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Simulation of positive operator-valued measures and quantum instruments via quantum
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In Phys. Rev. A 100, 062317 (2019), the authors reported an algorithm to implement, in a circuit-based
quantum computer, a general quantum measurement (GQM) of a two-level quantum system, a qubit. Even though
their algorithm seems right, its application involves the solution of an intricate nonlinear system of equations to
obtain the angles determining the quantum circuit to be implemented for the simulation. In this article, we
identify and discuss a simple way to circumvent this issue and implement GQMs on any d-level quantum system
through quantum state preparation algorithms. Using some examples for one qubit, one qutrit, and two qubits,
we illustrate the easy of application of our protocol. In addition, we show how one can utilize our protocol for
simulating quantum instruments, for which we also give an example. All our examples are demonstrated using
IBM’s quantum processors.

DOI: 10.1103/PhysRevA.107.022411

I. INTRODUCTION

One of the basic postulates of quantum mechanics says that
the measurement of an observable, represented by a Hermitian
operator A = ∑dA

j=1 a j�
A
j , is described by the projection op-

erators �A
j , i.e., �A

j �
A
k = δ jk�

A
j and

∑dA
j=1 �A

j = IA, with dA

being the dimension of the system Hilbert space HA and IA is
the identity operator on HA. For a quantum system A prepared
in the state ρA, the measurement outcome corresponding to
�A

j is obtained with probability Pr(�A
j |ρA) = Tr(�A

j ρA�A
j )

and the postmeasurement state is �A
j ρA�A

j /Tr(�A
j ρA�A

j ).
Eventually, researchers realized that more general quantum
measurements (GQMs) can be defined. These measurements,
also named positive operator-value measurements (POVMs),
are described by a set of measurement operators {Mj} in HA

that satisfy the completeness relation
∑

j M†
j Mj = IA. In this

general setting, for a system prepared in the state ρA, the prob-
ability of obtaining the measurement result corresponding to
Mj is Pr(Mj |ρA) = Tr(MjρAM†

j ) and the postmeasurement

state is MjρAM†
j /Tr(MjρAM†

j ). The fact that Pr(Mj |ρA) =
Tr(EjρA) � 0 with Ej = M†

j Mj being positive-semi-definite
operators motivates the name POVM. The completeness re-
striction ensures that

∑
j Pr(Mj |ρA) = 1 [1,2].

POVMs provide advantages in several applications in
quantum information science (QIS), as, for example, in quan-
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tum state estimation [3], shadow quantum state tomography
[4], discrimination of quantum states [5], randomness certifi-
cation [6], acquisition of information from a quantum source
[7], quantum key distribution [8], Bell inequalities [9], and
device-independent quantum information protocols [10]. So,
experimentally implementing POVMs is of fundamental im-
portance for QIS and considerable work has been done in this
direction recently, as, for example, in Refs. [11–20].

Of particular interest to us here is Ref. [20], where
the authors proposed a deterministic protocol to implement
single-qubit POVMs on quantum computers. Even though
their protocol seems correct, we realize that for applying
it one first has to solve complicated nonlinear systems of
equations for obtaining the angles determining the quantum
circuit to be used in the simulation. Then, motivated by their
work, here we identify and discuss a simple way to im-
plement POVMs on any dA-level quantum system through
quantum state preparation (QSP) algorithms [21–28]. Using
some examples for dA = 2, dA = 3, and dA = 4 we illustrate
the simplicity and convenience for application of this new
method. In addition to that, we apply our protocol for the
simulation of quantum instruments [2].

A POVM with elements {Mj} can be implemented coher-
ently through an isometric transformation [2]

VAB|k〉A ⊗ |0〉B :=
∑

j

(Mj |k〉A) ⊗ | j − 1〉B, (1)

followed by a selective projective measurement in the basis
{| j〉B} of the auxiliary system B, plus discarding of the
system B. Above | j〉S is the computational basis for the
system S = A, B. This procedure produces the same statistics
and postmeasurement states of the system A as does the
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FIG. 1. Adapted from the quantum circuit reported in Ref. [20] to simulate general one-qubit POVMs. U and V (k)
j are general one-qubit

gates and θ
(k)
j represents the Ry(θ (k)

j ) gate. We also used N = log2 n.

POVM {Mj}, that is to say, Pr(| j〉B|ρ̃AB) = Pr(Mj |ρA)
with ρ̃AB = VAB(ρA ⊗ |0〉B〈0|)V †

AB and TrB(IA ⊗ | j〉B

〈 j|)ρ̃AB(IA ⊗ | j〉B〈 j|)/Tr[(IA ⊗ | j〉B〈 j|]ρ̃AB(IA ⊗ | j〉B〈 j|)) =
MjρAM†

j /Tr(MjρAM†
j ), with ρA being the premeasurement

state of system A. So attempts to implement POVMs
experimentally usually start from Eq. (1).

The protocol given in Ref. [20] follows this path. The
authors said that the quantum circuit shown in Fig. 1 prepares
the state

|�〉 =
n−1∑
j=1

(Mj |ψ0〉) ⊗ |o( j)
1

〉 + (Mn|ψ0〉) ⊗ |o(n−1)
2

〉
, (2)

with |ψ0〉 being the system A premeasurement state and
{|o( j)

1 〉}, |o(n−1)
2 〉} are orthonormal states of the auxiliary sys-

tem B, thus implementing a one-qubit POVM with an arbitrary
number n of elements

Mj =

⎧⎪⎪⎨
⎪⎪⎩

V (1)
1 D(1)

1 U , para j = 1,

V ( j)
1 D( j)

1 �
j−1
k=1V

(k)
2 D(k)

2 U , para 1 < j < n,

�n−1
k=1V (k)

2 D(k)
2 U , para j = n.

(3)

In theses equations, U and V (k)
j are general one-qubit

unitaries and D(k)
1 = cos θ

(k)
1 |0〉〈0| + cos θ

(k)
2 |1〉〈1| and

D(k)
2 = sin θ

(k)
1 |0〉〈0| + sin θ

(k)
2 |1〉〈1| are positive operators if

θ
(k)
1 , θ

(k)
2 ∈ [0, π/2].

As a general one-qubit unitary transformation can be recast

in terms of four angles as [1] [ei(α−β/2−δ/2) cos γ

2 −ei(α−β/2+δ/2) sin γ

2
ei(α+β/2−δ/2) sin γ

2 ei(α+β/2+δ/2) cos γ

2
],

we see that, given the matrices for the POVM elements in the
left-hand side of Eq. (3), the implementation of the algorithm
of Ref. [20] involves the solution of an intricate system of
nonlinear equations for the angles appearing on the right-hand
side of Eq. (3). Perhaps this complication is related to the
wrong examples presented in Ref. [20], for which the mea-
surement operators do not satisfy the completeness restriction.
It is worthwhile mentioning also that the protocol of Ref. [20],
if implemented exactly as in the quantum circuit of Fig. 1,
requires O(n) auxiliary qubits. For diminishing this number
to O(log2 n), one has to make some modifications or additions
to this quantum circuit, as exemplified in Fig. 2 for n = 4.

II. PROTOCOL AND APPLICATION EXAMPLES

Quantum state preparation (QSP) algorithms are used
as subroutines for performing many tasks [21–28], as, for

example, for implementing the general quantum Fourier trans-
form [21]. Motivated by the issues just discussed about the
POVM simulation algorithm of Ref. [20], here we present
a simple protocol that implements POVMs on any discrete
quantum system A associated with a Hilbert space HA through
QSP algorithms. For the dimension dA of the system A on
which the POVM is to be implemented and any number of
elements of the POVM, if the measurement operators Mj are
known, in principle it is possible to calculate the right-hand
side of Eq. (1):

|�〉AB =
∑

j

(
Mj |k〉A

) ⊗ | j − 1〉B. (4)

Once obtained this vector, we can use QSP algorithms to
prepare it. Afterwards, a projective measurement on the basis
{| j〉B} is done. Running several times this procedure, we can
extract the probabilities. It is worthwhile to mention that, since
the projective measurements are done on the system B, by ap-
plying postselection we can use quantum state tomography to
obtain the postmeasurement state of the system A. Therefore,
our protocol can be summarized as follows.

(1) Given {Mj}, obtain |�〉AB of Eq. (4).
(2) Implement |�〉AB using algorithms for quantum state

preparation.
(3) Make projective measurements on system B and ex-

tract the measurement statistics.
(4) If needed, implement quantum state tomography to

obtain the system A postmeasurement state, with postselection
of the measurement results on system B.

This protocol works for any dimension of the system A.
The minimum dimension of the auxiliary system B is equal to
the number of POVM elements, independently of the dimen-
sion of the system A, i.e., our protocol uses O(log2 n) auxiliary
qubits. Of course, for implementing our protocol on quantum
computers based on qubits, it is necessary to choose how to
codify the qudit states in terms of qubit states.

In the sequence we present examples of applications of our
protocol. Let us start by considering a one-qubit POVM with
two elements:

M1 = 1

2
√

2
(|0〉〈0| +

√
3|1〉〈0| + 2|1〉〈1|), (5)

M2 = 1

2
√

2
(|0〉〈0| −

√
3|1〉〈0| + 2|1〉〈1|). (6)
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FIG. 2. Adaptation of the quantum circuit of Ref. [20], shown in Fig. 1, for simulating a four-elements one-qubit POVM.

We set the premeasurement state of system A to |0〉A. So the
POVM probabilities are given by

Pr(M1|0) = 〈0|M†
1 M1|0〉 = 1/2, (7)

Pr(M2|0) = 〈0|M†
2 M2|0〉 = 1/2. (8)

In this case we use a qubit as the auxiliary system B. For
implementing our protocol, we have to prepare the state

|�AB〉 = 2−3/2(|00〉 +
√

3|10〉 + |01〉 −
√

3|11〉). (9)

Here we use the algorithm of Ref. [22] for QSP. This
algorithm was already implemented in QISKIT [30]. After state
preparation, a projective measurement is performed in the
basis {|0〉B, |1〉B}. For performing the demonstrations, we used
the IBMQ [29] quantum chip ibmq_belem. The simulation
and demonstration results for this first example are shown in
Fig. 3. Some relevant calibration parameters of the quantum
chips used for the demonstrations reported in this article are
presented in the Appendix.

As a second example, let us consider a one-qubit three-
element POVM with measurement elements associated with
the sequence of states in the xz plane of the Bloch sphere
separated by 2π/3 radians

M1 =
√

2

3
|0〉〈0|, (10)

M2 =
√

2

3
|ψ (2π/3, 0)〉〈ψ (2π/3, 0)|, (11)

M3 =
√

2

3
|ψ (4π/3, 0)〉〈ψ (4π/3, 0)|, (12)

FIG. 3. Simulation (sim) and demonstration (exp) statistics for
the one-qubit two-element POVM of Eq. (6) implemented using our
protocol for the qubit prepared in the state |0〉A.

with |ψ (θ, φ)〉 = cos( θ
2 )|0〉 + sin( θ

2 )eiφ |1〉. The implementa-
tion of this POVM follows the same recipe as for the previous
example. In this case the global state to be prepared is

|�Abc〉 = 1

4

√
2

3
(|0〉A ⊗ |01〉bc + |0〉A ⊗ |10〉bc)

+
√

2

3
|0〉A ⊗ |00〉bc

+
√

2

4
(|1〉A ⊗ |01〉bc − |1〉A ⊗ |10〉bc), (13)

where we used the qubits b and c to encode the states of the
qutrit B. The probabilities, given that the qubit is prepared in
the |0〉A, are

Pr(M1|0) = 〈0|M†
1 M1|0〉 = 2/3, (14)

Pr(M2|0) = 〈0|M†
2 M2|0〉 = 1/6. (15)

Pr(M3|0) = 〈0|M†
3 M3|0〉 = 1/6. (16)

After state preparation, a projective measurement is per-
formed on the basis {|00〉bc, |01〉bc, |10〉bc, |11〉bc} of the
auxiliary system. The obtained probabilities are shown in
Fig. 4.

As a third example, let us consider a one-qutrit three-
element POVM given by

M1 = 1
2 (|0〉 + |2〉)(〈0| + 〈2|), (17)

M2 = 1
2 (|0〉 − |2〉)(〈0| − 〈2|), (18)

M3 = |1〉〈1|. (19)

FIG. 4. Simulation (sim) and demonstration (exp) statistics for
the one-qubit three-element POVM of Eq. (12) implemented using
our protocol for the qubit prepared in the state |0〉A.
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FIG. 5. Simulation (sim) and demonstration (exp. mitigated)
statistics with mitigated errors from ibmq_belem quantum system
[29] for the one-qutrit three-element POVM of Eq. (17) implemented
using our protocol for the qutrit prepared in the state |ψ0〉A.

We set the premeasurement state of system A to |ψ0〉A =
1√
3
(|0〉 + e2iπ/3|1〉 + e4iπ/3|2〉). In this case the global state to

be prepared is

|�〉AB = α(|0〉 + |2〉)A ⊗ |0〉B + β(|0〉 − |2〉)A ⊗ |1〉B

− γ |1〉A ⊗ |2〉B, (20)

with α =
√

3−3i
12 , β =

√
3+i
4 , and γ =

√
3−3i
6 . Using qubits a

and b to encode the states of target qutrit A and qubits c and d
to encode the states of qutrit B, the state vector above can be
represented by

|�〉abcd = α(|00〉 + |10〉)ab ⊗ |00〉cd − γ |01〉ab ⊗ |10〉cd

+ β(|00〉 − |10〉)ab ⊗ |01〉cd . (21)

In this case, given the premeasurement state |ψ0〉A above, the
probabilities are

Pr(M1|ψ0) = 〈ψ0|M†
1 M1|ψ0〉 = 1/6, (22)

Pr(M2|ψ0) = 〈ψ0|M†
2 M2|ψ0〉 = 1/2, (23)

Pr(M3|ψ0) = 〈ψ0|M†
3 M3|ψ0〉 = 1/3. (24)

As in the previous example, after state preparation,
a projective measurement is performed on the basis
{|00〉cd , |01〉cd , |10〉cd , |11〉cd} of the auxiliary system, and the
obtained probabilities are shown in Fig. 5.

As a last example, let us consider a two-qubit four element
POVM, with measurement operators given as follows:

M1 =
√

2

3
|+〉〈+|, (25)

M2 =
√

2

3
|�(2π/3)〉〈�(2π/3)|, (26)

M3 =
√

2

3
|�(4π/3)〉〈�(4π/3)|, (27)

M4 = |−〉〈−| + |�−〉〈�−|, (28)

with |�(θ )〉 = cos( θ
2 )|+〉 + sin( θ

2 )|�+〉. The premeasure-
ment state of the system AB is given by |ψ0〉AB = |00〉, so the

FIG. 6. Simulation (sim) and demonstration (exp mitigated)
statistics with mitigated errors from ibmq_belem quantum system
[29] for the two-qubit four-element POVM of Eq. (25) implemented
using our protocol for the two qubits prepared in the state |00〉AB.

global state to be prepared is

|abcd〉 =
√

1

6
(|00〉ab ⊗ |00〉cd + |11〉ab ⊗ |00〉cd )

+ 1

4
√

6
(|00〉ab ⊗ |01〉cd + |11〉ab ⊗ |01〉cd )

+ 1

4
√

2
(|01〉ab ⊗ |01〉cd + |10〉ab ⊗ |01〉cd )

+ 1

4
√

6
(|00〉ab ⊗ |10〉cd + |11〉ab ⊗ |10〉cd )

− 1

4
√

2
(|01〉ab ⊗ |10〉cd + |10〉ab ⊗ |10〉cd )

+ 1

2
(|00〉ab ⊗ |11〉cd − |11〉ab ⊗ |11〉cd ), (29)

where we use the qubits b and c to encode the states of
the auxiliary ququart system. For the premeasurement state
|ψ0〉AB above, we have the following probabilities:

Pr(M1|00) = 〈00|M†
1 M1|00〉 = 1/3, (30)

Pr(M2|00) = 〈00|M†
2 M2|00〉 = 1/12, (31)

Pr(M3|00) = 〈00|M†
3 M3|00〉 = 1/12, (32)

Pr(M4|00) = 〈00|M†
4 M4|00〉 = 1/2. (33)

As in the previous examples, after state preparation a projec-
tive measurement is performed on the computational basis of
the auxiliary system {|00〉cd , |01〉cd , |10〉cd , |11〉cd}, allowing
the extraction of the probabilities presented in Fig. 6.

Now, let us show how our protocol can be used for
implementing quantum instruments (QI), that are quantum
operations having as input a quantum state and as output a
quantum state and a classical variable [2]:

�(|ψ0〉A) =
∑

j

ε j (|ψ0〉A) ⊗ | j〉J〈 j|, (34)

in which {| j〉J} is an orthonormal basis for the system J and

ε j (|ψ0〉A) =
∑

k

Mj,k|ψ0〉A〈ψ0|M†
j,k (35)

is a trace nonincreasing quantum operation, i.e.,
Tr[ε j (|ψ0〉A)] � 1. Above, Mj,k are the elements of a POVM,
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i.e.,
∑

j,k M†
j,kMj,k = I. One can verify that the quantum

instrument in Eq. (34) can be obtained from the purification

|�AJEj EJ 〉 =
∑

j,k

Mj,k|ψ0〉A ⊗ | j〉J ⊗ |k〉Ej ⊗ | j〉EJ . (36)

That is to say, �(|ψ0〉A) = TrEj EJ (|�〉AJEj Ek 〈�|). So, given
the QI, that is to say, given the completely positive maps
ε j in terms of the set of measurement operators {Mj,k}k , we
can simulate this QI by preparing the state |�AJEj EJ 〉 and by
taking the partial trace over the auxiliary systems Ej, EJ . By
measuring the system J in the basis {| j〉J} j and postselecting
the results, we can also reconstruct the action of the opera-
tors ε j (|ψ0〉A). In what follows, we exemplify the application
of this simulation protocol. Let us consider a one-qubit QI
defined by the following set of trace nonincreasing quantum
operations:

ε0 ≡
{

M00 = 1√
2
|0〉〈0|, M01 = 1√

2
|+〉〈+|

}
, (37)

ε1 ≡
{

M10 = 1√
2
|1〉〈1|, M11 = 1√

2
|−〉〈−|

}
. (38)

We set the premeasurement state of system A to |ψ0〉A = |0〉A.
The global state to be prepared for the simulation of this QI is

√
2|�〉AJEj EJ = |0000〉AJEj EJ + 1

2
|0010〉AJEj EJ

+ 1

2
|1010〉AJEj EJ + 1

2
|0111〉AJEj EJ

− 1

2
|1111〉AJEj EJ . (39)

From this quantum state, we obtain the quantum instrument

8�(|0〉A) = 8TrEj EJ {|�〉AJEj EJ 〈�|}
= (5|0〉A〈0| + |0〉A〈1| + |1〉A〈0| + |1〉A〈1|)|0〉J〈0|

+ (|1〉A〈1| − |0〉A〈1| − |1〉A〈0| + |0〉A〈0|)|1〉J〈1|
= ε0(|0〉A) ⊗ |0〉B〈0| + ε1(|0〉A) ⊗ |1〉B〈1|. (40)

This state was reconstructed using quantum state tomography.
The theoretical and demonstration results are shown in
Fig. 7. For this demonstration we use the IBM quantum chip
ibmq_belem [29]. In this case, the obtained demonstration
result also agreed quite well with the theoretical prediction.

III. FINAL REMARKS

In summary, we pointed out that changes in the algorithm
are needed for maintaining the claimed scaling of the number
of auxiliary qubits and we highlighted the practical difficul-
ties of the protocol presented in Ref. [20]. We circumvented
these difficulties through the use of quantum state preparation
algorithms. This approach avoids the numerical and com-
putational issues associated with the solution of systems of
nonlinear equations and easily generalizes the implementation
of Ref. [20] for two-level states (one qubit) to d-level states,
avoiding also the complications of their algorithm regarding
the implementation of general unitary transformations on a
multiqubit system. We exemplified the application of our pro-
tocol for one qubit, one qutrit, and two qubit POVMs and

FIG. 7. (a) Theoretical and (b) demonstration results for the state
tomography of the state (quantum instrument) in Eq. (40) simulated
using the protocol we introduced in this article.

for simulating quantum instruments. These examples were
demonstrated using IBM quantum computers. The simulation
results matched the theoretical predictions. The demonstration
results are in fairly good agreement with theory, but can be
further improved if this protocol is executed in lesser noise
quantum devices. So we believe that the simplicity and easy
of use of this protocol will foster further research involving
POVMs.

FIG. 8. Illustration of the connectivity between qubits of the
ibmq_belem quantum chip.
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TABLE I. Calibration parameters for the ibmq_belem quantum
chip when used for the examples in Figs. 3–6.

Q0 Q1 Q2 Q3 Q4

Frequency (GHz) 5.09 5.246 5.361 5.17 5.259
T 1 (μs) 155.98 119.12 91.07 63.29 88.85
T 2 (μs) 121.74 117.28 58.25 146.89 151.6
One-qubit error (10−4) 1.69 17.87 2.57 6.36 13.64
Readout error (10−2) 1.45 2.90 2.65 3.78 3.26

CNOT error (10−2)
0–1

1.858
1–3

1.293
2–1

1.089
3–4

2.143
4–3

2.143
1–2 3–1
1.089 1.293
1–0
1.858
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APPENDIX: INFORMATION ABOUT THE USED
QUANTUM CHIP

In this article, we implement our POVM simulation
algorithm using IBMQ platform [29]. We use quantum chips
through QISKIT, an Open Source Quantum Development Kit
for working with quantum computers at the level of pulses,
circuits, and application modules. In our demonstrations, we
used the ibmq_belem quantum chip with the same calibration
parameters presented in Table I for the examples in Figs. 3–6.
On the other hand, for the example in Fig. 7, we used the same
chip but with calibration parameters as shown in Table II. The
ibmq_belem quantum chip connectivity is shown in Fig. 8.

TABLE II. Calibration parameters for the ibmq_belem quantum
chip when used for the example in Fig. 7.

Q0 Q1 Q2 Q3 Q4

Frequency (GHz) 5.09 5.246 5.361 5.17 5.23
T 1 (μs) 128.46 88.52 85.16 79.29 1.55
T 2 (μs) 127.51 99.97 65.4 134.08 92.04
One-qubit error (10−4) 1.651 2.937 2.912 4.044 1.849 × 103

Readout error (10−2) 1.31 1.99 2.19 2.87 14.67

CNOT error (10−2)
0–1

1.345
1–3

1.682
2–1

0.698
3–4

100.0
4–3

100.0
1–2 3–1
0.698 1.682
1–0
1.345
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