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It is known that by probabilistically mixing an arbitrary pair of pure quantum states, one of which is entangled
and the other product, in any bipartite quantum system, one always obtains an entangled state, provided the
entangled state of the pair appears with a nonzero probability. On the other hand, if we consider any superposition
of the same pair, with a nonzero amplitude for the entangled state of the pair, the output state may not always
be entangled. Motivated by this fact, in this work we study the superpositions of a pure entangled state and a
pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
We show, in particular, that all such superpositions produce only entangled states if the initial entangled state
has Schmidt rank 3 or higher. Again, superposing a pure entangled state and a product state cannot lead to
product states only, in any bipartite quantum system. These lead us to define conditional and unconditional
inseparabilities of superpositions. These concepts in turn are useful in quantum communication protocols.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local
discrimination of shared quantum ensembles. We also find that the unconditional variety leads to systematic
methods for spotting ensembles exhibiting the phenomenon of more nonlocality with less entanglement and
two-element ensembles of conclusively and locally indistinguishable shared quantum states.
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I. INTRODUCTION

Quantum entanglement [1–3] is regarded as an important
resource because it finds applications in several informa-
tion processing protocols, like quantum teleportation [4,5],
quantum dense coding [6–11], and quantum key distribution
[12,13]. Therefore it is important to understand the origin and
characteristics of such a resource. Entanglement in quantum
states of shared systems is a result of the superposition prin-
ciple of quantum physics. Arbitrary superpositions, however,
do not lead to entangled states of the corresponding shared
physical system. For example, if we consider superpositions
of a pure entangled state and a product state, then we may not
always get entanglement as output. In this context we mention
that if we mix any pure entangled state with an arbitrary
product state with nonzero probabilities then we always get
an entangled state [14]. Motivated by this fact, in this work
we consider the superpositions of a pure entangled state and a
product state, when the amplitudes (i.e., superposition coeffi-
cients) corresponding to the (normalized) states appearing in
any superposition are nonzero.

The question of entanglement of superposed quantum
states has already been posed in the literature. The subsequent
studies have, as far as we know, been always quantitative,
providing important bounds on the amount of entanglement
generated in different types of superpositions, considering
different entanglement measures [15–26]. We, however, wish
to study the problem qualitatively, answering only whether a
given superposition of quantum states of a shared system is
entangled or not. In particular, we ask when the superpositions
of a given pair of a pure entangled state and a product state

can produce entangled states, provided that the coefficients
corresponding to the states appearing in any superposition are
nonzero. A quantitative study of course provides the qual-
itative answer, but we find that in several cases where the
quantitative solution is missing, one can still extract quali-
tative results. This is one of the reasons why we focus on
a qualitative study in this work. Furthermore, we provide
several applications of such a study.

In discussions about robustness of entanglement, one often
considers the mixtures of an entangled state with a separable
state, i.e., convex combination of the states, where the latter is
deemed as “noise” [14,27–42]. By considering such a mixture,
one examines how robust the given entangled state is against
the chosen noise. In other words, we ask how much mixing
of the noise does the entangled state tolerate so that the newly
produced state remains entangled. Sometimes it is possible to
find a separable state for a given entangled state such that any
mixture of the states produce entangled states, provided that
the initial entangled state appears with nonzero probability in
any of the mixtures. In such a scenario, we can say that the
entangled state is unconditionally robust in the direction of
that separable state [14,30,31,38,42]. As mentioned earlier,
for an arbitrary pair of a pure entangled state and a product
state, any mixture of the states with nonzero probabilities pro-
duces entangled states only [14]. Therefore all pure entangled
states are unconditionally robust in the direction of all product
states. Following this notion of unconditional robustness, we
ask whether it is possible to find product states such that any
superposition of a product state with a given pure entangled
state is always entangled when the coefficients corresponding
to the states appearing in any superposition are nonzero. If it is
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possible to produce such an instance, then we refer to the phe-
nomenon as unconditional inseparability of superpositions.

In general, we find that for all pairs of a pure entangled
state and a product state, arbitrary superpositions lead to
entangled states only, when the initial entangled state has
Schmidt rank 3 or above and the coefficient corresponding
to it is nonzero in any superposition. Clearly, for bipartite
quantum systems, none of whose constituents is a qubit, all
pure entangled states are “unconditionally superposition ro-
bust” in the direction of all product states, when the initial
entangled state has Schmidt rank 3 or above. This, therefore,
provides a parallel scenario in the context of superpositions
with respect to the result stated before from Ref. [14] in the
complementary context of mixtures. The opposite problem is
to uncover instances where superpositions produce product
states. We find that in arbitrary bipartite quantum systems, a
pure entangled state and a product state cannot lead, via super-
positions, to product states only. We refer to this phenomenon
as conditional inseparability of superpositions. These results
about superposing a pure entangled state and a product state
in arbitrary bipartite quantum systems are given in Sec. II.
Thereafter, we provide some detailed discussions related to
the two-qubit system in Sec. III.

In Sec. IV we discuss about the applications of the above
findings. For example, we show that the phenomenon of un-
conditional inseparability of superpositions finds application
in the context of “nonlocality” associated with the problem
of state discrimination under local quantum operations and
classical communication (LOCC) [43–84]. We find that the
phenomenon of conditional inseparability of superpositions
can also have important applications in the context of local
quantum state discrimination problems. We then identify a
class of unextendible entangled bases, which we refer to as
“r-UEBs,” and prove that they can contain no state which
is conclusively locally identifiable with nonzero probability.
Some discussions of the results, including a comparison with
the quantitative results already known in the literature, are
presented in Sec. V.

II. SUPERPOSING AN ENTANGLED STATE
AND A PRODUCT STATE

We provide two results in this section for the general case,
that is, for pure states of arbitrary bipartite dimensions. Both
concern the entanglement or its absence in a superposition
of a pure entangled state and a product state. We will use
the concept of the Schmidt rank of bipartite pure quantum
states, which is defined as the number of nonzero (Schmidt)
coefficients in a Schmidt decomposition of the (bipartite pure)
state [1–3]. However, before we provide the theorems, we
formally define the concepts of conditional and unconditional
inseparabilities of superposition.

Definition 1. [Conditional and unconditional inseparabili-
ties of superposition] If it is possible to find a product state,
such that any superposition of the product state with a given
pure entangled state is always entangled, when the coefficients
corresponding to the states appearing in any superposition
are nonzero, then we say that the initial entangled state is
unconditionally robust in the direction of the product state and
we refer to the phenomenon as an instance of unconditional

inseparability of superpositions. Otherwise, it is an instance
of conditional inseparability of superpositions.

Theorem 1. Any nontrivial superposition of an arbitrary en-
tangled pure state and an arbitrary product state of a bipartite
quantum system is entangled, provided the initial entangled
state has Schmidt rank 3 or higher.

Remark 1. Among bipartite quantum systems, barring those
for which a local dimension is 2 (i.e., barring C2 ⊗ Cd sys-
tems), a pure state can have Schmidt rank 3 or higher.

Remark 2. By a “nontrivial” superposition of two pure
quantum states, we imply that the initial states are not included
in the discussion. That is, if we consider any superposition of
two states |e〉 and |p〉 as a1 |e〉 + a2 |p〉, then the coefficients a1

and a2 corresponding to the states |e〉 and |p〉 must be nonzero.
If one of them is zero, then after superposition we get back one
of the initial states, i.e., |e〉 or |p〉. We do not include these
“trivial” cases here.

Remark 3. We therefore find that for two qutrits and higher
local dimensions, all pure entangled states of Schmidt rank
3 or higher are “unconditionally superposition robust” in the
direction of all product states. The complementary situation,
where a pure entangled state is mixed with a product state,
always leading to an entangled state, is known from Ref. [14].

Proof. Let |e〉 be an entangled state with Schmidt rank � 3
and let |p〉 be a product state. If possible, let a1 |e〉 + a2 |p〉 =
|p′〉 be a product state where a1, a2 are nonzero complex
numbers, so, a1 |e〉 = |p′〉 − a2 |p〉. The vector a1 |e〉 is not
normalized, but it is possible to define the Schmidt rank of this
element, which is exactly equal to that of |e〉, i.e., � 3. Simi-
larly, if we define the Schmidt rank for the vector |p′〉 − a2 |p〉,
then it can be shown that it is not greater than 2, giving us a
contradiction, proving that the initial assumption of |p′〉 being
a product state is not true. We are therefore left with proving
that |p′〉 − a2 |p〉 has Schmidt rank � 2 (where |p〉 and |p′〉
are two product states and a2 is a nonzero complex number),
which we do now. This can be understood in the following
way. We assume that |p〉 = |α〉 |β〉 and |p′〉 = |α′〉 |β ′〉. If the
states on any of the sides of the bipartite system are linearly
dependent, i.e., if either |α〉 and |α′〉 are linearly dependent
or |β〉 and |β ′〉 are so (or both), then |p′〉 − a2 |p〉 can be
written in tensor-product form and so will have unit Schmidt
rank. Therefore let |α〉 and |α′〉 be linearly independent, and
similarly, let |β〉 and |β ′〉 be also so. Then |α′〉 can be written
as b0 |α〉 + b1 |α⊥〉, where |α〉 and |α⊥〉 are orthogonal to each
other and b0 and b1 are complex numbers. Then we can rewrite
|p′〉 − a2 |p〉 as |α〉 (b0 |β ′〉 − a2 |β〉) + b1 |α⊥〉 |β ′〉. Tracing
out the first party, the reduced density matrix of the second is
a convex combination (probabilistic mixture, but possibly not
normalized to unit probability) of the vectors b0 |β ′〉 − a2 |β〉
and b1 |β ′〉. This matrix cannot have more than two nonzero
eigenvalues, which implies that the Schmidt rank of |p′〉 −
a2 |p〉 is � 2. This completes the proof. �

Generalization of Theorem 1. Let us consider an entangled
state |e〉 of Schmidt rank, r � 3, and also r − 2 product states,
|p1〉, |p2〉, . . ., |pr−2〉. Then the state |ψ〉 = a0 |e〉 + a1 |p1〉 +
a2 |p2〉 + · · · + ar−2 |pr−2〉 is always entangled, where ai are
complex numbers such that 〈ψ |ψ〉 = 1 and a0 �= 0.

Proof. Consider the element |e′
1〉 := a0 |e〉 + a1 |p1〉.

We claim that |e′
1〉 cannot have Schmidt rank less than

r − 1. This follows from the following contradiction.
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Suppose |e′
1〉 has Schmidt rank � r − 2. So, |e′

1〉 =
|0〉 |0′〉 + |1〉 |1′〉 + · · · + |(l − 1)〉 |(l − 1)′〉, where l �
r − 2, and where we have ignored the normalization of the
constituent Schmidt kets and the overall superposition. Now,
a0 |e〉 = |e′

1〉 − a1 |p1〉. We can take |p1〉 = |α〉 |β〉, where
|α〉 = c0 |0〉 + c1 |1〉 + c2 |2〉 + · · · + cl−1 |l − 1〉 + cl |l⊥〉,
with |l⊥〉 being orthogonal to the mutually orthogonal
kets, |0〉 , |1〉 , |2〉 , . . . , |l − 1〉. So, |e′

1〉 − a1 |p1〉 can be
written as |0〉 (|0′〉 − a1c0 |β〉) + |1〉 (|1′〉 − a1c1 |β〉) +
· · · + |(l − 1)〉 (|(l − 1)′〉 − a1cl−1 |β〉) − a1cl |l⊥〉 |β〉. This
cannot have Schmidt rank > r − 1, because tracing out the
first party lands us in a state that has support on a space
spanned by � r − 1 kets. But a0 |e〉 has Schmidt rank r.
Clearly, the Schmidt rank of a0 |e〉 cannot be equal to that of
|e′

1〉 − a1 |p1〉. Thus |e′
1〉 cannot have Schmidt rank less than

r − 1. In a similar fashion, we can prove that the element
a0 |e〉 + a1 |p1〉 + a2 |p2〉 cannot have Schmidt rank less
than r − 2, and finally, |ψ〉 cannot have Schmidt rank less
than r − r + 2 = 2. Note that in the above argument, if we
take cl = 0 then anyway, the contradiction will occur. This
completes the proof of the generalization of Theorem 1. �

The next result looks at a scenario that is complementary
to the one answered in the foregoing theorem.

Theorem 2. There does not exist a pair of a pure entangled
state and a product state such that any superposition of the
states produces a product state, when the coefficients corre-
sponding to the initial states in the superpositions are nonzero.

Proof. Theorem 1 implies that the current proof needs to
be done only for entangled states of Schmidt rank 2. However,
we provide a general proof here. Let |e〉 be an entangled state
and |p〉 a product of an arbitrary bipartite quantum system.
Consider now the superposition |ψ〉 = ε|e〉 +

√
1 − |ε|2|p〉,

for arbitrary nonzero and nonunit complex number ε, such
that 〈ψ |ψ〉 = 1. Let us consider the metric d (|φ1〉, |φ2〉) =√

1 − |〈φ1|φ2〉|2 on the tensor-product Hilbert space corre-
sponding to the bipartite quantum system under consideration.
The set of states |ψ〉 generated by varying ε, now considered
to be real and ∈ (0, 1), can be understood as a continuous
“line segment” connecting the “points” |e〉 and |p〉 on the joint
Hilbert space. Now since product states form a closed set in
this Hilbert space with respect to the metric d , there is always
an ε1 > 0 such that |ψ〉 is entangled for all ε ∈ [ε1, 1]. �

The above results, and especially the remark after Theorem
1, clearly emphasize the importance of considering bipartite
systems of low dimensions for analyzing entanglement in
superpositions. And we consider the two-qubit case in detail
in the following section.

III. TWO-QUBIT SYSTEMS: UNCONDITIONAL
INSEPARABILITY OF SUPERPOSITIONS

Theorem 1 is void for two-qubit systems (actually, for all
C2 ⊗ Cd systems). There are no pure states of two qubits that
are of Schmidt rank 3 or higher. The landscape is richer here
than in the higher dimensions considered in Theorem 1, and
a pure entangled state, when superposed with a product state,
can lead to entangled as well as product states in the case of
two-qubit systems.

Let us first discuss the cases when the output (i.e., the
superposed state) is a product state. An example is obtained

by superposing (|00〉 + |11〉)/
√

2 and |11〉 with suitable co-
efficients so that the output is |00〉. If we consider a1(|00〉 +
|11〉)/

√
2 + a2|11〉, then we can take a1 = √

2 and a2 = −1
to get |00〉. In this example, the input entangled and product
states are nonorthogonal. This, however, is not a necessity,
and we now give an example of a superposition of a pure
entangled state and an orthogonal product state such that the
output is a product. This can be performed systematically
by the usual method of solving the eigenvalue equation of a
local density matrix of the two-qubit pure state. As we will
see in Sec. IV, this exercise can be of crucial importance
in identifying ensembles of locally indistinguishable shared
states.

Example 1. Consider the two-qubit entangled state, |e1〉 =
2/

√
5 |00〉 + 1/

√
5 |11〉, written in Schmidt decomposition.

We ask the following question: Is there a product state that
is orthogonal to this entangled state and for which a super-
position of the product state with the given entangled state
can produce a product state? To answer this question, we
write down an arbitrary superposition of the two states, ap-
ply the condition of orthogonality, and solve the eigenvalue
equation of a local density matrix of the superposed state.
Some algebra leads us to the product state |p1〉 = (2/

√
5 |0〉 −

1/
√

5 |1〉)(1/
√

17 |0〉 + 4/
√

17 |1〉), for which the superposi-
tion 3/

√
26|e1〉 + √

17/26|p1〉 is a product state.
We therefore see that a two-qubit pure entangled state

can superpose with a two-qubit product state to create a
product state. The same pairs will always lead to at least
some entangled states when other superposition coefficients
are considered, as guaranteed by Theorem 2. Such pairs are
what we can refer to as leading to conditional inseparability of
superpositions. However, we are now interested in discussing
unconditional inseparability of superpositions, which refers
to a set of pure quantum states, any superposition of which
can only produce an entangled state. We provide now two ex-
amples of such unconditional inseparability of superpositions,
where we focus only on sets which consist of a two-qubit pure
entangled state and a two-qubit product state.

Example 2. An arbitrary two-qubit pure entangled state
can be written, in Schmidt form, as a1 |00〉 + a2 |11〉, where
a1, a2 are (nonzero) positive real numbers such that a2

1 + a2
2 =

1. For varying a1 and a2, a two-dimensional subspace is
spanned whose orthogonal complement contains the product
states |01〉 and |10〉. One can check that any superposition
of a1 |00〉 + a2 |11〉 with |01〉 or |10〉 is always entangled—
unconditional inseparability of superpositions. This fact can
be generalized to higher dimensions, but Theorem 1 reports
an even better generalization there.

Example 3. Consider now the maximally entangled state,
(|00〉 − |11〉)/

√
2, and the (orthogonal) product state, | +

+〉, where |+〉 = (|0〉 + |1〉)/
√

2. Superpositions of these
two states produce entangled states only. Therefore this pair
provides another example of unconditional inseparability of
superpositions.

Unconditional inseparability and nonorthogonality. We
will see in the following section that superpositions of a
pure entangled state and an orthogonal product state is of
importance in local state discrimination tasks. However, it is
possible to find examples of unconditional inseparability of

022413-3



SARONATH HALDER AND UJJWAL SEN PHYSICAL REVIEW A 107, 022413 (2023)

superpositions even in a pair consisting of an entangled and
a product state which are nonorthogonal. Consider the entan-
gled state, |e〉 = a1 |00〉 + a2 |11〉, where a1, a2 are nonzero
Schmidt coefficients and a2

1 + a2
2 = 1. We try to figure out

a possible structure of a product state |p〉, not necessarily
orthogonal to |e〉, such that |ψ〉 = e |e〉 + p |p〉 is entangled
for all nonzero values of e and p, with 〈ψ |ψ〉 = 1. Obvi-
ously, |p〉 has the structure α |e〉 + β |e⊥〉, with |α|2 + |β|2 =
1, and where |e⊥〉 is orthogonal to |e〉. We assume that
|e⊥〉 is an entangled state which has the structure |e⊥〉 =
a3 |01〉 + a4 |10〉, a3, a4 are nonzero Schmidt coefficients, and
a2

3 + a2
4 = 1. Based on the values of a1, a2, a3, a4, the val-

ues of α, β will be fixed for which |p〉 will be a product
state. We now prove that α, β must be real and they form a
unique pair for α |e〉 + β |e⊥〉 to be a product state. To prove
this we consider the superposition cos θ

2 (a1 |00〉 + a2 |11〉) +
eiφ sin θ

2 (a3 |01〉 + a4 |10〉). This state is a product state if and
only if | cos2 θ

2 a1a2 − ei2φ sin2 θ
2 a3a4| = 0. This implies that

cos2 θ
2 a1a2 − cos 2φ sin2 θ

2 a3a4 = 0 and sin 2φ sin2 θ
2 a3a4 =

0. The second equation implies that sin 2φ = 0, i.e., φ = nπ
2 ,

with n being an integer. Putting this value of φ in the equa-
tion cos2 θ

2 a1a2 − cos 2φ sin2 θ
2 a3a4 = 0, we get tan2 θ

2 =
(−1)na3a4

a1a2
. But tan2 θ

2 cannot be negative, and thus we have
to take (−1)n = 1, i.e., n must be an even number. We now

set a3a4
a1a2

= k, a constant. Thus we get α = cos θ
2 =

√
k

k+1

and β = sin θ
2 =

√
1

k+1 . Clearly, therefore, α, β are real, and

they form a unique pair. Next, we substitute |p〉 = α |e〉 +
β |e⊥〉 in the expression of |ψ〉 = e |e〉 + p |p〉 to get |ψ〉
= (e + pα) |e〉 + pβ |e⊥〉. We now compare this expression
with the expression of |p〉 = α |e〉 + β |e⊥〉. We have just
seen that there is a unique combination of coefficients for
a linear combination of |e〉 and |e⊥〉 to be a product state,
and that is the state |p〉. So, all other linear combinations in
|ψ〉 = (e + pα) |e〉 + pβ |e⊥〉 = e |e〉 + p |p〉 form entangled

states. Moreover, 〈e|p〉 = α =
√

k
k+1 �= 0, so that |e〉 and |p〉

are not orthogonal. We therefore have identified a class of
pairs, each consisting of an entangled state and a nonorthogo-
nal product state, that provide unconditional inseparability of
superpositions.

IV. APPLICATIONS

In this section we demonstrate that the concepts and corre-
sponding examples that we discussed until now can be useful
in certain quantum communication tasks.

A. Unextendible entangled basis and conclusive local
discrimination of quantum states

We begin with the definition of an unextendible entangled
basis (UEB) [85–108].

Definition 2. [Unextendible entangled basis] An unex-
tendible entangled basis is a set of mutually orthonormal
entangled states of a composite Hilbert space such that there
are no entangled states in the orthogonal complement of their
span.

We note here that the span of the entangled states within a
UEB must not be equivalent to the whole given Hilbert space
for the concept of UEB to be nontrivial. While the definition

has been generalized to the multiparty case, we focus on the
bipartite case only. We consider a special type of unextendible
entangled basis in Cd1 ⊗ Cd2 , d1, d2 > 2, as given by the
succeeding definition.

Definition 3. [r-UEB] Let r be a positive integer and
r � 3. We call an unextendible entangled basis an r-UEB if
all elements of that UEB has a Schmidt rank r or higher and
there is at least one element of Schmidt rank r.

For r-UEBs, we can present Theorem 3, given below. We
note here that “conclusive identification” of each state, in a
given set of states, with some nonzero probability is required
for “conclusive distinguishability” of a given set. And to
identify a quantum state, drawn from the given set of states,
conclusively under LOCC, it is necessary and also sufficient
to find a product state which has nonzero overlap with the
considered state, but the product state must have zero overlap
with the other states of the set [109].

Theorem 3. An r-UEB contains no state which is conclu-
sively locally identifiable.

Proof. If we draw any state from the given UEB, it is
not possible to produce a product state by taking any super-
position of the drawn state and the product states from the
complementary subspace. This follows from Theorem 1. Sup-
pose that the drawn state is |e〉, and let {|p1〉 , |p2〉 , . . . , |pn〉}
be a (product) basis for the complementary subspace. Let
|φ〉 = a0 |e〉 + a1 |p1〉 + · · · + an |pn〉, where ai are nonzero
complex numbers such that 〈φ|φ〉 = 1. We can rewrite |φ〉 as
a0 |e〉 + a′ |p′〉, where a′ =

√
|a1|2 + |a2|2 + · · · + |an|2 and

where |p′〉 = (1/a′)(a1 |p1〉 + · · · + an |pn〉) is another prod-
uct state (by the definition of UEB). Therefore |φ〉 is an
entangled state (by Theorem 1). So it is not possible to find
any product state which is nonorthogonal to the drawn state
but orthogonal to the rest of the states of the UEB.

It is also important to mention the following: The state
|φ〉 = a′

0|e〉 + a′
1|e′〉, |a′

0|2 + |a′
1|2 = 1, can be a product state

but it will be nonorthogonal to |e′〉 also, where |e〉, |e′〉 are
different states drawn from the UEB. This is not desired,
because to identify the state |e〉 unambiguously with some
nonzero probability, we must have a |φ〉 that is nonorthogonal
to |e〉 but orthogonal to |e′〉. This is the criterion we get from
[109].

These complete the proof. �
The proof of Theorem 3 also implies that given a complete

orthonormal basis whose states are all entangled, no state
of that basis can be conclusively locally identified. This is
because there is no room to find a product state which is
nonorthogonal to the drawn state from the given basis. See
Ref. [52] in this regard. Note also that when an incomplete
entangled basis is given, the conclusive local identifiability is
not that obvious.

To provide an example of an r-UEB, considered in Theo-
rem 3, we construct a 3-UEB in C4 ⊗ C4. We first identify
nine entangled states of Schmidt rank 3, viz., the states of
the set {|ψ1〉, |ψ2〉, |ψ3〉} belonging to the subspace spanned
by the states in {|00〉, |11〉, |22〉}, the states in {|ψ4〉, |ψ5〉,
|ψ6〉} belonging to the subspace spanned by {|01〉, |12〉, |20〉},
and the states in {|ψ7〉, |ψ8〉, |ψ9〉} belonging to the subspace
spanned by {|02〉, |10〉, |21〉}. In fact, these nine states can be
orthogonal to each other. Next, we consider the product states
|03〉, |13〉, |23〉, |30〉, |31〉, |32〉, |33〉. These product states are
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also orthogonal to the previously mentioned nine entangled
states. We now present the final basis in C4 ⊗ C4. It consists
of the states, 1√

2
(|ψ1〉 ± |03〉), 1√

2
(|ψ2〉 ± |13〉), 1√

2
(|ψ3〉 ±

|23〉), 1√
2
(|ψ4〉 ± |30〉), |ψ5〉, |ψ6〉, |ψ7〉, |ψ8〉, |ψ9〉, |31〉, |32〉,

|33〉. Clearly, the first 13 states form a UEB in C4 ⊗ C4 with
the property that the entangled states have Schmidt rank 3.
This UEB constitutes an example of an r-UEB (for r = 3) as
used in Theorem 3.

The UEBs of Theorem 3 exhibit a stronger form of nonlo-
cality compared to those sets of states which are not perfectly
locally distinguishable but conclusively locally distinguish-
able. These UEBs are also more nonlocal compared to those
sets of states, a few states of which are conclusively locally
identifiable, but all of them are not.

We should note here that the above type of basis is
not possible in C2 ⊗ Cd . In that case, Schmidt rank �3 is
not possible for any pure state. Particularly, for two qubits it is
possible to construct UEBs of cardinality 3 only [108], at least
one state of which is conclusively locally identifiable [110].

Partially entangled subspaces. A “partially entangled sub-
space” contains both entangled and product states, but it is
deficient in product states so that it is not possible to find
a product basis for the subspace. Such a partially entangled
subspace can be obtained by using an r-UEB. Consider any
(entangled) state drawn from an r-UEB. The drawn state along
with the product basis for the complementary subspace of the
r-UEB produce a partially entangled subspace. We note that
the product state deficit is due to the fact that the drawn state
will superpose with all other states to form only entangled
states (by Theorem 1), thus always blocking at least one
dimension in which there is only an entangled state, so that no
basis for the subspace can be formed using only product states.
An interesting feature of a partially entangled subspace is that
all full-rank states associated with the subspace are entangled,
as they violate the range criterion. This is directly due to the
product state deficit in the subspace.

Generalization of Theorem 3. Following the generalization
of Theorem 1 along with Theorem 3, we can consider an-
other type of UEB in a bipartite system Cd1 ⊗ Cd2 , where the
entangled states have Schmidt rank at least r and the comple-
mentary subspace contains states of Schmidt rank � (r − 2).
Then no state of the UEB can be conclusively identified by
LOCC.

B. Strategies for conclusive local discrimination

Suppose that we are given a set of three two-qubit pure
mutually orthogonal entangled states |	1〉, |	2〉, and |	3〉
such that the (unique) state which is orthogonal to these
states is a product state. Such a set cannot be perfectly dis-
tinguished by separable measurements [108,111], which is a
strict superset of the set of LOCC-based measurements [43].
Nevertheless, it is possible to identify by LOCC at least one
state of the set conclusively with some nonzero probability
[110]. We remember here the definitions of conclusive dis-
tinguishability and identification, given in Sec. IV A, and we
reiterate that to identify a quantum state drawn from a given
set of states conclusively under LOCC-based measurement
strategies, it is necessary and sufficient to find a product
state which has nonzero overlap with the considered state,

but the product state must have zero overlap with the other
states of the set [109]. In a practical scenario, it will be im-
portant to know the form of such product states to prepare
a measurement setup for the conclusive identification. We
now go back to the given set of three states. Suppose the
state |	1〉 = 2/

√
5 |00〉 + 1/

√
5 |11〉, and we want to iden-

tify this state conclusively, by LOCC, with some nonzero
probability. We also assume that the product state, which is
orthogonal to the states |	i〉, ∀i = 1, 2, 3, is given by |
〉 =
(2/

√
5 |0〉 − 1/

√
5 |1〉)(1/

√
17 |0〉 + 4/

√
17 |1〉). Clearly, to

identify the state |	1〉 conclusively under LOCC with some
nonzero probability, we have to find out a product state by
taking a superposition of |	1〉 and |
〉. This can be found
from Example 1 in Sec. III.

C. More nonlocality with less entanglement

Consider a pair consisting of a pure entangled normalized
state |	̃1〉 and an orthogonal product normalized state |
̃〉
in a two-qubit system such that a nontrivial superposition
of the pair is always entangled. So for arbitrary complex
numbers a1 and a2, with a1, a2 �= 0 and |a1|2 + |a2|2 = 1,
a1 |	̃1〉 + a2 |
̃〉 is entangled. The existence of such pairs is
exactly the content of the concept of unconditional insepa-
rability of superpositions considered in Sec. III. It is always
possible to find other states |	̃2〉 and |	̃3〉 such that the states
|	̃1〉, |	̃2〉, |	̃3〉, and |
̃〉 form a two-qubit orthonormal basis.
See Refs. [108,112] for such bases.

The states |	̃1〉, |	̃2〉, and |	̃3〉 cannot be conclusively
distinguished by LOCC. In particular, the state |	̃1〉 cannot
be conclusively identified by LOCC. This follows from the
fact that if |	̃1〉 can be conclusively identified by LOCC, then
it is necessary and sufficient to find a product state which
is nonorthogonal to |	̃1〉 but orthogonal to |	̃2〉 and |	̃3〉
[109,110]. Obviously, this product state must belong to the
subspace spanned by |	̃1〉 and |
̃〉. But according to our
assumption about the {|	̃1〉, |
̃〉} pair, this subspace contains
only one product state, viz. |
̃〉, because all others are of
the form a1 |	̃1〉 + a2 |
̃〉, with a1, a2 �= 0, and are entangled.
And |	̃1〉 and |
̃〉 are orthogonal to each other. So it is not pos-
sible to find a product state which is nonorthogonal to |	̃1〉 but
orthogonal to |	̃2〉 and |	̃3〉. It is important to mention here
that any set of three orthogonal two-qubit maximally entan-
gled states can always be conclusively distinguished by LOCC
[112]. Therefore the set consisting of the states |	̃1〉, |	̃2〉, and
|	̃3〉 are “more nonlocal” than any set of three orthogonal two-
qubit maximally entangled states, where the “nonlocality” is
in the sense of conclusive local indistinguishability of a set of
orthogonal shared quantum states. This also implies that the
states |	̃1〉, |	̃2〉, and |	̃3〉 cannot be maximally entangled.
This also follows from Ref. [85], because we have assumed
that the state |
̃〉 is a product state and therefore all of the
states |	̃1〉, |	̃2〉, and |	̃3〉 cannot be maximally entangled
states.

It is clear that the average entanglement of the states of
the set {|	̃1〉 , |	̃2〉 , |	̃3〉} is lower than that of any set of
maximally entangled two-qubit states. However, the states
of the latter set are conclusively distinguishable by LOCC,
while those of the former are not. We are therefore led to
the phenomenon of more nonlocality with less entanglement
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[52]. See Ref. [112] in this regard. Locally indistinguishable
mutually orthogonal ensembles of shared states can be used
by a “boss” to send a secret to her “subordinates” in such a
way that they can recover the secret only if they cooperate.

D. Two-element ensembles and conclusive
local indistinguishability

Two orthogonal states of two qubits form the most el-
ementary class of quantum ensembles. Such ensembles, if
the constituent elements are pure, can never lead to local
indistinguishability, perfect or conclusive [44], leading to their
uselessness from this perspective. To search for two-element
ensembles of two qubits that are conclusively indistinguish-
able under LOCC, at least one of the two elements must
be a mixed state. If we further require that the sum of the
dimensions of the supports of the states within a two-element
ensemble must not be equal to the total dimension of the
Hilbert space, then in case of two qubits, the only option is to
consider ensembles consisting of a mixed state of rank 2 and
a pure state. Consider now the pure state |	̃1〉 and the mixed
state �̃ = p1 |	̃2〉 〈	̃2| + p2 |	̃3〉 〈	̃3|, where p1, p2 > 0 and
p1 + p2 = 1. The states |	̃1〉, |	̃2〉, and |	̃3〉 are exactly as in
Sec. IV C. As long as |	̃1〉 cannot be conclusively identified
by LOCC for the set, {|	̃1〉, |	̃2〉, |	̃3〉}, the two-element en-
semble, {|	̃1〉〈	̃1|, �̃}, is also not conclusively distinguishable
by LOCC. See Ref. [108] in this regard.

V. CONCLUSION

Before we summarize our findings, we mention that the
quantitative bounds on entanglement of superpositions that
are already known in the literature might not be always useful
to identify if the state after a superposition is separable or
entangled. An example will be helpful to understand this. Let
us consider an entangled state |φ1〉 = a |00〉 + b |11〉 + c |22〉,
0 < a, b, c < 1, a2 + b2 + c2 = 1 and a product state |φ2〉 =
|01〉. These two states are orthogonal to each other, and no
nontrivial superposition of these two states can produce a
product state, i.e., the state |ψ〉 = α1 |φ1〉 + α2 |φ2〉 is always
entangled for 0 < α1, α2 < 1, α2

1 + α2
2 = 1.1 Notice that for

1Although α1 and α2 are chosen here as real, choosing complex
values for them does not change the conclusion. This can be seen
as follows. Clearly, it is enough to have an extra phase attached to
only one (any one) among α1, α2, and let us choose it to be α2.
Now this phase can be pulled into the definition of the |0〉 of the
first party. However, then an extra phase appears in the term α1a|00〉,
which can then be absorbed in the |0〉 of the second party. These
redefinitions of the local bases are local unitaries, which does not
affect the entanglement content of |ψ〉.

this example, to detect entanglement we need an inequality
E (|ψ〉) > 0, and this must hold for all values of a, b, c, α1, α2

as defined above. It is actually difficult to find such a strict
inequality. For example, one can try to use the lower bounds
on the entanglement of superpositions reported so far (such as
Theorem 5 of [16], Theorem 2 of [17], Theorem 3 of [19], or
Theorem 3 of [24]). It is easy to check that using these bounds
it is not possible to prove that entanglement of the state |ψ〉
is nonzero for all values of 0 < a, b, c < 1, a2 + b2 + c2 =
1 and 0 < α1, α2 < 1, α2

1 + α2
2 = 1. But Theorem 1 of this

paper can serve the purpose of detecting entanglement in |ψ〉.
Usually, the quantitative bounds which are reported in the

previous papers contain a term related to the entanglement of
the output state. Now, if we calculate the amount of entangle-
ment of the output state, then obviously we can tell whether
the output state is separable or entangled. But in our case, it is
not required to calculate the entanglement of the output state,
e.g., for concluding if the output state is an entangled state,
as seen, for instance, in Theorem 1 of the present paper. Of
course, the quantitative results in the literature are very useful,
and moreover, the qualitative results presented here are also
not conclusive in all cases. But what we wish to argue is that
both quantitative and qualitative analyses could be of value
in unknotting the status of entanglement and separability in
superpositions of quantum states.

To conclude, we have explored separability and insepara-
bility of superpositions of quantum states of shared systems.
We have introduced the notions of conditional and uncondi-
tional inseparability of superpositions. Specifically, we have
shown that all nontrivial superpositions of all pairs of an
entangled state and a product state are entangled for bipartite
systems when the initial entangled state is of Schmidt rank 3.
Obviously, the two-qubit system is left out in this result and
is subsequently analyzed in detail, and we provided several
specific cases there. We then found that the considerations are
useful in several quantum communication tasks. In particular,
we identified a class of unextendible entangled bases, which
we referred to as r-UEBs, and proved that they can contain
no state which is conclusively locally identifiable. Moreover,
the notion of unconditional inseparability of superpositions is
found useful to exhibit the phenomenon of more nonlocality
with less entanglement in a two-qubit system. Furthermore,
we have established a one-to-one correspondence between the
phenomenon more nonlocality with less entanglement and a
class of two-element ensembles which cannot be conclusively
distinguished by local quantum operations and classical com-
munication.
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