefore, for an unknown
state ρ the optimal strategy is such that maximizes ν(
). For
Bell states |�00〉 it is shown [45] that max
 ν(
) = 2

3 and
hence pmax = (1 + 2F )/3.

After measuring n copies, the probability of finding j states
that “fail” the test and n − j states “pass” it is given by

Pr( j|F ) =
(

n

j

)
pn− j (1 − p) j, (8)

where F is the fidelity of the states. Thus, the value of j
is related to the actual fidelity of the ensemble. We exploit
this property by suitably acquiring and processing information
about the value of j in order to tackle the fidelity witnessing
and discrimination problems. We detail later in this section the
strategy based on single copy measurements for these two
problems. Before, we particularize the previous properties for
two types of states that we make use of throughout the paper.

Amplitude-damping noise ensemble. Consider the states of
the ensemble to be amplitude-damping type [Eq. (5)] with
some unknown fidelity F . By measuring the state on the
ZA ⊗ ZB basis, we consider the state “pass” the measurement
test if these two outcomes coincide. This is given by

p = F < pmax.

Since we can distinguish with total certainty between the two
eigenvectors (with no-null eigenvalue) of ρ, and this measure-

ment is equivalent to a measurement with ν = 1, what has
been shown to be optimal for the verification problem [45].

Werner-type states. Consider now the case where the states
of the ensemble are given by Werner states [see Eq. (3)]. Note
that this corresponds to depolarizing noise acting on the states.
In particular, any state can be brought to a Werner-type form
by depolarization means [32], and hence this case represents
a completely general situation.

The optimal measurement in this case also corresponds to
locally measuring the states in the computational basis, i.e.,
with respect to the observable ZA and ZB, considering that
the state “pass” the measurement test if the two outcomes
coincide. However, the probability of a state with fidelity F
passing the measurement is now given by p = (1 + 2F )/3,
which is equivalent to performing the optimal measurement
for an unknown state. Note that the process is analogous
to first depolarizing the state to its Werner form and then
performing the described measurement.

Fidelity witnessing. Given an ensemble of entangled states
with fidelity F and some threshold fidelity F0, the expected
value of j (see above) is given by

〈 j 〉 = n(1 − F )ν(
).

This allows us to extend this strategy to perform fidelity wit-
nessing. After performing the measurement {
,1 − 
} on n
copies, we can conclude that the fidelity lies on one or another
regime, i.e.,

F > F0 if j < n(1 − F0)ν(
),
F < F0 if j > n(1 − F0)ν(
). (9)

Since the ensemble is in a tensor product structure, the success
probability Ps of solving the witnessing problem based on
Eq. (9) can be determined by the Chernoff-Hoeffding theorem
[46]

Ps � 1 − eD( j||np),

where

D(S||Q) =
∑

x

S(x) log2

(
S(x)

Q(x)

)

is the Kullback-Leibler divergence (see [25]).
The criterion given by Eq. (9) can be generalized to tune

the success probability as a function of F . To show this, we
use a different approach. As a starting point, F is given by
some prior probability �(F ). However, as j and F are not
independent random variables, once the value of j is obtained,
the probability of F is then given by �(F | j). From the new
probability distribution, we make a statement about F . In
particular, if we define as  the set of values of j for which we
conclude that the fidelity is above the threshold F0,  contains
the values of j for which the probability of the conditioned
probability of F > F0 is larger than a parameter δ, which we
can freely choose. Formally, we define  as

 =
{

j | δ < Pr(F > F0| j) =
∫ 1

F0

�(F | j) dF

}
, (10)
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where we use Bayes’ theorem to compute the conditioned
density probability, i.e.,

�(F | j) = Pr( j|F ) �(F )∫ 1
0 Pr( j|F ′) �(F ′) dF ′

.

Considering a flat probability distribution for F , i.e., �(F ) =
const., we obtain

�(F | j) = Pr( j|F )

1 + n
.

For a given fidelity F , the success probability, i.e., the
probability of deciding that the fidelity is above (or below)
the threshold and being right, is given by

Ps(F ) =
{∑

j �∈ Pr( j|F ) for F < F0,∑
j∈ Pr( j|F ) for F > F0.

The value of δ can be tuned in order to optimize the per-
formance in certain regimes. Observe that, by appropriately
choosing the value of δ in Eq. (10), one can increase or de-
crease the success probability Ps of the protocol within some
of the regimes discussed in Sec. III, i.e., either enhance the
success probability to correctly certify states with F > F0,
or correctly reject states with F < F0. We analyze the per-
formance of this protocol in detail in the following sections,
comparing it with the other strategies we propose.

Fidelity discrimination. The information learning process
is analogous for fidelity discrimination, where one learns the
number j of states that “fail” the measurement test {
,1 −

}. Once a particular value of j is obtained, one simply con-
cludes that the fidelity of the ensemble is F1 in case Pr( j|F1) >

Pr( j|F2).
Similar as before, we separate all the possible values of j

in two sets 1 and 2, such that

1 = { j | Pr( j|F1) > Pr( j|F2)},
2 = { j | Pr( j|F2) > Pr( j|F1)}. (11)

In case fidelity Fi is then given with probability ηi, the success
probability reads as

Ps = η1

∑
j∈1

Pr( j|F1) + η2

∑
j∈2

Pr( j|F2).

If the two fidelities are given with the prior probability η1 =
η2, the success probability Ps is then bounded by

Ps � 1
2

[
1 + T

(
ρ⊗n

1 , ρ⊗n
2

)]
, (12)

where ρi = ρ(Fi ), and T (ρ, σ ) is the trace distance between
states ρ and σ [35]. In particular, for amplitude-damping noise
(see above), the success probability when performing fidelity
discrimination reaches the optimal values, i.e., it saturates the
trace distance between the two ensembles [Eq. (12)].

B. Protocol P1: Error counting

The first protocol we propose is an extension of the ap-
proach for quantum state verification we introduced in [28].
In the following, we will consider states of the form ρa result-
ing from amplitude damping. In general, given an ensemble
of n identical copies of states ρa, the protocol consists in

Protocol P1: Error counting

Input: Ensemble of n identical noisy Bell states and auxiliary
(n + 1)-level maximally entangled state.

1. Apply the ENG between the ensemble and the auxiliary
system.

2. Obtain the amplitude index j by measuring locally in Z
basis.

3. If j ∈  output F > F0, otherwise output F < F0.
Output: The fidelity of the initial ensemble was above or below F0

with some success probability Ps.

applying the ENG gate, Eq. (7), between n copies of the en-
semble and an auxiliary d-level system of the form |�d

00〉 [see
Eq. (1)]. The ENG transfers information about the number of
type-1 and type-2 errors in the ensemble into the auxiliary
system [see Fig. 2(b)] by changing its amplitude index. By
subsequently measuring this auxiliary state we can learn its
amplitude index j, revealing information about the number of
errors, and therefore the fidelity, of the ensemble. Crucially,
the remaining ensemble that is witnessed is not destroyed in
the process. Notice, though, that the state of the ensemble
changes, and is no longer of tensor product structure, i.e., the
copies are not independent. However, the fidelity of individual
reduced states is known, and above the threshold value F0 in
case of successful certification. We detail in the following the
steps for the different cases depending on the kind of noise
affecting the ensemble copies.

Fidelity witnessing. Consider first that the noise affect-
ing the states of the ensemble is amplitude-damping type
[Eq. (5)]. An ensemble of n copies of states of the form (5)
is given. Note that one can also interpret an ensemble of n
states of this form as an unknown distribution of pure states
where each state corresponds either to |�00〉 or |01〉. The joint
state of the ensemble can then be written as

ρ⊗n =
n∑

j=0

(
n

j

)
F n− j (1 − F ) j � j,

where � j is a density operator corresponding to all permuta-
tions of {|�00〉⊗(n− j)

AB |01〉⊗ j
AB}.

Information about the noise of the ensemble can be trans-
ferred and accumulated in a single d-level state. For that
end, a maximally entangled state of dimension d = n + 1
is prepared, |�d

00〉 [see Eq. (1)]. The ENG gate, Eq. (7), is
applied between the states of the ensemble and the auxiliary
d-dimensional state, such that

ENG: ρ⊗n ⊗ ∣∣�d
00

〉〈
�d

00

∣∣
	→

n∑
j=0

(
n

j

)
F n− j (1 − F ) j � j ⊗ ∣∣�d

0 j

〉〈
�d

0 j

∣∣.
Observe that, given the nature of the noise and the effect of
the ENG gate, the amplitude index of the auxiliary state j
encodes very specific information about the number of errors
contained in the ensemble, that directly relates to the fidelity
of the copies.

By simply measuring the auxiliary state locally by parties
A and B in the generalized Z basis, and subtracting their
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(a) (b)

FIG. 3. Performance of the individual measurements (P0) and
the error-counting (P1) strategies. (a) Shows the success probability
of both protocols for an ensemble of n = 20 identical copies and
different values of the heuristic δ value, as a function of the actual
fidelity of the copies. Depending on the choice of δ, a better per-
formance is found in one or another regime. (b) Shows the success
probability of both protocols with a fixed value of δ = 0.5 and
different values of ensemble size n, as a function of the actual fidelity
of the copies. A larger ensemble provides better performance.

outcomes, one learns the value of the amplitude index j, from
which one can infer the number of errors in the ensemble.
Each j value can be found with probability

Pr( j|F ) =
(

n

j

)
F n− j (1 − F ) j .

Note that this corresponds to the same distribution obtained
with protocol P0 [see Eq. (8)], with p = F . Due to this close,
but probabilistic, dependence, one can solve the decision
problem by determining whether the measured value of j is
above or below a certain value j0 = n(1 − F0), which also
depends on the threshold problem fidelity F0. Note that the
same statistical analysis performed in protocol P0 can be
applied here and, hence, the two protocols exhibit the same
success probability (see Fig. 3). However, while in protocol
P0 the whole ensemble is consumed, here we just destroy an
auxiliary maximally entangled state of dimension d = n + 1,
providing an exponential improvement in the amount of con-
sumed resources. Importantly, the states that are witnessed
or verified are not destroyed in the process, in opposition
to protocol P0 and previous approaches. Notice, however,
that the remaining ensemble is no longer of tensor product
structure, but corresponds to � j when obtaining the outcome
j. The fidelity of reduced states, i.e., tracing out all but one
copy, is given by F = (n − j)/n, which can be larger than the
initial fidelity F .

The protocol can equivalently be applied to Werner states
of the form (3). The steps of the protocol are identical as
before. However, the ensemble can now contain the three
different kinds of errors and, hence, the value of j after the
application of the ENG does not encode the number of errors
in the ensemble. Instead, it provides information about the
difference between type-1 and type-2 error states. In this case,
the probability of obtaining j for a given F corresponds to the
sum of all configurations with a difference of j errors, i.e.,

Pr( j|F ) =
n∑

i,k,l=0
i+k+l=n

k�l= j

n!

i! k! l!
Ai(1 − A)k+l ,

where A ≡ (1 + 2F )/3.

Note that, due to the different effect of the counter gate
in this case (Sec. II D), we can now obtain 2n + 1 different
values of j, i.e., j ∈ {−n, . . . , n}. In order to differentiate
between all these possible values of j, we require an auxiliary
state of dimension d = 2n + 1. We remark, though, that we
did not succeed in using this to obtain an efficient protocol for
witnessing Werner states, i.e., a protocol that outperforms P0.

Fidelity discrimination. The error-counting protocol can
be directly applied for solving the fidelity discrimination
problem. This is accomplished by simply processing the in-
formation learned about the value of j as in the protocol P0
case [see Eqs. (11) and (12)], finding comparable efficiency.

C. Protocol P2: Coarse graining

In the strategies introduced above, i.e., the single copy
measurement and the error-counting protocols, the informa-
tion obtained about the ensemble is unnecessarily excessive.
Instead of learning information about whether the number of
errors in the ensemble is above or below some value, we,
indirectly, also obtain information about the concrete number
of errors in the ensemble. This implies that the protocols likely
spend more resources than the ones required to just solve the
witnessing and discrimination problems.

We propose here a modified protocol that tries to minimize
the amount of obtained information, therefore reducing the
amount of resources spent during the process. The strategy
relies on the application of coarse-grained techniques that
allow us to locally access partial information about the am-
plitude index j of the previous protocol, without destroying
the auxiliary state or the ensemble copies.

Fidelity witnessing. We restrict to the amplitude-damping
noise case for simplicity, i.e., states of the form ρa. The
first steps of the protocol are identical to the error-counting
approach. A d-dimensional auxiliary state A1B1 is prepared
in the state |�d

00〉 with d = n + 1, and the ENG operation is
applied from n states of the ensemble to the auxiliary, such
that the information of the number of errors of the ensemble
gets accumulated in the amplitude index j of the auxiliary
state, i.e., |�d

0 j〉. Here, however, we do not measure the
auxiliary state to learn the value of j. In fact, as shown later,

Protocol P2: coarse-graining

Input: Ensemble of n identical noisy Bell states and auxiliary
(n + 1)-level maximally entangled state.

1. Apply the ENG between the ensemble and the auxiliary
state. The information of the noise is accumulated in its
amplitude index j.

2. Apply the coarse-grained operation (14) from the auxiliary
into an additional extra register.

3. Measure the extra register to learn information about where
j lies.

4. Apply the decorrelation process to recover the auxiliary state
untouched.

Output: The witnessing decision problem is solved, i.e., the
fidelity of the ensemble states is determined to be above or below
some threshold up to some failure probability.
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FIG. 4. Schematic representation of the coarse-graining protocol
P2. Given all the possible values that the amplitude index j of the
auxiliary state (upper part) can take, we group them into a few sets
encoded in an extra register (lower part). By suitably measuring
this extra register, we can learn, up to some failure probability, the
information about whether j is above a certain threshold δ0 without
consuming the entanglement of the auxiliary state, whereas the val-
ues of j and δ are directly related with the fidelity F of the states.

the auxiliary state is kept unchanged (and the entanglement is
not consumed).

We introduce an additional two-system register A2B2, that
we denote as extra register, of dimension m � d . For sim-
plicity, we assume that m divides d , i.e., d/m ∈ N; however,
this assumption can be lifted. The extra register is initially
prepared in the |00〉A2B2 state locally by parties A and B. A
bilateral local operation U12 is applied from the auxiliary to
the extra register such that

U12 =
d−1∑
k=0

|k〉〈k|1 ⊗ X
� k

d/m 
2 , (13)

which transfers information of the amplitude index into the
extra register in a coarse-graining way (see Fig. 4). The effect
of this operation reads as

UA1A2 ⊗ UB1B2

∣∣�d
0 j

〉
A1B1

|00〉A2B2

= 1√
d

d−1∑
k=0

∣∣∣∣k,

⌈
k

d/m

⌉〉
A1A2

∣∣∣∣k ⊕ j,

⌈
k ⊕ j

d/m

⌉〉
B1B2

. (14)

The different j values get grouped into different sets of certain
size and the group or interval δ0 is identified as the interval
containing the threshold j0 value, where j0 is the most likely
value of the distribution Pr( j|F0).

The qubit of the extra register that belongs to party A is
subsequently teleported to party B, by consuming log2 m ebits
of entanglement, such that the global state becomes

|ψ〉A1B1B2B3
= 1√

d

d−1∑
k=0

|k〉A1

⊗
∣∣∣∣k ⊕ j,

⌈
k ⊕ j

d/m

⌉〉
B1B2

∣∣∣∣
⌈

k

d/m

⌉〉
B3

, (15)

where we have relabeled qubit A2 → B3. Finally, party B
performs a two-outcome positive-operator-valued measure
(POVM) measurement defined by the projectors {M,1 − M}

(b)(a)

FIG. 5. Analysis of the coarse-graining protocol P2. Given a
state |�d

0 j〉, the probability of measuring outcome M as a function of
j is plotted for a dimension of the auxiliary state of d = 24 (a) and
d = 48 (b). The elements of the different sets �i are indicated.

on the extra register qubits B2, B3, i.e.,

M =
δ0−1∑
δ=0

m−1∑
l=0

| l ⊕ δ, l〉〈 l ⊕ δ, l|, (16)

where the projector acts on the HB2 ⊗ HB3 Hilbert space.
In case the outcome M(1 − M ) is found, we conclude that

the fidelity of the probe ensemble states is above (below) the
threshold F0, up to a certain failure probability. Importantly,
the process only consumes the entanglement required to tele-
port qubit A2 to party B. We consider the number of ebits
required by the process (see Sec. II E) to evaluate the protocol
performance. From a practical perspective, the entanglement
required for the teleportation can be obtained by entanglement
distillation means (see, e.g., [27,36]) of the ensemble copies
directly.

In order to properly understand the effect of the measure-
ment {M,1 − M}, we can classify the values of j in four sets
(see Fig. 5):

�1 = {0, . . . , d̃ (δ0 − 1)},
�2 = {d̃ (δ0 − 1) + 1, . . . , δ0d̃ − 1},
�3 = {δ0d̃, . . . , d̃ (m − 1)},
�4 = {d̃ (m − 1) + 1, . . . , d − 1},

where d̃ = d/m. The measurement given by Eq. (16) can
deterministically distinguish between sets �1 and �3, such
that in case j lies either in �1 or �3, the decision problem
is solved deterministically and the auxiliary state is recovered
untouched (see below). This is, however, not the case for the
set �2, for which certain overlapping exists that has to be
taken into account. In summary, depending on where the ac-
tual set where j lies, the success probability of the witnessing
problem reads as

Pr(M ) = 1 if j ∈ �1,

Pr(M ) = 0 if j ∈ �3,

0 < Pr(M ) < 1 if j ∈ �2 ∪ �4.

The performance of the protocol can be directly analyzed
given the previous reasoning and given the probability dis-
tribution of the j value as a function of the state fidelity.
Figure 6 shows the efficiency for different settings and en-
semble sizes. Observe how for the witnessing problem of
determining whether the value of the fidelity is F > F0 + λ

2
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(a) (b)

(c) (d)

FIG. 6. Performance of the coarse-graining protocol P2. (a) The
success probability of the protocol for a fixed amount of resources
consumed (i.e., fixed extra register of dimension m = 12) for increas-
ing dimension of the auxiliary register d . Note that as long as the
entanglement of the auxiliary is recovered, the performance of the
protocol can be freely enhanced. (b) Success probability for fixed
auxiliary states d = 48 and m = 12, and decreasing δ0. (c) Success
probability for a fixed auxiliary d = 48 and with different dimen-
sions of the register m. For each value of m we use the maximum
ensemble size n and the value of δ0 that minimizes the disconti-
nuity in F0. (d) Fidelity of the remaining auxiliary state after the
implementation of the coarse-gaining protocol P2 for different values
of δ0.

or F < F0 − λ
2 , the success probability of the protocol can

approach 1 for relatively small additive error λ.
Once the decision problem is solved, the last step of the

protocol entails the recuperation of the auxiliary state, which
has been entangled with the extra register during the pro-
cess. The following steps are required to disentangle the extra
register and leave the auxiliary state, and the entanglement
associated, untouched. First, the operation UB1B2 [Eq. (13)] is
undone on the remaining measured state (15), i.e.,

U †
B1B2

|ψ〉A1B1B2B3
= 1√

d

d−1∑
k=0

∣∣∣∣k, k ⊕ j, 0,

⌈
k

d/m

⌉〉
A1B1B2B3

.

Then, qubit B3 is measured in the generalized Fourier basis,
given by the basis elements {|αl〉 = ∑

q exp(−2π iq/m)|q〉},
leading to a state

1√
d

d−1∑
k=0

e2π i� k
d/m l/m|k, k ⊕ j, 0, αl〉A1B1B2B3

,

where l refers to the outcome |αl〉 obtained. By simply apply-
ing a phase gate on party A of the form

UA1 =
d−1∑
k=0

e−2π i� k
d/m l/m|k〉〈k|,

the initial auxiliary state is recovered.

FIG. 7. Schematic representation of the blocking strategy (P3).
The initial ensemble of n Bell diagonal states is divided into several
blocks of size r. Then, the parity of each block is encoded in one of
the states which later is measured revealing the actual parity value
of the block. From the number of obtained “even” parties, we can
determine if the initial fidelity F was above or below the threshold
F0 with some success probability.

Fidelity discrimination. The coarse-graining strategy is
also directly applicable to fidelity discrimination. In this case,
to enhance its performance, the dimension of the extra register
should be chosen depending on the possible fidelity values
F1, F2. Performance is comparable to the efficiency for the
witnessing problem.

D. Protocol P3: Ensemble blocking

We finally consider a strategy based on parity measure-
ments of subsets or blocks of the ensemble. In contrast to the
previously discussed protocols P1 and P2, this approach is not
limited to states ρa resulting from amplitude damping, but also
to other state families such as Werner states ρw.

Fidelity witnessing. Given an ensemble of N unknown
states we first depolarize them into a Werner state form, i.e.,
ρ⊗N 	→ ρ⊗N

w (see Sec. II C). Then, we divide the ensemble
into n blocks of r states each. Making use of bilateral CNOT
gates, in analogy to purification hashing techniques [40],
which act locally from the states of each block into one of
the states, we can learn the parity of each block (see Fig. 7),
i.e.,

CNOTA1A2
1→2 ⊗ CNOTB1B2

1→2|�i j〉A1B1 |�kl〉A2B2

= |�i⊕k, j〉A1B1 |�k,l⊕ j〉A2B2 . (17)

Note that maximally entangled copies are not required since
the parity can be encoded in one of the states of the block.
We denote as κ the number of even parties obtained, whose

Protocol P3: Ensemble blocking

Input: Ensemble of n identical noisy Bell states.
1. Depolarize the ensemble to the form of Eq. (3).
2. Apply bilateral CNOT gates (17) from ensemble blocks to

some target ensemble states.
3. Learn the parity of each block by measuring the target states.
4. If κ ∈ σ assume F > F0, where κ is the number of even

parities.
Output: The fidelity of the initial ensemble was above or below F0

with some success probability Ps.
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probability follows a binomial distribution of the form

Pr(κ|ρ) =
(

n

κ

)
[π0(ρ⊗r )]n−κ [1 − π0(ρ⊗r )]κ ,

where the probability of measuring even parity in a block of
size r is

π0(ρ⊗r ) =
r/2∑
k=0

(
r

2k

)
Ar−2k (1 − A)2k,

where A ≡ (1 + 2F )/3.
Since κ is given by a binomial distribution, we can then

repeat the same analysis performed for protocol P0 (see
Sec. IV A), but using Pr(κ|ρ) instead of Pr( j|F ). Observe
how, despite N states being involved in the protocol, only
n are destroyed and the remaining (r − 1)n states are now
correlated. After the first parity round is complete, the fidelity
of the remaining states is changed depending on the value
of the parity obtained. Due to the back-action effect of the
bilateral control gate [see Eq. (17)], the expected value of the
local fidelity is given by

F ′ = F 2 + F

(
1 − F

3

)
+ 2

(
1 − F

3

)2

.

The performance of the protocol can be further enhanced
in case the initial states of the ensembles are of a certain
form. One case of particular interest involves states affected
by dephasing type noise [Eq. (4)], for which the first depolar-
ization step is not required. For this kind of state, there is no
back-action effect from the bilateral CNOT gate, and hence
the average fidelity remains unchanged, i.e., F ′ = F .

Additionally, one can implement a second round of par-
ity measurements to further enhance the performance. This
is accomplished by simply learning again the parity of the
blocks where an even parity was found, leading to a recursive
improvement in the protocol efficiency.

From the value of κ we can again solve the fidelity wit-
nessing problem following an analogous analysis as the one
described for protocol P0, Sec. IV A, by including the block
size r as an extra parameter to consider, such that the success
probability can be optimized by simply defining a block size
r∗ that maximizes it i.e.,∫ 1

0
Ps(r

∗, F ) dF = max
r

∫ 1

0
Ps(r, F ) dF.

Fidelity discrimination. The value of even parities κ can
be also used to solve the discrimination problem. In this case,
the optimal r∗ is such that the difference of obtaining an even
parity is maximum, i.e.,

π0
(
ρ⊗r∗

1

) − π0
(
ρ⊗r∗

2

) = max
r

π0
(
ρ⊗r

1

) − π0
(
ρ⊗r

2

)
,

where the larger the difference, the more distinguishable the
two probability distributions are. Importantly, the blocking
strategy allows us to overcome the optimal success probability
for fidelity discrimination by involving the whole ensemble in
the process but only partially consuming it.

Figures 8(a) and 8(b) show the performance of the block-
ing strategy, compared with protocol P0 based on individual
measurements. Observe how the blocking strategy provides

(a) (b)

(c) (d)

FIG. 8. Performance of the blocking protocol for Werner-type
states. (a) Fidelity discrimination with equal prior probability for
each state, i.e., η1 = η2 = 1/2. Success probability as a function
of the number of consumed copies. (b) Fidelity witnessing with
F0 = 0.97. Success probability as a function of the fidelity of the
ensemble. The shadow region corresponds to the range of F > F0

such that F ′ < F0. (c) Difference of probability of obtaining parity 0
as a function of the block size r for two blocks of fidelities F1 = 0.99
and F2 = 0.95. The difference is maximized for r = 29. (d) Fidelity
of the remaining states of the ensemble after the application of a
singer round of the blocking protocol.

significant performance enhancement with respect to the indi-
vidual measurements strategy (P0).

V. COMPARISON OF APPROACHES

In order to compare different protocols, we use the number
of required resources R to obtain a certain success probability
Ps as a measure. We demand that the success probability for a
fixed fidelity is the same for all protocols. We use the success
probability of the single-copy approach P0 as a reference
value, and adjust the parameters of the other protocols to guar-
antee that they lead to the same or a larger success probability.
The resources are the number of copies that are measured
and hence destroyed. Notice that for the error-counting and
coarse-graining protocols, P1 and P2, we also take the cost
for used maximally entangled auxiliary states into account.
In order to do so, we assume that these auxiliary states are
generated from noisy states of the ensemble, e.g., via entan-
glement purification, where the yield (Y ) of the entanglement
purification protocol (a combination of the recurrence pro-
tocol of [42] and hashing [40]) determines how many noisy
copies correspond to a perfect ebit. For an entangled auxiliary
register of dimension d , log2(d )/Y states of the ensemble are
required.

An overview of the applicability and strengths of the differ-
ent protocols is given in Table I. All protocols are applicable
for states of the form ρa resulting from amplitude damping,
where both P1 and P2 give an (up-to) exponential advantage as
compared to the standard approach P0. Notice though that the
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TABLE I. General comparison between protocols. We use the required resources R to obtain a certain success probability Ps as a figure of
merit to assess the performance of the different protocols, where we denote by R0 the required resources of the reference protocol P0 to achieve
Ps, and we demand the same or larger success probability for the other protocols. The resources depend on the problem setting (threshold fidelity
F0 in witnessing and F1, F2 in discrimination) and the required success probability. α(n) and β(F0) are factors that depend on the ensemble size
or the threshold fidelity, respectively, and which are typically smaller than 1, i.e., they indicate an improvement over P0. Efficient variants of
the P1 and P2 protocols that offer an exponential improvement over P0 are not known for dephasing and Werner-type states.

Protocol efficiency: Required resources R

State type Indiv. meas. (P0) Error counting (P1) Coarse graining (P2) Ensemble blocking (P3)

Amplitude damping ρa R0 O[log R0] O[α(n) log R0] O[β(F0) R0]

Dephasing ρd R0 Nonefficient Nonefficient O[β(F0) R0]

Werner ρw R0 Nonefficient Nonefficient O[β(F0) R0]

error-counting and coarse-graining protocols P1 and P2 are
not efficient for Werner states. However, the blocking protocol
P3 still outperforms the standard approach P0 also in this case,
as is shown in Figs. 8(a) and 8(a).

In Fig. 9 we compare the different protocols (see also
Table I), and plot the required resources r as a function of
the fidelity of the initial states in the ensemble for the fidelity
witnessing problem, i.e., to decide if the state has a fidelity
larger or smaller than F0. One clearly observes that P1 and
P2 offer a large improvement for fidelities that are close to
the threshold fidelity F0, though they work even better if one
excludes a small interval around F0, i.e., considers the promise
problem that F � F0 + λ/2 or F < F0 − λ/2. Similarly, for

FIG. 9. Comparison between different protocols. The required
resources R, i.e., the number of consumed copies, are plotted as a
function of the fidelity for different protocols. We assume a threshold
fidelity of F0 = 0.95, and an ensemble of size n corresponding to
states resulting from amplitude damping ρa. We consider a fixed
success probability for all protocols that varies with the fidelity (right
vertical axis). Notice that ensemble sizes differ for different protocols
in order to match success probabilities, but the relevant quantity is
the consumed resources which are plotted. Parameter used for the
different protocols are as follows. P0: ensemble size n = 150, where
all copies are measured; P1: ensemble size n = 150, dimension
d = log2 151 for auxiliary register; P2: ensemble size n = 290, di-
mension of auxiliary register d = 300, dimension of coarse-grained
register m = 30, δ0 = 2; P3: ensemble size n = 603, block size r = 9
measured copies 67.

the fidelity discrimination problem, one obtains an even larger
improvement for P1 and P2.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have considered the verification of noisy
entangled states, with the aim to decide if the quality of
states in a (large) ensemble is sufficient to use them for some
desired application. We introduced methods to distinguish
between two sets of entangled states by means of local op-
erations and classical communication, eventually assisted by
entanglement. We have concentrated on specific state families
and fidelity as the central feature. Specifically, we introduced
protocols to solve the decision problems of determining if the
ensemble consists of states with fidelity F1 or F2 (discrete
sets), or if the fidelity of the states is above or below a cer-
tain threshold value F0, possibly excluding a small interval
around F0. The nature of the problem that we called fidelity
witnessing requires as output only one bit of information, in
contrast to well-studied problems such as state tomography
or fidelity estimation, where a significantly larger amount of
information needs to be determined. As a first result, we have
found that this practically relevant decision problem can for
some state families, e.g. resulting from imperfect storage with
decay as the dominant noise source, be solved more efficiently
than using fidelity estimation or full state tomography.

Perhaps more importantly, we demonstrate that using a
larger ensemble while measuring and hence consuming only
a small subset of states provides a significant advantage. This
is similar in spirit as utilized in [27,28] in the context of
entanglement purification or state certification, but generalizes
and extends these ideas in a nontrivial way and makes them
applicable to new problems. This in fact leads to an up-to-
exponential improvement as compared to methods, extensions
of state verification [20–25], that operate on ensembles of a
fixed size where all states are measured. Some protocols we
introduce in this context operate on states of the ensemble
directly (protocol P3), without any extra resources, where
blocks of a certain size are locally manipulated by collective
operations and only a few states are measured. The rest of
the ensemble remains intact and can be used for the desired
application after successful verification. Other approaches we
introduce, such as protocols P1 and P2, require auxiliary en-
tangled states to write in and read out relevant information
of the whole ensemble. While in protocol P1 this auxiliary
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register is measured and hence destroyed, in protocol P2 the
information is first coarse grained, and most of the auxiliary
entanglement is preserved and can be recovered. Only the
read-out of a small amount of coarse-grained information
is required, and little entanglement is consumed to access
this (nonlocal) information with local operations only. It is
in fact the latter protocol that yields a provable exponential
advantage as compared to strategies that operate on fixed-
size ensembles that are fully measured. Notice that consumed
auxiliary entanglement can be directly related to the number
of copies of states in the ensemble that need to be measured.
One may either actually use noisy states from the ensemble
as auxiliary states, or first produce, e.g., by means of entan-
glement purification, high-fidelity or even perfect auxiliary
entangled states from noisy copies. The conversion rate is
given by the performance of entanglement purification, where
reachable bounds are known. One can hence translate also
protocols using auxiliary entanglement into schemes that only
use noisy states from the ensemble, and find the total number
of consumed states. This allows one to compare the different

strategies, and assess performance (e.g., success probability)
for a given number of consumed copies, or the required num-
ber of copies to reach a certain accuracy.

We remark that the ideas and tools we present here are
not limited to the specific state classes we consider, but
may be more broadly applicable. For instance, we believe
that a generalization to multipartite entangled states such as
Greenberger-Horne-Zeilinger states or certain graph states is
straightforward, and will be presented elsewhere. Also, the
idea of using a larger ensemble, concentrating information
and measuring only a small fraction might be useful for other
related problems, such as, e.g., for improving fidelity estima-
tion.
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