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Quantum algorithm for evaluating operator size with Bell measurements
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Operator size growth describes the scrambling of operators in quantum dynamics and stands out as an essential
physical concept for characterizing quantum chaos. Important as it is, a scheme for the direct measuring of
operator size on a quantum computer is still absent. Here, we propose a quantum algorithm for the direct
measuring of the operator size and its distribution based on Bell measurement. The algorithm is verified with
spin chains and, meanwhile, the effects of Trotterization error and quantum noise are analyzed. It is revealed that
saturation of operator size growth can be due to quantum chaos itself or be a consequence of quantum noise.
Nevertheless, it is found that the error mitigation will effectively reduce the influence of noise, so as to restore the
distinguishability of oscillation and saturation behaviors of operator scrambling. Our work provides a feasible
protocol for investigating quantum chaos on noisy quantum computers by measuring operator size growth.
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I. INTRODUCTION

Characterizing quantum chaos has drawn intensive interest
in recent years due to its fundamental role in understanding
quantum statistical mechanics [1–3]. One important perspec-
tive to study quantum chaos is to investigate the quantum
information scrambling [4–10], a concept to describe how
local information can be scrambled into the whole system
and become nonlocal. The information scrambling can be
quantified by the out-of-time-ordered correlations (OTOCs)
[11–18]. Remarkably, recent rapid advances in quantum pro-
cessors enable us to observe information scrambling by
measuring OTOCs [9,13,19,20], which is unusual as typical
correlation functions are time ordered.

An alternative approach to understand information scram-
bling is to directly investigate the operator spreading [21–32].
In this picture, a local operator after evolution can spread into
a linear combination of highly nonlocal operators, and the
number of nonlocal operators can be exponentially enlarged,
making extraction of information encoded in the initial local
operator impractical. In other words, the operator size can
grow with time until reaching the system size. The operator
size growth can be intuitive for characterizing and understand-
ing quantum chaotic systems. Remarkably, for open-system
dynamics where OTOCs can have difficulty telling informa-
tion scrambling of the evolution of the system itself apart from
noises of the environment, the operator size distribution can
still give a faithful characterization. In this regard, operator
size growth provides a promising avenue to study informa-
tion scrambling other than OTOCs. However, there is still a
lack of feasible schemes to directly measure the operator size
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on quantum processors, except for indirect measurement by
inferring from data obtained by quantum quenches from an
ensemble of random initial states [9,27].

In this paper, we propose a quantum algorithm that can
directly measure the operator size and its distribution, which
is feasible on near-term quantum computers. The scheme is
based on a mapping between Pauli operators and Bell states.
By preparing a product of Bell states, the operator of Heisen-
berg evolution will imprint the information of the product of
Pauli operators into Bell states, and by Bell measurements, the
operator size and its distribution can be extracted. In the nu-
merical simulation, we consider both Trotterization error and
quantum noises that are related to implementation. For spin
chains, it is found that quantum noises may make the differ-
ent behaviors between integrable chain and quantum chaotic
chain [27] tend to disappear, as for both the operator sizes
grow to saturation. Nevertheless, we show that the feature
of operator size oscillation can be restored for the integrable
system by error mitigation [33–38]. Our work points out that
the operator scrambling by measuring the operator size can be
feasible on near-term quantum devices with error mitigation.

The paper is organized as follows. In Sec. II, we introduce
the definition of operator size and propose a quantum algo-
rithm based on Bell measurements to evaluate the operator
size. Then, in Sec. III, we present numerical simulation results
for spin chains and analyze the effects of Trotterization, quan-
tum noise, and error mitigation. Finally, we make conclusions
in Sec. IV.

II. EVALUATING OPERATOR SIZE
BY BELL MEASUREMENTS

In this section, we first give a definition of operator size for
quantum systems. Then, we illustrate how Bell measurements
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can be exploited to measure the operator size. We mention
that recently Bell measurement has had broad applications
in quantum information science, such as for estimating Pauli
channels [39], learning quantum experiments [40], and mea-
suring the degree of magic of nonstabilizer states [41].

A. Operator size

To be concrete without loss of generality, we consider
a lattice model where each site is a qubit (spin half). The
Hamiltonian can be written as a summation of local terms,
H = ∑

i λiHi, with each local term Hi a product of Pauli
operators. In the Heisenberg picture, the time evolution of a
quantum system can be encapsulated into the time-dependent
operator Ô(t ), which satisfies the equation of motion,

∂Ô(t )

∂t
= i[Ĥ, Ô(t )]. (1)

The solution is Ô(t ) = eiĤt Ô(0)e−iĤt .
The time evolution of quantum systems can be very com-

plicated, even if the Hamiltonian itself is simple and the initial
operator Ô(0) is a single Pauli operator. To see this, the oper-
ator Ô(t ) can be written as

Ô(t ) =
[ ∞∑

n=0

(iĤt )n

n!

]
Ô(0)

[ ∞∑
n=0

(−iĤt )n

n!

]
. (2)

For a generic quantum many-body system, a single Pauli oper-
ator can evolve into a linear combination of products of Pauli
operators, which may involve many operators by expanding
Hn in Eq. (2).

For a generic N-qubit lattice system, the operator Ô(t ) can
be written under the Pauli basis (product of Pauli operators),

Ô(t ) =
4N −1∑
k=0

Ck(t )P̂k, P̂k =
N⊗

n=1

σ kn
n . (3)

Here we have used a quaternary number k = k1k2, . . . , kN

(kn = 0, 1, 2, 3) to label all Pauli bases in order and Pauli ma-
trices are σ 0 = I , σ 1 = X , σ 2 = Y , σ 3 = Z . The coefficient
can be evaluated as

Ck(t ) = 2−N tr[Ô(t )P̂k]. (4)

Once the initial operator Ô(0) is Hermitian, it can be seen
that Ô(t ) is Hermitian and all coefficients Ck(t ) are real num-
bers. Thus, it requires 4N real numbers to fully characterize
the operator Ô(t ), which becomes inaccessible for a generic
quantum many-body system due to the exponential growth.
Nevertheless, one may study some properties of Ô(t ) that are
of physical interest.

From the aspect of quantum information scrambling, one
remarkable feature of Ô(t ) is to investigate how the operator
size is growing with time evolution. For quantum chaos, the
initial local information can be scrambled into the whole sys-
tem. The information is distributed extensively in the system
and thus becomes nonlocal. The Pauli basis is suitable to
study the degree of extensiveness by defining its operator size,
which counts how many non-I operators are in P̂k. Initially, the
operator size Ô(0) as a Pauli operator on a site is one. With
the time evolution, the operator Ô(t ) is a superposition of the

Pauli basis with different operator sizes, and it is necessary
to use an averaged operator size. For quantum chaos, the
averaged operator size grows with time until saturation, which
is O(L).

Let us explicitly write the averaged operator size, which is

L[Ô(t )] ≡
4N −1∑
k=0

|Ck(t )|2 × lP̂k
. (5)

Here, lP̂k
is the operator size of Pauli basis P̂k defined as

lP̂k
=

N∑
n=1

S
(
σ kn

n

)
, (6)

where S(I ) = 0, S(X ) = S(Y ) = S(Z ) = 1. Equivalently, lP̂k

can be obtained by counting the number of nonzeros in the
quaternary number k = k1k2 . . . kN [27]. It is noted that the
operator size expressed in Eq. (5) is a measure of the operator
itself and is state independent. Another definition of operator
size, which is state dependent, can be found in Refs. [23,24].

B. Bell measurements

We first introduce some interesting properties of Bell states
related to Pauli operators. Then, a scheme for measuring the
operator size is given.

The Bell states are two-qubit maximally entangled states.
There are four Bell states (Bell basis), which are given as
follows: ∣∣B0

n

〉 = 1√
2

(|0n0n′ 〉 + |1n1n′ 〉),

∣∣Bx
n

〉 = Xn

∣∣B0
n

〉 = 1√
2

(|1n0n′ 〉 + |0n1n′ 〉),

∣∣By
n

〉 = Yn

∣∣B0
n

〉 = i√
2

(|1n0n′ 〉 − |0n1n′ 〉),

∣∣Bz
n

〉 = Zn

∣∣B0
n

〉 = 1√
2

(|0n0n′ 〉 − |1n1n′ 〉),

(7)

where Xn,Yn, Zn is the corresponding quantum gate on the
qubit n and n′ represents the ancillary qubit. The four Bell
bases are orthogonal to each other. Thus, a mapping can
be established between four Pauli operators {I, X,Y, Z} and
four Bell states {|B0〉, |Bx〉, |Bz〉, |Bz〉}, respectively. For con-
venience, we interchangeably use the notions |Bx

n〉 = |B1
n〉,

|By
n〉 = |B2

n〉, |Bz
n〉 = |B3

n〉.
The imprinting of information of Pauli operators into Bell

states can be generalized into a Pauli basis. For instance,
considering a two-qubit system and an operator

Ô f = C0I1I2 + C1X1I2 + C4I1X2 + C7Z1X2, (8)

one can perform Ô f on an initial |B0
1B0

2〉, which leads to

|ψ f 〉 = C0

∣∣B0
1B0

2

〉 + C1

∣∣B1
1B0

2

〉 + C4

∣∣B0
1B1

2

〉 + C7

∣∣B3
1B1

2

〉
. (9)

Now, each Pauli basis is mapped into a product of a Bell
basis (General Bell basis). The operator size can be obtained
by counting the number of Bell basis that is not |B0〉 in the
general Bell basis, which can be implemented with projective
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Step 1:
Initial state preparation

Step 2:
Time evolution

Step 3: 
Projective measurements

Step 1:
Initial state preparation

FIG. 1. The schematic diagram for the quantum circuit to calcu-
late the operator size of operator Ô(t ). Here, |0〉s and |0〉a represent
the system qubit and the auxiliary qubit, respectively. The Ô(t )
operator implements only on the system qubits.

measurements. One can evaluate the average operator size as

L[Ô f ] = |C0|2 × 0 + (|C1|2 + |C4|2) × 1 + |C7|2 × 2. (10)

A generalization to an N-qubit system can be straightforward.
Now we present a procedure to evaluate the operator size

with Bell measurements, which consists of three main steps
(also illustrated in Fig. 1).

Step 1: Initial state preparation. Prepare the initial state as
a product of N Bell states,

|ψ0〉 =
N⊗

n=1

∣∣B0
n

〉
. (11)

For an N-qubit quantum system, a total 2N qubits is required.
Step 2: Time evolution. Perform the unitary operator Ô(t ) =

eiĤt Ô(0)e−iĤt on the initial state |ψ0〉, and one gets

|ψ (t )〉 = Ô(t )|ψ0〉

=
4N −1∑
k=0

Ck(t )P̂k|ψ0〉

=
4N −1∑
k=0

Ck(t )
N⊗

n=1

∣∣Bkn
n

〉

=
4N −1∑
k=0

Ck(t )|k〉, (12)

where we have denoted |k〉 ≡ ⊗N
n=1 |Bkn

n 〉.
Step 3: Projective measurements. Perform the projective

measurement,

M̂ =
N∑

n=1

M̂n, M̂n = 1 − ∣∣B0
n

〉〈
B0

n

∣∣. (13)

The expectation value of M̂ is equal to the averaged operator
size L[Ô(t )], which is derived from the following:

〈ψ (t )|M̂|ψ (t )〉 =
4N −1∑
k=0

|Ck(t )|2〈k|M̂|k〉

=
4N −1∑
k=0

|Ck(t )|2
N∑

n=1

S(kn)

=
4N −1∑
k=0

|Ck(t )|2lp̂k = L[Ô(t )]. (14)

Here, S(kn) = 〈k|M̂n|k〉 with S(0) = 0, S(1) = S(2) =
S(3) = 1. As S(kn) = S(σ kn

n ), we have
∑N

n=1 S(kn) =∑N
n=1 S(σ kn

n ) = lp̂k .
The procedure of initial state preparation, time evolution,

and projective measurement should be repeated to evaluate
L[Ô(t )] with an acceptable statistical error. Some remarks
are in order. First, the Hamiltonian evolution e−iĤt for the
Hamiltonian H and its reversion eiĤt may be implemented
directly on an analog quantum simulator by engineering the
Hamiltonian H and −H , respectively. For a digital quantum
computer, the evolution should be decomposed into sequences
of quantum gates by Trotterization. Here we focus on the dig-
ital quantum simulation. Second, by performing measurement
M̂, one can also access the distribution of operator size, which
takes integer values M = 0, 1, 2, . . . , N . Third, the projective
measurement can be decomposed as

N∑
n=1

〈ψ (t )|M̂n|ψ (t )〉 =
N∑

n=1

Ln[Ô(t )], (15)

where Ln[Ô(t )] can be taken as the operator density at site n
for the operator Ô(t ). Thus, the averaged operator size is a
summation of local operator densities.

III. SIMULATION RESULTS

In this section, we demonstrate the quantum algorithm
using a model Hamiltonian with numerical simulations. We
consider both the Trotterization error and quantum noise,
which are two necessary ingredients when implementing the
quantum algorithm. The numerical simulation is conducted
using the open-source package QIBO.

As an example, we consider the mixed-field Ising model
(MFIM), which is a typical quantum chaotic system. The
Hamiltonian of the MFIM reads

ĤI =
N−1∑
n=1

JZnZn+1 + hx

N∑
n=1

Xn + hz

N∑
n=1

Zn. (16)

The MFIM reduces to the transverse-field Ising model
(TFIM) at hz = 0, which is an integrable system. In the
demonstration, the system size is taken as N = 5 and the
operator that is investigated is X3(t ). This takes 10 qubits in
the quantum computation as one Bell state needs two qubits.

In the ideal situation where both Trotter error and quan-
tum noise are ignored, the results of operator size growth
for both the MFIM (hz �= 0) and TFIM (hz = 0) are shown
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FIG. 2. The operator size of X3(t ) for the quantum Ising model
with system site N = 5. (a) The operator size distribution of the inte-
grable system (hz = 0) with different time t . (b) The quantum chaotic
one (hz = 0.3). Both of them are numerical results using a quantum
computer simulator without circuit noise. (c),(d) The corresponding
operator size for (a) and (b). The red lines are ED results and the
dashed lines are the result of a quantum computer simulator by Bell
measurements without circuit noise.

in Fig. 2. For hz = 0, the operator size shows an oscillation
with time. For hz �= 0 (we chose hz = 0.3), the operator size
increases for a period and reaches saturation afterward, which
is evidence of operator scrambling. In addition, the operator
size distributions and their evolution with time are presented
in Figs. 2(a) and 2(b), respectively. Note that the simulation
results fit well with the exact diagonalization (ED) for the
operator size growth, which verifies the quantum algorithm.

We now consider the Trotter errors. To implement the
Hamiltonian evolution in Ô(t ) on a digital quantum computer,
a decomposition into sequences of one-qubit and two-qubit
gates is necessary, and the Trotter error ε due to the decompo-
sition is related to the evolution time t and the number of time
slices (or Trotter steps) r = t/dt used in the decomposition.
For a generic quantum system, the relation is ε = O(t2/r).
The Trotter error can be smaller for a specific Hamiltonian.
For instance, for a Hamiltonian H with a partition into H =
H1 + H2 that all terms in H1 (or H2) mutually commute, the
Trotter error becomes ε = O( nt

r + nt3

r2 ) [42]. This is just the
case for MFIM or TFIM, where the Hamiltonian can be writ-
ten as HI = Hz + Hx, with Hz and Hx consisting of Z and X
operators, respectively. The Trotter error εop for the operator
σ k

α (t ) = U †(t )σ k
α (0)U (t ) is εop ∼ ε, which turns to be

εop ∼ O

(
t

r
+ t3

r2

)
. (17)

Notably, the Trotter error is demonstrated by O( t
r ) for small

t . To verify the behavior of the Trotter error, we consider a
maximum evolution time T = 10. The number of Trotter steps
is fixed, r = 100. By simulation, the Trotter errors with time
are shown in Fig. 3(a) (the fitting function is marked), which
are in agreement with the theoretical analysis in Eq. (17). In
addition, the behaviors of the Trotter errors with the number
of time slices are shown in Fig. 3(b) for t = 2 [at t = 2, the

FIG. 3. (a) The Trotter errors with time for both the integrable
system (hz = 0) and quantum chaotic one (hz = 0.3) with the Trotter
step r = 100. (b) The Trotter errors with different Trotter steps for a
total time t = 2.

operator size ceases to increase, as seen in Figs. 2(c) and
2(d)]. Again, the simulation results are in agreement with the
theoretical analysis in Eq. (17) [the fitting function is marked
in Fig. 3(b)].

To implement the quantum algorithm on near-term quan-
tum processors, the effects of quantum noise cannot be
ignored [43]. For this, we continue to include quantum noise
in the numerical simulation. As for a demonstration, we chose
a noise model with depolarizing noise. The depolarizing noise
model can be effective for large-size quantum circuits. During
the simulation, the number of Trotter steps is set as r = t/0.1
and the noise of depolarization is added to each qubit after
a quantum gate with a noise rate p. For a single qubit, the
depolarization will evolve a density matrix ρ to ρ ′ as

ρ ′ = p

3
(XρX + Y ρY + ZρZ ) + (1 − p)ρ. (18)

To see the effects of depolarizing noise on the operator size,
it is useful to consider a quantum operation of depolarizing
on one qubit of the Bell state |B0〉. The final state will be a
mixed state of all four Bell states, p

3 (B1 + B2 + B3) + (1 −
p)B0, where we have short-noted Bk = |Bk〉〈Bk|. Similarly, for
Bell state |B1〉, the mixed state after depolarization becomes
p
3 (B0 + B2 + B3) + (1 − p)B1. Corresponding to Pauli opera-
tors, it can be seen that the probability of turning an identity
I into Pauli operators {X,Y, Z} is p, while the probability of
turning a Pauli operator into I is p

3 . In this regard, depolarizing
noise tends to increase the local operator density and thus the
operator size.

As shown in Figs. 4(a) and 4(b), the distinction of the be-
havior of operator size growth can still be identified between
oscillation and saturation behaviors when the depolarizing
noise rate is a small one, e.g., p � 10−4. However, for the
larger noise rate p ∼ 10−3, which is comparable to real quan-
tum hardware, the operator size reaches saturation for both
integrable and chaotic systems. As analyzed before, the depo-
larizing noise can also increase the operator size, and it is hard
to tell the oscillation and saturation behaviors of the operator
growth apart, even when the noise rate is large compared to
NISQ quantum devices. Thus, to simulate quantum chaotic
systems by studying the operator size growth on real quantum
processors, it is demanding to correct the errors or reduce the
effects of noise.
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FIG. 4. Noise effects and error mitigation for the operator
size growth. (a),(b) The operator size of X3(t ) for the integrable
system and chaotic one with different depolarizing noise rates.
(c),(d) Results of error mitigation for (a) and (b), respectively, by
extrapolation to the zero-noise limit with different nc for a noise
rate p = 10−3.

Quantum error correction can provide an ultimate solution
for handling quantum noise [44–47] and there has been rapid
progress in experiments recently. Due to limited quantum
resources, a practical way is to reduce noise effects by error-
mitigation techniques. We adopt an error-mitigation technique
by extrapolating to the zero-noise limit with Richardson’s
deferred method [33] (see the Appendix), which is suitable
for short-depth quantum circuits. This can be achieved by
performing quantum computing at several different noise rates
with a scaling p j = c j p, where p is the lowest noise rate feasi-
ble on the quantum hardware and c j is the scaling factor, and
then make a linear combination of results with a weighting γ j

for the noise rate p j and make extrapolation to the zero-noise
limit. The parameters c j and γ j should satisfy two relations,

nc∑
j=0

γ j = 1,

nc∑
j=0

(
γ jc

k
j

) = 0 for k = 1, 2, . . . , nc, (19)

and the error can be reduced to O(pnc+1). We chose
parameters c j and γ j for different nc: c0 = 1, c1 = 2,

γ0 = 2, γ1 = −1 for nc = 1; c0 = 1, c1 = 2, c2 = 3, γ0 = 3,

γ1 = −3, γ2 = 1 for nc = 2; c0 = 1, c1 = 2, c2 = 3, c3 = 4,

γ0 = 4, γ1 = −6, γ2 = 4, γ3 = −1 for nc = 3; and c0 =
1, c1 = 2, c2 = 3, c3 = 4, c4 = 5, γ0=5, γ1= − 10, γ2 = 10,

γ3 = −5, γ4 = 1 for nc = 4. As seen in Figs. 4(c) and 4(d),
simulation results after error mitigation get better as nc

increase when the evolution time is not too long, which is
expected as the corresponding quantum circuit depth is short.

Notably, the oscillation behavior of operator size growth,
which is lost at a noise rate p = 10−3, restores after error
mitigation with nc = 3, 4. This suggests that error mitigation
can be an important ingredient for simulating and studying
operator scrambling on near-term quantum devices.

IV. CONCLUSION

In summary, we have proposed a quantum algorithm to
evaluate the operator size for quantum systems, which can be
useful to study operator scrambling on near-term quantum de-
vices by investigating the operator size growth. By preparing
a product of Bell states as the initial state, the information
of the operator in terms of a Pauli basis will be revealed
in the Bell basis, and the operator size and its distribution
can be extracted with Bell measurements. For implementing
the quantum algorithm, we have considered both the Trotter
errors due to the decomposition of the Hamiltonian evolution
and the effects of quantum noise. We have demonstrated with
numerical simulations that error mitigation is necessary for
showing the oscillation and saturation behaviors of the opera-
tor growth separately on noisy quantum devices. Our work has
suggested a feasible scheme for studying operator scrambling
on near-term quantum computers by measuring the operator
size growth.
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APPENDIX: QUANTUM ERROR MITIGATION

Following Ref. [33], we give a short description of error
mitigation by zero-noise extrapolation with Richardson’s de-
ferred method. For a noise-free system, the density matrix
ρ0(T ) satisfies the equation of motion

−ih̄
∂ρ0(T )

∂t
= [Ĥ, ρ0(T )], (A1)

which determines ρ0(T ) = ρ0(0) + i
h̄

∫ T
0 [Ĥ, ρ0(t )]dt . The

expectation value of operator Â can be read as E0(T ) =
tr[Âρ0(T )].

When the noisy errors are introduced to the system with
a noise rate p, the expectation value of operator Â can be
rewritten as

Ep(T ) = tr[Âρ0(T )] +
n∑

k=1

ak pk + Rn+1(p, T ), (A2)

where ak is the coefficients of the pk and Rn+1(p, T ) is the
higher-order p error. By considering the noises scaling pj =
c j p, one can get

Epj (T ) = tr[Âρ0(T )] +
n∑

k=1

akck
j pk + Rn+1(c j p, T ). (A3)
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Thus, one can obtain the mitigation result by calculation,

Enc
p (T ) =

nc∑
j=0

[γ jEpj (T )]

=
nc∑

j=0

γ j

[
E0(T ) +

nc∑
k=1

akck
j pk + Rnc+1(c j p, T )

]

=
nc∑

j=0

γ jE0(T ) +
nc∑

j=0

γ j

nc∑
k=1

akck
j pk

+
nc∑

j=0

γ jRnc+1(c j p, T )

=
⎛
⎝ nc∑

j=0

γ j

⎞
⎠E0(T ) +

nc∑
k=1

⎛
⎝ nc∑

j=0

γ jc
k
j

⎞
⎠ak pk

+
nc∑

j=0

γ jRn+1(c j p, T ). (A4)

The above equation (A4) shows that the noisy error can be re-
duced to

∑nc
j=0 γ jRnc+1(c j p, T ), by selecting a set of suitable

c j and γ j . Both c j and γ j should satisfy

nc∑
j=0

γ j = 1,

nc∑
j=0

(
γ jc

k
j

) = 0 for k = 1, 2, . . . , nc. (A5)

Then, the mitigation result can be rewritten as

Enc
p (T ) = E0(T ) +

nc∑
j=0

γ jRnc+1(c j p, T ). (A6)

The optimization result shows that the error reduces to∑nc
j=0 γ jRnc+1(c j p, T ).
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