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Kirkwood-Dirac (KD) quasiprobability is a quantum analog of phase space probability of classical statistical
mechanics, allowing negative or/and nonreal values. It gives an informationally complete representation of a
quantum state. Recent works have revealed the important roles played by the KD quasiprobability in the broad
fields of quantum science and quantum technology. In the present work, we use the KD quasiprobability to
access the quantum coherence in a quantum state. We show that the l1 norm of the imaginary part of the KD
quasiprobability over an incoherent reference basis and a second basis, maximized over all possible choices of the
latter, can be used to quantify quantum coherence, satisfying certain desirable properties. It is upper bounded by
the quantum uncertainty, i.e., the quantum standard deviation, of the incoherent basis in the state. It gives a lower
bound to the l1 norm quantum coherence, and for a single qubit, they are identical. We discuss the measurement
of the KD coherence based on the measurement of the KD quasiprobability and an optimization procedure in
hybrid quantum-classical schemes, and suggest statistical interpretations. We also discuss its relevance in the
physics of linear response regime.
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I. INTRODUCTION

Quantum coherence is a defining feature of quantum me-
chanics, manifesting the superposition principle. It underlies
the nonclassical aspects of quantum phenomena. Recently,
quantum coherence has also been recognized as one of the
key ingredients for various schemes of quantum technologies
[1,2]. In the last decade, the success of the resource theo-
retical framework to study diverse nonclassical features of
quantum systems by regarding them as constituting resources
for some operational tasks [3] has led many researchers
to apply the framework to rigorously characterize quan-
tum coherence [1,2,4–14]. In this approach, one defines
coherence as an aspect which cannot be created by differ-
ent classes of incoherence-preserving quantum operations.
However, while mathematically well defined, the physical
interpretation of these formal operations is not entirely clear
[1,11,12]. Moreover, the resulting coherence quantifiers do
not have transparent interpretation in terms of direct labora-
tory operations.

On the other hand, recently there has been a revival of
interest in the Kirkwood-Dirac (KD) quasiprobability, an
informationally complete representation of a quantum state
[15–18]. KD quasiprobability returns correct marginal prob-
abilities, but it may take negative or/and nonreal values. Such
negativity or nonreality, a.k.a. KD nonclassicality, indicates
nonclassicality stronger than noncommutativity [19,20], and
is suggested as the origin of quantum advantage in certain
quantum metrology [21] and quantum heat engines [22].
KD quasiprobability appears naturally in different forms of
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quantum fluctuations, and KD nonclassicality has been argued
to signify genuine quantum behavior of the underlying physi-
cal processes [23]. It has been used to define work distribution
to extend thermodynamics fluctuation theorem in the quantum
regime [24,25], as a witness of information scrambling in
many body systems [26,27], and as proofs of contextuality
[28,29]. It is therefore instructive to ask how coherence in a
quantum state is encoded in the associated KD quasiprobabil-
ity representation. The answer to this question might also offer
useful insight into the roles of quantum coherence in physical
situations listed above where KD nonclassicality is crucial.

In the present work, we propose a characterization and
quantification of quantum coherence based on KD quasiprob-
ability. First, given a quantum state and an incoherent
reference basis, we identify a quantity, referred to as KD
coherence, that is given by the l1 norm of the imaginary
part of the associated KD quasiprobability defined over a
reference basis and a second basis, and maximized over all
possible choices of the latter. It formalizes the intuition that
coherence should reflect the noncommutativity between the
state and the incoherent basis, and we show that it satisfies
certain desirable properties for a quantifier of quantum coher-
ence. It is upper bounded by the total sum of the quantum
standard deviation, and thus the quantum uncertainty, of the
incoherent basis in the state. KD coherence gives a lower
bound to the l1-norm coherence, and for an arbitrary state
of a single qubit, they give the same value. We discuss the
observation of the KD coherence via a couple of methods for
the reconstruction of KD quasiprobability, combined with an
optimization procedure in hybrid quantum-classical schemes.
These suggest statistical interpretation of the KD coherence
as the maximal disturbance induced by the measurement of,
or the maximal mean absolute error in the optimal estimation
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of, the incoherent basis. We also give a short discussion on the
relevance of the KD coherence to characterize linear response
function.

II. QUANTUM COHERENCE AND KIRKWOOD-DIRAC
QUASIPROBABILITY

A. Quantum coherence

Consider a quantum system with the Hilbert space of fi-
nite dimension d , and choose an orthonormal basis {|a〉},∑

a �a = I, where �a := |a〉 〈a| is a projector assumed, for
simplicity, to be one dimensional (rank-one projector). Such
a basis decomposes the d dimensional Hilbert space into the
direct sum of the one-dimensional d subspaces. A quantum
state represented by the density operator � on the Hilbert
space is said to be incoherent with respect to the reference
basis {|a〉} (or relative to the Hilbert space decomposition into
the associated subspaces) if it can be expressed as

� =
∑

a

pa |a〉 〈a| , (1)

pa = 〈a|�|a〉, ∑
a pa = 1. Namely, it is a classical statistical

mixture of the elements of the reference basis. Hence, the
density operator is diagonal with respect to the reference basis
so that they are commuting, i.e., [�a, �] = 0, for all a. Any
state that cannot be so expressed is coherent with respect to the
basis {|a〉}. In this sense, {|a〉} is referred to as the incoherent
reference basis. The choice of the incoherent reference basis
depends on the physical problem and/or the physical system
under investigation.

A mathematically rigorous information theoretical frame-
work to characterize coherence by regarding it as a resource
is attracting a lot of attention recently [1,2,4–14]. In this
resource theoretical framework [3], quantum states and op-
erations are divided into those that are free and those whose
preparation and implementation bear some cost. For example,
in the resource theory of entanglement, the free operations are
identified by the local operation and classical communication
(LOCC) so that the free states are given by unentangled (sep-
arable) states [30,31]. Such a division intuitively reflects the
operational restriction in the experimental scenario involving
distant parties. In this framework, entangled states are thus
seen as states with a resource whose provision may be used to
overcome the restriction. Analogously, in the resource theory
of coherence, the incoherent quantum states of Eq. (1) are as-
sumed to be free, and the free operations are given by several
different classes of incoherence-preserving quantum opera-
tions [1,2]. Quantum coherence is therefore naturally defined
as the resource that cannot be created by these operations.
This approach has led to the construction of various important
coherence quantifiers. However, unlike LOCC, it is difficult
to give a clear interpretation to the incoherence-preserving
operations alluded to above in terms of operational restric-
tion in laboratory [1,11,12]. Moreover, most of the resulting
coherence quantifiers cannot be interpreted in terms of direct
laboratory operations [13].

For later reference, let us summarize the l1-norm coher-
ence arising in the above resource-theoretic approach [7].

Consider an arbitrary quantum state � = ∑
a,a′ �aa′ |a〉 〈a′|,

�aa′ = 〈a|�|a′〉, where {|a〉} is the incoherent basis. The l1-
norm quantum coherence in � relative to the incoherent
basis {|a〉} is then defined as Cl1 [�; {�a}] := minτ∈I{|a〉} ‖� −
τ‖l1 = ∑

a �=a′ |�aa′ |, where I{|a〉} is the set of all incoherent
states relative to the reference basis {|a〉}, and ‖ · ‖l1 is the
l1 matrix norm. Hence, it is given by the sum of the abso-
lute value of the off-diagonal terms of the density matrix,
directly capturing the intuition that coherence must quantify
the interference between the elements of the reference basis.
Remarkably, for a single qubit, various different coherence
quantifiers are equal to, or can be written as a simple function
of, the l1-norm coherence [2]. The l1-norm coherence can be
used to quantify the wave aspect in the wave-particle comple-
mentarity relations [32–37]. It also has proven to be useful in
studying speedup in quantum computation [38–43].

B. Kirkwood-Dirac quasiprobability

There is an informationally equivalent representation of the
quantum state based on quasiprobability. Quasiprobability is
the quantum analog of phase space probability distribution for
classical statistical mechanics [44]. Due to the quantum non-
commutativity (incompatibility), quasiprobability necessarily
does not satisfy all the Kolmogorov axioms for conventional
probability [23]. For example, the Wigner function, the most
well-known quasiprobability, may take negative value. There
are infinitely many quasiprobability representations arising
from the ambiguity of the ordering of operators. Here, for a
system with finite dimensional Hilbert space, and for a reason
that will be clarified later, we shall use the representation of
quantum state in terms of a specific quasiprobability called
Kirkwood-Dirac (KD) quasiprobability [15–18] to access the
coherence in the quantum state.

Given a quantum state � acting on a Hilbert space with
dimension d , and two bases {|a〉} and {|b〉} of the Hilbert
space, the KD quasiprobability is defined as

PrKD(a, b|�) := Tr{�b�a�} = 〈b|�a�|b〉 . (2)

The KD quasiprobability gives correct marginal probabil-
ities, i.e.,

∑
a PrKD(a, b|�) = Tr{�b�}, ∑

b PrKD(a, b|�) =
Tr{�a�}, and thus normalized

∑
a,b PrKD(a, b|�) = 1, but it

may assume negative and/or nonreal values capturing non-
classicality tighter than noncommutativity [19,20]. The real
part is known as Terletsky-Margenau-Hill quasiprobability
[45,46]. Given the KD quasiprobability PrKD(a, b|�), the den-
sity matrix � can be recovered as, assuming 〈a|b〉 �= 0 for
all (a, b),

∑
a,b PrKD(a, b|�) |a〉〈b|

〈b|a〉 = ∑
a,b 〈a|�|b〉 |a〉 〈b| = �,

hence they are informationally equivalent. Choosing a pair
of bases so that 〈a|b〉 = 1√

d
ei2πab/d , the density matrix in the

basis {|a〉} is thus obtained by Fourier transforming the KD
quasiprobability as 〈a|�|a′〉 = ∑d−1

b=0 PrKD(a, b|�)ei 2π
d (a−a′ )b

[18]. One of the advantages of using KD quasiprobability
representation is that one may use the negativity or/and the
nonreality of the KD quasiprobability, i.e., the KD nonclassi-
cality, to access genuine nonclassical behavior of a quantum
system, by showing that it violates some classical bound de-
rived based on conventional real and nonnegative probability.
Indeed, as listed in the Introduction, the KD nonclassicality is
playing a significant role in the study of quantum information
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[21,22], quantum fluctuation [23,26,27], quantum thermody-
namics [24,25], and quantum foundation [28,29].

III. QUANTUM COHERENCE FROM THE IMAGINARY
PART OF THE KD QUASIPROBABILITY

Since KD quasiprobability is an informationally complete
representation of the quantum state, it is natural to ask how
the KD quasiprobability representation encodes the quantum
coherence in the quantum state relative to a given incoherent
basis. Note that the KD quasiprobability is defined in terms
of two bases, while quantum coherence is defined relative to
a single incoherent basis. To pursue this question, we observe
first a simple fact that for an arbitrary quantum state � and
a basis {|a〉}, the imaginary part of the corresponding KD
quasiprobability captures the commutation relation between
the state and the basis, i.e.,

Im{PrKD(a, b|�)} = Im{〈b|�a�|b〉} = 1

2i
〈b|[�a, �]|b〉

=
∑
a′ �=a

Im{�aa′ 〈b|a〉 〈a′|b〉}. (3)

It is also clear from the second line that, choosing a second
basis {|b〉} such that 〈b|a〉 〈a′|b〉 �= 0 for some pairs of (a, a′),
a �= a′, Im{PrKD(a, b|�)} �= 0 implies that not all of the off-
diagonal terms of the density matrix are vanishing, indicating
the presence of coherence in � with respect to the incoherent
reference basis {|a〉}.

We wish to devise a simple quantity from the imaginary
part of the KD quasiprobability, which can faithfully detect
the quantum coherence and possesses certain properties ex-
pected for a coherence quantifier. To this end, given a general
quantum state � and an incoherent reference basis {|a〉}, let us
define the following quantity which maps the quantum state
to a real nonnegative number:

CKD[�; {�a}] := max
{|b〉}

∑
a

∑
b

|Im{PrKD(a, b|�)}|

= max
{|b〉}

∑
a

∑
b

|Im{〈b|�a�|b〉}|

= max
{|b〉}

∑
a

∑
b

1

2
| 〈b|[�a, �]|b〉 |, (4)

where {|b〉} is another basis of the Hilbert space. We thus
take the l1 norm of the imaginary part of PrKD(a, b|�) and
maximize over all possible choices of the second basis {|b〉}.
The maximization seeks the largest incompatibility between
the quantum state � and the incoherent basis {|a〉}, with
respect to the second basis {|b〉}, under the l1 norm. Next,
suppose we wish to quantify the coherence of a composite
of N subsystems with respect to an incoherent product basis,
i.e., {|a〉} = {|a1〉 ⊗ · · · ⊗ |aN 〉} := {|a1, . . . , aN 〉}, where |ai〉
is the first basis for subsystem i. Then, we assume that the
second basis is also a product, i.e., {|b〉} = {|b1, . . . , bN 〉},
where {|bi〉} is the second basis for subsystem i.

We show that CKD[�; {�a}], from here on referred to as KD
coherence, satisfies certain desirable properties for a quantifier
of quantum coherence as follows:

(i) Faithful, i.e., CKD[�; {�a}] = 0 if and only if the quan-
tum state � is incoherent with respect to the basis {|a〉};

(ii) Convex, i.e., CKD[
∑

k pk�k; {�a}] �∑
k pkCKD[�k; {�a}], where {pk} are probabilities:

0 � pk � 1,
∑

k pk = 1;
(iii) Unitarily covariant: CKD[U�U †; {U�aU †}] =

CKD[�; {�a}];
(iv) Invariant under unitary transformations which com-

mute with a Hermitian observable whose eigenvectors
are given by the incoherent basis: CKD[UA�U †

A ; {�a}] =
CKD[�; {�a}], where [UA, A] = 0, A = ∑

a a�a, a ∈ R;
(v) Invariant under unitary transformation which per-

mutes the index of the elements in the incoherent
basis: CKD[Up�U †

p ; {�a}] = CKD[�; {�a}], where Up |a〉 =
eiθa |μ(a)〉, μ(a) is a permutation of index in the basis, and
θa ∈ R;

(vi) Nonincreasing under partial trace: CKD[�12; {�a1 ⊗
I2}] � CKD[�1; {�a1}], where �12 is the quantum state of the
composite of subsystem 1 and 2, �1 = Tr2{�12} is the quantum
state of subsystem 1, {|a1〉} is the incoherent basis of subsys-
tem 1, and I2 is the identity operator of subsystem 2; and

(vii) Nonincreasing under decoherence operation, i.e.,
CKD[�; {�a}] � CKD[�′; {�a}], where �′ = p� + (1 −
p)D(�; {�a}), 0 � p � 1, and D(�; {�a}) := ∑

a �a��a

is the dephasing operation which removes the off-diagonal
terms of � in the basis {|a〉}.

Let us sketch and discuss the proofs of the above proper-
ties.

To establish property (i) of faithfulness, first note that if �

is an incoherent state so that [�a, �] = 0 for all a, we have
CKD[�; {�a}] = 0 by definition. Conversely, let us suppose
that CKD[�; {�a}] = 0. Then, from the definition, we must
have Im{PrKD(a, b|�)} = 〈b|[�a, �]|b〉 /2i = 0 for all a and
b. This can only be true for all possible choices of {|b〉} if
[�a, �] = 0 for all a. This means that {�a} is the eigenpro-
jector for �, so that � must be expressible as in Eq. (1), i.e., it
is incoherent relative to the reference basis {|a〉}.

Next, property (ii) of convexity shows that classical mixing
� = ∑

k pk�k does not increase KD coherence, suggesting
that it quantifies a genuine quantum information. This is
a trivial implication of the triangle inequality for the l1
norm and the fact that pk � 0, i.e., CKD[

∑
k pk�k; {�a}] =

max{|b〉}
∑

a

∑
b |Im{〈b|�a

∑
k pk�k|b〉}| �∑

k pk max{|b〉}
∑

a

∑
b |Im{〈b|�a�k|b〉}| =∑

k pkCKD[�k; {�a}].
The property (iii) of unitarily covariant can be directly

established from the definition, i.e.,

CKD[U�U †; {U�aU
†}]

= max
{|b〉}

∑
a

∑
b

|Im{〈b|U�aU
†U�U †|b〉}|

= max
{|b′〉}

∑
a

∑
b′

|Im{〈b′|�a�|b′〉}| = CKD[�; {�a}], (5)

where we have taken into account the fact that unitary operator
U leads to transformation between bases {|b′〉} = {U † |b〉} of
the same Hilbert space, so that max{|b′〉}(·) = max{|b〉}(·). This
property captures the intuition that simultaneously unitarily
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rotating both the incoherent basis and the quantum state in the
Hilbert space should give the same value of coherence.

To establish property (iv), we first note that for any unitary
operator UA which commutes with A = ∑

a a |a〉 〈a|, we have
UA |a〉 = eiθa |a〉, θa ∈ R, so that

CKD[UA�U †
A ; {�a}]

= max
{|b〉}

∑
a

∑
b

|Im{〈b|UAU †
A�aUA�U †

A |b〉}|

= max
{|b′〉}

∑
a

∑
b′

|Im{〈b′|�a�|b′〉}| = CKD[�; {�a}], (6)

where in the second line we have inserted the identity UAU †
A =

I, and in the third line we defined {|b′〉} = {U †
A |b〉} and used

the fact that max{|b′〉}(·) = max{|b〉}(·). We note that a unitary
which commutes with A is covariant under the translation
U = e−iAθ generated by A (taking h̄ = 1), in the sense that
its implementation followed by the translation yields the
same result when the order of the operations is reversed:
e−iAθUA�U †

A eiAθ = UAe−iAθ�eiAθU †
A [1].

Next, consider a unitary operator which permutes the el-
ements of the incoherent basis, i.e., Up = ∑

a eiθa |μ(a)〉 〈a|,
where μ(a) is an index permutation. Such a permutation of

index in the reference basis should not change the coherence
relative to the basis as claimed by property (v). To see this,
first we have {Up�aU †

p } = {�μ(a)} = {�a}. Noting this, we
may proceed as

CKD[Up�U †
p ; {�a}]

= max
{|b〉}

∑
a

∑
b

|Im{〈b|UpU
†
p �aUp�U †

p |b〉}|

= max
{|b′〉}

∑
a

∑
b′

|Im{〈b′|�μ(a)�|b′〉}|

= max
{|b′〉}

∑
a

∑
b′

|Im{〈b′|�a�|b′〉}| = CKD[�; {�a}], (7)

where we have inserted UpU †
p = I and defined {|b′〉} =

{U †
p |b〉}, and in the fourth line we have relabeled the sum

over a. We note that the set of Up for a given reference basis
comprises all the incoherence-preserving unitaries, which is
equivalent to the set of dephasing covariant unitaries [1], i.e.,
those unitaries whose operation followed by the dephasing
operation D(�; {�a}) yield the same effect when the order of
the operations is reversed.

Property (vi) captures the intuition that if two subsystems
are correlated, ignoring one of them should not increase the
coherence of the other. This can be shown as

CKD[�12; {�a1 ⊗ I2}] := max
{|b1,b2〉}

∑
a1

∑
b1,b2

∣∣∣∣Im
{∑

a2

PrKD(a1, a2, b1, b2|�12)

}∣∣∣∣
= max

{|b1,b2〉}

∑
a1

∑
b1,b2

|Im{〈b1, b2|(�a1 ⊗ I2)�12|b1, b2〉}|

� max
{|b1,b2〉}

∑
a1

∑
b1

∣∣∣∣Im
{∑

b2

〈b1, b2|(�a1 ⊗ I2)�12|b1, b2〉
}∣∣∣∣

= max
{|b1〉}

∑
a1

∑
b1

|Im{〈b1|�a1�1|b1〉}|

= CKD[�1; {�a1}], (8)

where �1 = ∑
b2

〈b2|�12|b2〉 = Tr2{�12}. One can see that
equality is obtained when there is no quantum and classical
correlation in the quantum state, i.e., �12 = �1 ⊗ �2, by virtue
of the fact that 〈b2|�2|b2〉 is real and nonnegative for all b2,
and

∑
b2

〈b2|�2|b2〉 = 1.
Finally, property (vii) can be shown as follows:

CKD[p� + (1 − p)D(�; {�a′ }); {�a}]
= pCKD[�; {�a}] � CKD[�; {�a}], (9)

where we have used the fact that [D(�; {�a′ }),�a] = 0 for all
a and p � 0 to get the equality in the second line.

Let us discuss a few implications of the above definition
of KD coherence. First, it is clear that the maximum KD
coherence in a quantum state relative to all possible incoherent
bases is obtained as the maximum of the l1 norm of the
imaginary part of the associated KD quasiprobability defined

over all possible pairs of bases, i.e., max{|a〉} CKD[�; {�a}] =
max{|a〉} max{|b〉}

∑
a

∑
b |Im{PrKD(a, b|�)}|. Or, equivalently,

the maximum of the l1 norm of the imaginary part of the
associated KD quasiprobability over all pairs of the defining
bases encodes the maximum coherence in the state relative to
all incoherent bases.

Next, since KD coherence is defined as the maximal in-
compatibility between the state and the incoherent basis, it
is natural to expect that it somewhat captures the genuine
quantum uncertainty of the basis in the quantum state. It is
therefore instructive to compare KD coherence relative to
a basis with the quantum variance of the basis. Note that
quantum variance quantifies the total quantum uncertainty,
which also includes the uncertainty arising from classical
mixing. We show that KD coherence CKD[�; {�a}] is always
lower than or equal to the total sum of the square root of
the quantum variance (i.e., quantum standard deviation) of
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the basis {�a} in the state �. To see this, we first have, from Eq. (4),

CKD[�; {�a}] = max
{|b〉}

∑
a

∑
b

∣∣∣∣Im
{

Tr{�b�a�}
Tr{�b�}

}∣∣∣∣Tr{�b�} �
∑

a

[ ∑
b∗

(∣∣∣∣Tr{�b∗�a�}
Tr{�b∗�}

∣∣∣∣
2

− Re

{
Tr{�b∗�a�}

Tr{�b∗�}
}2)

Tr{�b∗�}
]1/2

�
∑

a

[∑
b∗

(Tr{�b∗�a�})2

Tr{�b∗�} −
( ∑

b∗

Re{Tr{�b∗�a�}}
)2]1/2

, (10)

where {|b∗〉} is the second basis which achieves the maximum,
and we have made use of the Jensen inequality to get the two
inequalities. Next, applying the Cauchy-Schwartz inequality
to the numerator in the first term on the right-hand side,
i.e., (Tr{�b∗�a�})2 = (Tr{(�1/2

b∗ �a�
1/2)(�1/2�

1/2
b∗ )})2 �

Tr{�b∗�a��a}Tr{��b∗ }, and using the completeness relation∑
b∗ �b∗ = I, we finally obtain

CKD[�; {�a}] �
∑

a

[
Tr

{
�2

a�
} − Tr{�a�}2

]1/2 =
∑

a

��a [�],

(11)

where �2
O[�] := Tr{O2�} − (Tr{O�})2 is the quantum vari-

ance of O in the state �.
We proceed to show that the KD coherence for any quan-

tum state � relative to any reference basis {|a〉} is always lower
than or equal to the l1-norm coherence in � relative to the basis
{|a〉}, and they give equal value for d = 2, i.e., for a single
qubit. First, let us consider the general case for d � 2. From
Eqs. (3) and (4), we have

CKD[�; {�a}] � max
{|b〉}

∑
a

∑
b

∣∣∣∣∣∣
∑
a′ �=a

|�aa′ || 〈b|a〉 || 〈a′|b〉
∣∣∣∣∣∣

=
∑
a �=a′

|�aa′ | max
{|b〉}

∑
b

| 〈b|a〉 || 〈a′|b〉 |. (12)

On the other hand, using the Cauchy-Schwartz in-
equality we have

∑
b | 〈b|a〉 || 〈a′|b〉 | � (

∑
b | 〈b|a〉 |2 ∑

b′

| 〈a′|b′〉 |2)
1/2 = 1, where we have made use of the complete-

ness relation for the second basis,
∑

b |b〉 〈b| = I, and the
equality is reached when the second basis {|b〉} and the inco-
herent basis {|a〉} satisfies | 〈a|b〉 | = 1√

d
for all a, b. Finally,

upon inserting into Eq. (12), we obtain

CKD[�; {�a}] �
∑
a �=a′

|�aa′ | = Cl1 [�; {�a}], (13)

as claimed. Hence, a nonvanishing KD coherence can be used
to detect the l1-norm quantum coherence. Moreover, since a
vanishing KD coherence leads to a vanishing l1-norm coher-
ence [property (i)], it is a faithful detector.

Let us show that the inequality of Eq. (13) is always satu-
rated for a single qubit, i.e., two-dimensional quantum system,
with an arbitrary quantum state. Assume first that the quantum
state of the qubit is pure so that it can in general be written as

|ψ〉 = ψ0 |0〉 + ψ1 |1〉 = cos
θ

2
|0〉 + sin

θ

2
eiη |1〉 , (14)

where 0 � θ � π is the polar angle of the Bloch sphere,
0 � η � 2π is the azimuthal angle, and {|0〉 , |1〉} are the
eigenstates of the Pauli matrix σz. The l1-norm coherence

of the quantum state |ψ〉 with respect to the incoherent ba-
sis {|az〉} = {|0〉 , |1〉} is thus given by Cl1 [|ψ〉 〈ψ | ; {�az}] =
2|ψ0ψ

∗
1 | = | sin θ |.

Next, for the purpose of computation of the KD coherence
defined in Eq. (4), we express the second basis for the two-
dimensional Hilbert space {|b〉} = {|b+〉 , |b−〉} as

|b(α, β )+〉 := cos
α

2
|0〉 + sin

α

2
eiβ |1〉 ,

|b(α, β )−〉 := sin
α

2
|0〉 − cos

α

2
eiβ |1〉 , (15)

0 � α � π , 0 � β � 2π . We note that upon varying the an-
gles α and β over the whole ranges of their values, one
scans over all the possible orthonormal bases of the two-
dimensional Hilbert space. Using this parametrization for the
second basis, the KD coherence relative to the basis {|az〉} =
{|0〉 , |1〉} can then be computed straightforwardly to give

CKD[|ψ〉 〈ψ | ; {�az}]
= max

|b(α,β )〉

∑
az

∑
b

|Im{〈b|az〉 〈az|ψ〉 〈ψ |b〉}|

= max
α,β

| sin θ sin(β − η) sin α|
= | sin θ | = Cl1 [|ψ〉 〈ψ | ; {�az}]. (16)

Hence, for the two-dimensional pure state, the KD coherence
relative to the incoherent basis {|az〉} is indeed equal to the l1-
norm quantum coherence with respect to the incoherent basis
{|az〉}.

Let us discuss the geometrical meaning of the
above calculation before generalizing the result to
arbitrary two-dimensional incoherent basis and arbitrary
mixed state. First, note that the maximization over the
two parameters α, β characterizing the second basis
{|b(α, β )〉} = {|b(α, β )+〉 , |b(α, β )−〉} are carried out
independently of each other. The maximization over α, which
parametrizes the amplitude of 〈az|b(α, β )±〉, is obtained
for α = π/2. This means that the basis {|b(α, β )〉} must lie
on the equator of the Bloch sphere so that it is mutually
unbiased with the incoherent basis {|az〉} = {|0〉 , |1〉}. Next,
the maximization over β, which parametrizes the relative
phase of 〈az|b(α, β )±〉, is obtained for β = η + π/2.
Combined together, the maximum is attained when the
second basis is given by {|b∗〉z} = {|b∗+〉z , |b∗−〉z}, where
|b∗±〉z = 1√

2
(|0〉 ± ieiη |1〉). Hence, the maximal basis {|b∗〉z}

is orthogonal to the plane on which both the incoherent
basis and the quantum state are lying. One thus finds that
the maximal basis {|b∗〉z} turns out to be also mutually
unbiased with {|ψ〉 , |ψ〉⊥}, where |ψ〉⊥ = sin θ

2 |0〉 −
cos θ

2 eiη |1〉 is the orthonormal pair of |ψ〉. Moreover, note
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that the state |ψ〉 reaches its maximal coherence relative to
the basis {|az〉} when θ = π/2 so that it is mutually unbiased
with both {|az〉} and {|b∗〉z}. Hence, in this case, the state,
the incoherent basis, and the maximal second basis comprise
the three mutually unbiased bases for the two-dimensional
Hilbert space.

The computation of KD coherence in Eq. (16) suggests
the following generalization for the pure state of a single
qubit relative to any arbitrary incoherent basis. Consider the
quantum coherence in the state |ψ〉 with respect to the inco-
herent orthonormal basis {|a�n〉} = {|�n+〉 , |�n−〉}, the complete
set of eigenbasis of the Pauli operator σ�n along an arbitrary
unit vector �n, i.e., σ�n = �n · �σ , where �σ = (σx, σy, σz ). We first
express the state as

|ψ〉 = ψ�n+ |�n+〉 + ψ�n− |�n−〉 , (17)

where ψ�n± = 〈�n ± |ψ〉, so that the l1-norm quantum coher-
ence reads Cl1 [|ψ〉 〈ψ | ; {�a�n}] = 2|ψ�n+ψ∗

�n−|, where �a�n =
|a�n〉 〈a�n|. Let us show that this is equal to the KD coherence
CKD[|ψ〉 〈ψ | ; {�a�n}]. To do this, we shall use the property
(iii), namely,

CKD[|ψ〉 〈ψ | ; {�a�n}] = CKD[U |ψ〉 〈ψ |U †; {U�a�nU
†}], (18)

where U is an arbitrary unitary operator. Let us further choose
a unitary operator: U = |0〉 〈�n+| + |1〉 〈�n−|, so that we have
the following transformation of bases: U |�n+〉 〈�n+|U † =
|0〉 〈0| and U |�n−〉 〈�n−|U † = |1〉 〈1|, and the quantum state
of Eq. (17) is transformed into

|ψ ′〉 = U |ψ〉 = ψ�n+ |0〉 + ψ�n− |1〉 . (19)

Taking all these into account, Eq. (18) thus becomes

CKD[|ψ〉 〈ψ | ; {�a�n}] = CKD[|ψ ′〉 〈ψ ′| ; {�az}]
= 2|ψ�n+ψ∗

�n−| = Cl1 [|ψ〉 〈ψ | ; {�a�n}],
(20)

as claimed. Here, in the second line we have used the pre-
vious result for the KD coherence relative to the basis {az} =
{|0〉 , |1〉}, noting Eq. (19). Recalling the proof of property (iii)
given in Eq. (5), the maximum is obtained when the second
basis {|b∗〉�n} is |b∗+〉�n = U † |b∗+〉z = 1√

2
(|�n+〉 + ieiη |�n−〉)

and |b∗−〉�n = U † |b∗−〉z = 1√
2
(|�n+〉 − ieiη |�n−〉), where η is

the relative phase between ψ�n+ and ψ�n−.
Finally, one can generalize the above proof for the equal-

ity between the KD coherence CKD[�; {�a}] and the l1-norm
coherence Cl1 [�; {�a}] for general density operator � in two-
dimensional Hilbert space relative to an arbitrary reference
basis {|a〉}. First, taking {|az〉} = {|0〉 , |1〉} as the incoherent
basis, and using the expression of Eq. (15) for the second
basis, one straightforwardly gets CKD[�; {�a}] = 2|�01| =
Cl1 [�; {�a}], where �01 = 〈0|�|1〉, and the maximum is ob-
tained for the basis in Eq. (15) with α = π/2 and β =
π/2 − ϕ01, ϕ01 = arg{�01}. Using this result, one can then
prove the equality between the KD coherence and the l1-norm
coherence for general density operator relative to any inco-
herent basis {|�n+〉 , |�n−〉}, by again using the property (iii)
of unitarily covariant and choose the unitary that transforms
the incoherent basis {|�n+〉 , |�n−〉} to the computational basis
{|0〉 , |1〉}. Hence, for a single qubit, the KD coherence defined

in Eq. (4) shares all the monotonic character of the l1-norm
coherence with respect to certain classes of incoherence-
preserving quantum operations [2].

We further show that for a single qubit, the inequality of
Eq. (11) is also saturated for all pure states. First, without
loosing generality, let us take one of the elements of the
incoherent basis as the positive z axis of the Bloch sphere.
The incoherent reference basis is thus given by {|az〉} =
{|0〉 , |1〉}, the complete set of orthonormal eigenvectors of
σz. For our purpose, it is convenient to express the general
state of the qubit as � = 1

2 (I + rxσx + ryσy + rzσz ), where
r2 = r2

x + r2
y + r2

z � 1. One then directly has

CKD[�; {�az}] = |rx − iry| =
√

r2 − r2
z

�
√

1 − r2
z =

∑
az

��̂az
[�], (21)

in accord with the inequality of Eq. (11). Equality is reached
for the pure state where r2 = 1, as claimed. This suggests that
for a single qubit, KD coherence can be seen as the genuine
quantum share of the uncertainty out of the total quantum
uncertainty quantified by the quantum standard deviation.

Next, it is instructive to compare the KD coherence defined
in Eq. (4) with a quantity defined as [19,26]

N [PrKD(a, b|�)] :=
∑
a,b

|PrKD(a, b|�)| − 1. (22)

N [PrKD(a, b|�)] quantifies the KD nonclassicity, i.e., the
negativity and the nonreality in the KD quasiprobability
PrKD(a, b|�) defined over the bases {|a〉} and {|b〉}, which
has been argued to indicate the genuine quantum behavior in
broad quantum phenomena. It has been shown in Ref. [23] that
it possesses certain plausible requirements for the quantifier of
KD nonclassicality. One finds in particular that the KD non-
classicality of Eq. (22) is nonincreasing under decoherence
operation as for the KD coherence. An interesting observation
is made in Ref. [19], where the authors consider a depolarizing
model of decoherence to show that nonnegativity of the real
part of the KD quasiprobability is not sufficient to guarantee a
completely incoherent state.

Now, let us assume that KD coherence relative to the basis
{|a〉} is vanishing, i.e., CKD[�; {�a}] = 0. Then, by the prop-
erty (i) of faithfulness, we have [�,�a] = 0 for all a. In this
case, noting that �2

a = �a, the KD quasiprobability relative
to the basis {|a〉} and any other basis {|b〉} can be written as

PrKD(a, b|�) = 〈b|�a�|b〉 = Tr

{
�b

�a��a

Tr{�a�}

}
Tr{�a�}.

(23)

This is just the joint probability to get outcomes (a, b)
in the successive measurement of {�a} followed with the
measurement {�b} so that it is always real and nonnega-
tive. Hence, in this case, KD nonclassicality is vanishing,
i.e., N [PrKD(a, b|�)] = 0. One therefore concludes that a
nonvanishing KD nonclassicality, i.e., N [PrKD(a, b|�)] > 0,
implies a nonvanishing KD coherence, i.e., CKD[�; {�a}] >

0. By symmetry, the former also implies CKD[�; {�b}] > 0.
This result shows that the presence of negativity in the KD
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quasiprobability PrKD(a, b|�), even when it is real, is suffi-
cient to guarantee the coherence relative to one of the defining
bases, say, {|a〉}. This is so because one can always vary the
other defining basis {|b〉}, so that the KD quasiprobability
becomes nonreal, giving a nonvanishing KD coherence.

IV. OPERATIONAL AND STATISTICAL MEANING

One of the important problems in the quantification of
quantum coherence is to find a quantifier whose definition
translates directly into a set of laboratory operations, without
recoursing to quantum state tomography. Such a set of labo-
ratory operations is then said to give an operational meaning
to the coherence quantifier thus defined. Fortunately, there are
several schemes to reconstruct KD quasiprobability without
recoursing first to the quantum state tomography as elaborated
on in Ref. [23]. Two of them are summarized below, focusing
on the relevant imaginary part of the KD quasiprobability:
One is based on two successive projective measurements
proposed by Johansen [47], and the other is a direct re-
construction based on weak measurement with postselection
[48–50] suggested by Lundeen et al. [51–54]. These schemes
for the reconstruction of the KD quasiprobability lend them-
selves to the operational interpretation of the KD coherence
defined in Eq. (4).

Let us first discuss the method suggested by Johansen
based on two successive projective measurements [47]. This
is done by noting that the imaginary part of the KD quasiprob-
ability can be expressed as

Im{PrKD(a, b|�)} = Im{Tr{�b�a�}} = −Im{Tr{�a�b�}}
= 1

2 Tr
{
(�a − �)�π/2

b|a
}
. (24)

Here �a = �a��a + (I − �a)�(I − �a) is the state of the
system after the binary measurement of �a without learning
the outcomes, where I − �a is the complement projector to
�a, and �

π/2
b|a = ei�aπ/2�be−i�aπ/2 is the new second basis

after a selective rotation generated by the first basis. We note
that while performing the selective rotation to obtain �

π/2
b|a is

operationally challenging, it in principle can be done. The KD
coherence can thus be expressed as, upon inserting Eq. (24)
into Eq. (4),

CKD[�; {�a}] = 1

2
max
{|b〉}

∑
a,b

∣∣Tr
{
[� − �a]�π/2

b|a
}∣∣. (25)

Hence, to observe the KD coherence relative to the basis {|a〉},
we need to measure the expectation values of �

π/2
b|a in the

states � and �a, compute the difference, and optimize over
all possible choices of {|b〉}. In this scheme, KD coherence
therefore admits a statistical interpretation as the maximal
state disturbance induced by the measurement {�a, I − �a}
as observed in the expectation value of {�π/2

b|a }.
Let us proceed to discuss the direct reconstruction of

KD quasiprobability via weak measurement with postselec-
tion proposed by Lundeen and co-workers [51–54]. Consider
the weak measurement of a Hermitian observable A with-
out significantly perturbing the preselected state �, followed
by a postselection on a state |φ〉 via a normal (i.e., strong)
projective measurement. One then obtains the following weak

value [48–50]:

Aw(φ|�) = 〈φ|A�|φ〉
〈φ|�|φ〉 . (26)

Note that the weak value Aw(φ|�) may take real numbers
outside of the range of the eigenvalues of A, and it can even
be complex. Such values are called strange or anomalous
weak values. The real and imaginary parts of Aw(φ|�) can
be inferred, respectively, from the average shift of the position
and momentum of the pointer of the measuring device [55,56].
Noting this, the imaginary part of the KD quasiprobability
of Eq. (2) can therefore be directly observed by first weakly
measuring �a with the preselected state �, followed by the
postselection on |b〉, inferring the imaginary part, and multi-
plied by the probability of the successful postselection, i.e.,

Im{PrKD(a, b|�)} = Im

{ 〈b|�a�|b〉
〈b|�|b〉

}
〈b|�|b〉

= Im
{
�w

a (b|�)
}
Pr(b|�). (27)

The KD coherence CKD[�; {�a}] of Eq. (4) can thus be ob-
tained by taking the sum of the absolute value of Eq. (27),
and maximizing over all possible choices of the postselection
bases,

CKD[�; {�a}] = max
{|b〉}

∑
a

∑
b

∣∣Im{
�w

a (b|�)
}∣∣Pr(b|�). (28)

The above operational interpretation of the KD coherence
in terms of the statistics of weak values suggests the following
statistical interpretation inherited from the interpretation of
the weak value. First, as argued in Refs. [57–60], the imagi-
nary part of the weak value Aw(b|�) defined in Eq. (26) can be
interpreted as the strength of the error in an optimal estimate
of A (or a real-deterministic c-valued quantity associated with
A and � [60]) based on information about {b} obtained from
a projective measurement {�b}, given prior information about
preparation represented by �. With this in mind, CKD[�; {�a}]
obtained operationally in Eq. (28) can thus be interpreted as
the maximum average absolute error of estimating the inco-
herent basis {|a〉}, by varying the postselection basis {|b〉},
given a preparation associated with the quantum state �.

Hence, the KD coherence CKD[�; {�a}] devised in this
work has transparent meanings in terms of direct laboratory
operations. It is clear from the above operational schemes to
observe KD coherence that the resource consuming procedure
is the maximization over all possible second bases {|b〉}. This
classical optimization can be done via variational quantum
circuits in a hybrid quantum-classical scheme. Let us note
that, at least for a single qubit (two-dimensional system), the
method of computing, e.g., the l1-norm coherence by first
reconstructing the density matrix via the state tomography,
is much simpler than the above operational schemes for the
observation of KD coherence based on either two successive
measurements or weak measurement with postselection. We
emphasize, however, that the procedure for the state tomog-
raphy does not tell us the operational meaning of the l1-norm
coherence. By contrast, KD coherence translates directly to a
set of laboratory operations, leading to their statistical mean-
ing, which might give insight into its application in quantum
information processing.
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Moreover, if one only aims to detect the presence of
coherence of an unknown quantum state with respect to
an incoherent basis {|a〉}, then one may skip the opera-
tionally cumbersome maximization over classical parameters.
Namely, it is sufficient to find a second basis {|b〉} so that
the l1 norm of the imaginary part of the KD quasiprob-
ability is nonvanishing, i.e.,

∑
a

∑
b |Im{PrKD(a, b|�)}| >

0, which, by definition of Eq. (4), guarantees a non-
vanishing of the KD coherence, and thus by virtue of
Eq. (13) guarantees a nonvanishing l1-norm quantum coher-
ence. Since |Im{PrKD(a, b|�)}| = |Im{PrKD(b, a|�)}|, it also
indicates the coherence with respect to the basis {|b〉}. The
maximization over one of the two bases, i.e., over {|b〉} or
{|a〉}, defines the KD coherence with respect to the other
basis.

Having expressed the KD coherence in terms of weak mea-
surement with postselection as discussed above, it still makes
sense operationally if the incoherent basis that is given by the
set of one-dimensional (rank one) projectors {�a} is replaced
by a more general measurement basis. This suggests a gener-
alization of the KD coherence as follows. Consider a complete
set of positive operator-valued measure (POVM), i.e., {Mx},
Mx � 0,

∑
x Mx = I. We then define the KD coherence with

respect to the POVM basis as

CKD[�; {Mx}] := max
{|b〉}

∑
x

∑
b

|Im{〈b|Mx�|b〉}|

= max
{|b〉}

∑
x

∑
b

1

2
| 〈b|[Mx, �]|b〉 |. (29)

Note, however, that in this case, a state is in general incoherent
if [Mx, �] = 0 for all x. CKD[�; {Mx}] reduces to Eq. (4) when
{Mx} is a set of orthonormal one-dimensional projectors, but
it also covers the case when the rank of the projectors is
larger than one, allowing the definition of coherence relative
to the decomposition of the Hilbert space into subspaces with
dimension larger than one, and also the case when the POVM
operators are not orthogonal. See Ref. [61] for a different
approach. Let us, for example, assume that the POVM is
obtained by coarse-graining the incoherent basis, i.e., MA =∑

a∈A �a, where A is the disjoint subsets partitioning of the
indices {a}. Such a coarse-graining arises naturally if there is
a degeneracy. Then, in this case, we have

CKD[�; {MA}] = max
{|b〉}

∑
A

∑
b

∣∣∣∣Im
{

〈b|
∑
a∈A

�a�|b〉
}∣∣∣∣

� max
{|b〉}

∑
a,b

|Im{〈b|�a�|b〉}| = CKD[�; {�a}].

(30)

Hence, the KD coherence is nonincreasing under coarse-
graining of the incoherent basis.

As a final note, KD quasiprobability has been argued
as a central object in the study of quantum fluctuations
arising in a broad field of quantum science [23]. This
observation naturally suggests a possible application of
the concept of KD coherence to characterize such quan-
tum fluctuations. Here, we show that it can be used
to characterize linear response function. The exposition

below follows that of Ref. [23]. Let us consider a unitary
dynamics with the Hamiltonian H (t ) = H0 − λ(t )A, where
A is a perturbation and λ(t ) is nonzero only for t > 0.
Then, in the linear response regime, we have, Tr{B(t )�(t )} −
Tr{B(0)�(0)} ≈ ∫ t

0 dt ′λ(t ′)�AB(t ′, t ), where �(t ) is the quan-
tum state at time t and �AB(t ′, t ) is called the linear response
function that is given by �AB(t ′, t ) = iTr{[A(t ′), B(t )]�(0)},
with O(t ) = eiH0t Oe−iH0t . Expressing A(t ) = ∑

a a�a(t ) and
B(t ) = ∑

b b�b(t ), where |a(t )〉 = eiH0t |a〉, |b(t )〉 = eiH0t |b〉,
the linear response function can be written in terms of the
imaginary part of the KD quasiprobability as

�AB(t ′, t ) = 2
∑
a,b

abIm{PrKD(a(t ′), b(t )|�(0))}. (31)

It encodes the correlation between the observable B(t ) and
the perturbation. Taking the absolute value, and maximizing
over all possible B ∈ �B with the same nontrivial spectrum of
eigenvalues, one thus obtains

max
B∈�B

|�AB(t ′, t )|

� 2|a|∗|b|∗ max
|b(t )〉

∑
a,b

|Im{PrKD(a(t ′), b(t )|�(0))}|

= 2|a|∗|b|∗CKD[�(0); {�a(t ′ )}], (32)

where |a|∗ and |b|∗ are the maximum absolute eigenvalues of
A and B, respectively. Hence, the KD coherence in the initial
state relative to the incoherent basis {|a(t ′)〉} determines an
upper bound to the absolute linear response function maxi-
mized over all B with a fixed spectrum. This means that a
nonvanishing KD coherence is necessary for a nonvanishing
linear response function.

V. SUMMARY AND REMARKS

Given a quantum state and an incoherent basis, we have
identified a quantity, KD coherence, defined as the l1 norm
of the imaginary part of the associated KD quasiprobability
defined over the incoherent basis and a second basis, and max-
imized over all possible choices of the latter. It quantifies the
failure of commutativity of the state with the incoherent basis,
and satisfies certain desirable properties for a quantifier of co-
herence. It is upper bounded by the total sum of the quantum
standard deviation, i.e., the quantum uncertainty, of the inco-
herent basis in the state. KD coherence gives a lower bound
to the l1-norm quantum coherence, and for arbitrary state
of a single qubit, they yield equal values. We demonstrated
that KD coherence can be translated directly into laboratory
operations, i.e., without recoursing to quantum state tomogra-
phy, in a couple of quantum-classical hybrid schemes, leading
to the statistical meaning as maximum disturbance induced
by the measurement of, or as the maximum mean absolute
error in the estimation of, the incoherent basis. Finally, we
discuss the relevance of the KD coherence to characterize the
linear response function. We hope our results will initiate a
program to use the nonclassicality of KD quasiprobability,
and its closely related concept of anomalous weak values, to
access various nonclassical aspects encoded in the quantum
state such as asymmetry and quantum correlation. It might
thus give a better intuition and fresh insight into their roles
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as resources in quantum information processing, and in wide
areas of quantum science where KD quasiprobability has been
shown to play an important role [23].
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