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Quantum measurements constrained by the third law of thermodynamics
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In the quantum regime, the third law of thermodynamics implies the unattainability of pure states. As shown
recently, such unattainability implies that a unitary interaction between the measured system and a measuring
apparatus can never implement an ideal projective measurement. In this paper, we introduce an operational
formulation of the third law for the most general class of physical transformations, the violation of which
is both necessary and sufficient for the preparation of pure states. Subsequently, we investigate how such a
law constrains measurements of general observables, or positive operator-valued measures. We identify several
desirable properties of measurements which are simultaneously enjoyed by ideal projective measurements—and
are hence all ruled out by the third law in such a case—and determine if the third law allows for these properties
to obtain for general measurements of general observables and, if so, under what conditions. It is shown that
while the third law rules out some of these properties for all observables, others may be enjoyed by observables
that are sufficiently “unsharp.”
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I. INTRODUCTION

One of the standard assumptions of textbook quantum
mechanics is the “Lüders rule,” which states that when an
observable—represented by a self-adjoint operator with a
nondegenerate spectrum—is measured in a system, the state
of the system collapses to the eigenstate of the observable as-
sociated with the observed eigenvalue [1–3]. But assuming the
universal validity of quantum theory, such a state change must
be consistent with a description of the measurement process
as a physical interaction between the system to be measured
and a given (quantum) measuring apparatus. In his ground-
breaking contribution to quantum theory in 1932 [4], von
Neumann introduced just such a model for the measurement
process, where the system and apparatus interact unitarily.

While Lüders measurements, and von Neumann’s model
for their realization, are always available within the for-
mal framework of quantum theory, they may not always
be feasible in practice—technological obstacles and funda-
mental physical principles must also be accounted for. One
such principle is that of conservation laws and, as shown
by the Wigner-Araki-Yanase theorem [5–14], only observ-
ables commuting with the conserved quantity admit a Lüders
measurement. This observation naturally raises the follow-
ing question: Do other physical principles constrain quantum
measurements, and if so, how? Given that von Neumann’s
model for the measurement process assumes that the measur-
ing apparatus is initially prepared in a pure state, an obvious
candidate for consideration immediately presents itself: The
third law of thermodynamics, or Nernst’s unattainability prin-
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ciple, which states that a system cannot be cooled to absolute
zero temperature with finite time, energy, or control com-
plexity; in the quantum regime, the third law prohibits the
preparation of pure states [15–25]. As argued by Guryanova
et al., such unattainability rules out Lüders measurements for
any self-adjoint operator with a nondegenerate spectrum [26].

The more modern quantum theory of measurement [27–30]
states that the properties of a quantum system are not ex-
hausted by its sharp observables, i.e., observables represented
by self-adjoint operators. Indeed, observables can be funda-
mentally unsharp, and are properly represented as positive
operator valued measures (POVMs) [31,32]. Similarly, the
state change that results from measurement is more prop-
erly captured by the notion of instruments [33], which need
not obey the Lüders rule. Moreover, the interaction between
system and apparatus during the measurement process is
not necessarily unitary and is more generally described as a
channel, which more accurately describes situations where
the interaction with the environment cannot be neglected.
Therefore, how the third law constrains general measurements
should be addressed; in this paper, we shall thoroughly exam-
ine this in the finite-dimensional setting.

First, we provide a minimal operational formulation of the
third law by constraining the class of permissible channels so
that the availability of a channel not so constrained is both
necessary and sufficient for the preparation of pure states.
The considered class of channels include those whose input
and output spaces are not the same, which is the case when
the process considered involves composing and discarding
systems and is more general than the class of rank nonde-
creasing channels, such as unitary channels. Indeed, the rank
nondecreasing concept can be properly applied only to the
limited cases where the input and output systems of a channel
are the same.

2469-9926/2023/107(2)/022406(20) 022406-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0443-5242
https://orcid.org/0000-0002-3590-8508
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.022406&domain=pdf&date_stamp=2023-02-07
https://doi.org/10.1103/PhysRevA.107.022406


M. HAMED MOHAMMADY AND TAKAYUKI MIYADERA PHYSICAL REVIEW A 107, 022406 (2023)

Subsequently, we consider the most general class of mea-
surement schemes that are constrained by the third law. That
is, we do not assume that the measured observable is sharp,
or that the pointer observable is sharp, or that the measure-
ment interaction is rank nondecreasing. Next, we determine
if the instruments realized by such measurement schemes
may satisfy several desirable properties and, if so, under what
conditions. These properties are the following:

(i) Nondisturbance: A nonselective measurement does not
affect the subsequent measurement statistics of any observable
that commutes with the measured observable.

(ii) First-kindness: A nonselective measurement of an ob-
servable does not affect its subsequent measurement statistics.

(iii) Repeatability: Successive measurements of an ob-
servable are guaranteed to produce the same outcome.

(iv) Ideality: Whenever an outcome is certain from the
outset, the measurement does not change the state of the
measured system.

(v) Extremality: The instrument cannot be written as a
probabilistic mixture of distinct instruments.

Lüders measurements of sharp observables simultaneously
satisfy the above properties. In general, however, these proper-
ties can be satisfied by instruments that do not obey the Lüders
rule, and also for observables that are not necessarily sharp.
Moreover, they are in general not equivalent: An instrument
can enjoy one while not another [34–36]. We therefore investi-
gate each such property individually, providing necessary and
sufficient conditions for their fulfillment by a measurement
constrained by the third law.

We show that the third law prohibits a measurement of
any small-rank observable—an observable that has at least
one rank-1 effect or POVM element—from satisfying any
of the above properties. On the other hand, extremality is
shown to be permitted for an observable if each effect has
sufficiently large rank, but only if the interaction between
the system and apparatus is nonunitary. Finally, we show
that while repeatbility and ideality are forbidden for all ob-
servables, nondisturbance and first-kindness are permitted for
observables that are completely unsharp: The effects of such
observables do not have either eigenvalue 1 or 0, and so
such observables do not enjoy the “norm-1” property. That
is, nondisturbance and first-kindness are permitted only for
observables that cannot have a definite value in any state. Our
results are summarized in Table I.

II. OPERATIONAL FORMULATION OF THE THIRD
LAW FOR CHANNELS

The third law of thermodynamics states that in the absence
of infinite resources of time, energy, or control complexity, a
system cannot be cooled to absolute zero temperature. Assum-
ing the universal validity of this law, then it must also hold in
the quantum regime [15–24]. Throughout, we shall consider
only quantum systems with a finite-dimensional Hilbert space
H. When such a system is in thermal equilibrium at some
temperature, it is in a Gibbs state, and whenever the temper-
ature is nonvanishing, such states are full-rank. Conversely,
at absolute zero temperature the system will be in a low-rank
state, i.e., it will not have full rank. In the special case of a
nondegenerate Hamiltonian, the system will in fact be in a

TABLE I. The possibility (
√

) or impossibility (✗) of an observ-
able to admit the properties (i)–(v) outlined above are indicated for
four classes of observables: Small-rank observables have at least one
rank-1 effect; sharp observables are such that all effects are projec-
tions; norm-1 observables are such that every effect has eigenvalue
1; and completely unsharp observables are such that no effect has
eigenvalue 1 or 0.

Observable

Small-rank Sharp Norm-1 Completely unsharp

(i) ✗ ✗ ✗
√

(ii) ✗ ✗ ✗
√

(iii) ✗ ✗ ✗ ✗

(iv) ✗ ✗ ✗ ✗

(v) ✗
√ √ √

pure state. A minimal operational formulation of the third law
in the quantum regime can therefore be phrased as follows:
The possible transformations of quantum systems must be
constrained so that the only attainable states have full rank.

In the Schrödinger picture, the most general transfor-
mations of quantum systems are represented by channels
� : L(H) → L(K), i.e., completely positive trace-preserving
maps from the algebra of linear operators on an input Hilbert
space H to that of an output space K. In the special case
where H = K, we say that � acts in H. But in general H
need not be identical to K, and the two systems may have
different dimensions. This is because physically permissible
transformations include the composition of multiple systems,
and discarding of subsystems.

Previous formulations of the third law (see, for example,
Proposition 5 of Ref. [17] and Appendix B of Ref. [24])
have restricted the class of available channels to those with
the same input and output system, and where the channel
does not reduce the rank of the input state of such a system:
These are referred to as rank nondecreasing channels, with
unitary channels constituting a simple example. An intuitive
argument for such restriction is as follows. Consider the case
where we wish to cool the system of interest by an interaction
with an infinitely large heat bath. But to utilize all degrees
of freedom of such a bath one must either manipulate them
all at once, which requires an infinite resource of control
complexity, or one must approach the quasistatic limit, which
requires an infinite resource of time. It stands to reason that,
in a realistic protocol, only finitely many degrees of freedom
of the bath can be accessed and so the system of interest
effectively interacts with a finite, bounded, thermal bath. Such
a bath is represented by a Gibbs state with a nonvanishing
temperature, which has full rank. It is a simple task to show
that if the interaction between the system of interest and the
finite thermal bath is a rank nondecreasing channel—such as
a unitary channel—acting in the compound of system-plus-
bath, then the rank of the system cannot be reduced unless
infinite energy is spent. It follows that if the input state of the
system is full-rank, for example, if it is a Gibbs state with a
nonvanishing temperature, then the third law thus construed
will allow only for such a state to be transformed to another
full-rank state.
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The above formulation has some drawbacks, however.
First, the argument relies on the strong assumption that the
system interacts with a thermal environment, which is not
justified under purely operational grounds; the environment
may in fact be an out-of-equilibrium system. Second, the
rank nondecreasing condition can be properly applied only
to channels with an identical input and output: The rank of
a state on H has meaning only in relation to the dimension
of H. Indeed, the partial trace channel (describing the process
by which one subsystem is discarded) and the composition
channel (describing the process by which the system of in-
terest is joined with an auxiliary system initialized in some
fixed state) are physically relevant transformations that must
also be addressed, but lead to absurdities when the change
in the state’s rank is examined. The partial trace channel is
rank-decreasing, but tracing out one subsystem of a global
full-rank state can prepare only a state that has full rank in
the remaining subsystem. On the other hand, the composition
channel is rank-increasing. But it is simple to show that if
the rank of the auxiliary state is sufficiently small, then a
unitary channel can be applied on the compound so as to
purify the system of interest. We thus propose the following
minimal definition for channels constrained by the third law,
which is conceptually sound, and which does not rely on any
assumptions regarding the environment and how it interacts
with the system under study, and accounts for the most general
class of channels.

Definition 1. A channel � : L(H) → L(K) is constrained
by the third law if for every full-rank state ρ on H, �(ρ) is a
full-rank state on K.

Properties of channels obeying the above definition are
given in Appendix B, and as shown in Appendix C, if we
are able to implement any channel that is constrained by the
third law, then the added ability to implement a channel not so
constrained, that is, a channel that may map some full-rank
state to a low-rank state, is both necessary and sufficient
for preparing a system in a pure state, given any unknown
initial state ρ. Moreover, note that while a rank nondecreasing
channel acting in H satisfies Definition 1, a channel acting
in H and which satisfies such a definition need not be rank
nondecreasing: A channel constrained by the third law may
reduce the rank of some input state, but only if such a state is
not full-rank. Finally, Definition 1 has the benefit that for any
pair of channels �1 and �2 satisfying such property, where the
output of the former corresponds with the input of the latter,
so too does their composition �2 ◦ �1; the set of channels
constrained by the third law is thus closed under composition.

Definition 1 also allows us to re-examine the constraints
imposed by the third law on state preparations, without mod-
eling a finite-dimensional environment prepared in a Gibbs
state, or assuming that the system interacts with such an envi-
ronment by a rank nondecreasing channel. A state preparation
is a physical process so that, irrespective of what input state
is given, the output is prepared in a unique state ρ; indeed, an
operational definition of a state is precisely the specification
of procedures, or transformations, that produce it. As stated in
Ref. [37], “A quantum state can be understood as a preparation
channel, sending a trivial quantum system to a nontrivial one
prepared in a given state.” That is, state preparations on a
Hilbert space H may be identified with the set of preparation

channels

P (H) := {� : L(C1) → L(H)}.
Here the input space is a one-dimensional Hilbert space C1 ≡
C|�〉, and the only state on such a space is the rank-1 pro-
jection |�〉〈�|. The triviality of the input space captures the
notion that the output of the channel � is independent of the
input, and so the prepared state ρ = �(|�〉〈�|) is uniquely
identified with the channel itself. Without any constraints, all
states ρ on H may be prepared by some � ∈ P (H). But
now we may restrict the class of preparations by the third
law as follows: P (H) is constrained by the third law if all
� ∈ P (H) map full-rank states to full-rank states as per
Definition 1. But note that |�〉〈�| has full rank in C1, and
so ρ is guaranteed to be full-rank in H.

III. QUANTUM MEASUREMENT

Before investigating how the third law constrains quantum
measurements, we shall first cover briefly some basic ele-
ments of quantum measurement theory which will be used in
the sequel [27–30].

A. Observables

Consider a quantum system S with a Hilbert space HS of
finite dimension 2 � dim(HS ) < ∞. We denote by O and 1S
the null and identity operators on HS , respectively, and an op-
erator E on HS is called an effect if it holds that O � E � 1S .
An observable of S is represented by a normalized positive
operator valued measure (POVM) E : � → E (HS ), where �

is a sigma algebra of some value space X , representing the
possible measurement outcomes, and E (HS ) is the space of
effects on HS . We restrict ourselves to discrete observables
for which X := {x1, x2, . . . } is countable. In such a case we
may identify an observable with the set E := {Ex : x ∈ X },
where Ex ≡ E({x}) are the (elementary) effects of E (also
called POVM elements) which satisfy

∑
x∈X Ex = 1S . The

probability of observing outcome x when measuring E in the
state ρ is given by the Born rule as pE

ρ (x) := tr[Exρ].
Without loss of generality, we shall always assume that

Ex 
= O, since for any x such that Ex = O, the outcome x is
never observed, i.e., it is observed with probability zero; in
such a case we may simply replace X with the smaller value
space X \{x}. Additionally, we shall always assume that the
observable is nontrivial, as trivial observables cannot distin-
guish between any states, and are thus uninformative; an effect
is trivial if it is proportional to the identity, and an observable
is nontrivial if at least one of its effects is not trivial.

We shall employ the short-hand notation [E, A] = O to
indicate that the operator A commutes with all effects of E,
and [E, F] = O to indicate that all the effects of observables
E and F mutually commute. An observable E is commutative
if [E, E] = O, and a commutative observable is also sharp if
additionally ExEy = δx,yEx, i.e., if Ex are mutually orthogonal
projection operators. Sharp observables are also referred to
as projection valued measures, and by the spectral theorem a
sharp observable may be represented by a self-adjoint operator
A = ∑

x λxEx, where {λx} ⊂ R satisfies λx 
= λy for x 
= y.
An observable that is not sharp will be called unsharp. An
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observable E has the norm-1 property if it holds that ‖Ex‖ = 1
for all x, where ‖ · ‖ denotes the operator norm. In finite
dimensions, each effect of a norm-1 observable has at least
one eigenvector with eigenvalue 1. While sharp observables
are trivially norm-1, this property may also be enjoyed by
some unsharp observables.

We now introduce definitions for classes of observables
that are of particular significance to our results.

Definition 2. An observable E := {Ex : x ∈ X } is called
“small-rank” if there exists some x ∈ X such that Ex has rank
1. An observable is called “large-rank” if it is not small-rank.

In particular, a subclass of small-rank observables are
called rank-1, for which every effect has rank 1 [38,39]. For
example, the effects of a sharp observable represented by a
nondegenerate self-adjoint operator A = ∑

x λx|ψx〉〈ψx| are
the rank-1 projections Ex = |ψx〉〈ψx|. Such observables are
therefore rank-1, and hence small-rank. On the other hand,
a sharp observable represented by a degenerate self-adjoint
operator such that the eigenspace corresponding to each (dis-
tinct) eigenvalue has dimension larger than 1 is large-rank, as
each effect is a projection with rank larger than 1.

Definition 3. An observable E := {Ex : x ∈ X } is called
“nondegenerate” if there exists some x ∈ X such that there are
no multiplicities in the strictly positive eigenvalues of Ex. An
observable is called “degenerate” if it is not nondegenerate.

An example of a nondegenerate observable is a small-rank
observable, since in such a case there exists an effect that has
exactly one strictly positive eigenvalue. On the other hand, a
large-rank sharp observable is degenerate, since in such a case
each effect has more than one eigenvector with eigenvalue 1.

Definition 4. An observable E := {Ex : x ∈ X } is called
“completely unsharp” if for each x ∈ X , the spectrum of Ex

does not contain either 1 or 0.
Completely unsharp observables evidently do not have the

norm-1 property, since it holds that ‖Ex‖ < 1 for all x. But
since the effects also do not have eigenvalue 0, then the ef-
fects are in fact full-rank. It follows that completely unsharp
observables are also large-rank. But a completely unsharp
observable may be either degenerate or nondegenerate.

As a simple illustrative example of when an observable
may or may not satisfy the aforementioned properties, let us
consider the case where the system is a qubit, HS = C2, with
the family of binary observables E(λ) := {E(λ)

+ , E(λ)
− } defined

by

E(λ)
± := 1

2 (1S ± λσz ), (1)

where 0 < λ � 1 and σz is the Pauli-Z operator. Note that if
λ = 0, then E(λ) is a trivial observable since in such a case
E(λ)

± = 1S/2. Since E(λ) are binary, so that E(λ)
− = 1S − E(λ)

+ ,
then they are always commutative, i.e., [E(λ)

+ , E(λ)
− ] = O. Now

note that the spectrum of each effect is {(1 + λ)/2, (1 −
λ)/2}. If λ = 1, then the spectrum simplifies to {1, 0}, i.e.,
each effect has one eigenvector with eigenvalue 1, and one
eigenvector with eigenvalue 0. In such a case, E(λ) is a norm-1,
sharp, small-rank, and nondegenerate observable. On the other
hand, for any 0 < λ < 1, E(λ) is a completely unsharp, large-
rank, and nondegenerate observable. Note that for qubits, the
only situation where an effect can be degenerate is when the
effect is trivial, i.e., when λ = 0.

B. Instruments

An instrument [33], or operation valued measure, describes
how a system is transformed upon measurement and is given
as a collection of operations (completely positive trace non-
increasing linear maps) I := {Ix : x ∈ X } such that IX (·) :=∑

x∈X Ix(·) is a channel. Throughout, we shall always assume
that the instrument acts in HS , i.e., that both the input and
output space of Ix is HS . An instrument I is identified with
a unique observable E via the relation tr[Ix(ρ)] = tr[Exρ] for
all outcomes x and states ρ, and we shall refer to such I as
an E-compatible instrument, or an E-instrument for short, and
to IX as the corresponding E-channel [40]. Note that while
every instrument is identified with a unique observable, every
observable E admits infinitely many E-compatible instru-
ments; the operations of the Lüders instrument IL compatible
with E are written as

IL
x (·) :=

√
Ex ·

√
Ex, (2)

and it holds that the operations of every E-compatible instru-
ment I can be constructed as Ix = �x ◦ IL

x , where �x are
arbitrary channels acting in HS that may depend on outcome
x [41,42].

C. Measurement schemes

A quantum system is measured when it undergoes an ap-
propriate physical interaction with a measuring apparatus so
that the transition of some variable of the apparatus—such as
the position of a pointer along a scale—registers the outcome
of the measured observable. The most general description of
the measurement process is given by a measurement scheme,
which is a tuple M := (HA, ξ , E, Z) where HA is the Hilbert
space for (the probe of) the apparatus A and ξ is a fixed state
of A, E is a channel acting in HS ⊗ HA which serves to
correlate S with A, and Z := {Zx : x ∈ X } is a POVM acting
in HA which is referred to as a “pointer observable.” Through-
out, we shall always assume that 2 � dim(HA) < ∞. For all
outcomes x, the operations of the instrument I implemented
by M can be written as

Ix(·) = trA[(1S ⊗ Zx )E (· ⊗ ξ )], (3)

where trA[·] is the partial trace over A. The channel
implemented by M is thus IX (·) = trA[E (· ⊗ ξ )]. Every
E-compatible instrument admits infinitely many normal mea-
surement schemes, where ξ is chosen to be a pure state, E
is chosen to be a unitary channel, and Z is chosen to be
sharp [43]. Von Neumann’s model for the measurement pro-
cess is one such example of a normal measurement scheme.
However, unless stated otherwise, we shall consider the most
general class of measurement schemes, where ξ need not be
pure, E need not be unitary, and Z need not be sharp.

IV. MEASUREMENT SCHEMES CONSTRAINED
BY THE THIRD LAW

We now consider how the third law constrains mea-
surement schemes, and subsequently examine how such
constraints limit the possibility of a measurement to satisfy
the proprieties (i)–(v) outlined in the introduction.
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Since the third law pertains only to channels and state
preparations, the only elements of a measurement scheme
M := (HA, ξ , E, Z) that will be limited by the third law are
the interaction channel E , and the apparatus state preparation
ξ . By Definition 1 and the proceeding discussion, we therefore
introduce the following definition.

Definition 5. A measurement scheme M :=
(HA, ξ , E, Z) is constrained by the third law if the following
hold:

(i) ξ is a full-rank state on HA.
(ii) For every full-rank state � on HS ⊗ HA, E (�) is also

a full-rank state.
Properties of measurement schemes constrained by the

third law are given in Appendix D and Appendix E. Note
that the third law does not impose any constraints on
the measurability of observables; we may always choose M
to be a “trivial” measurement scheme, where HA � HS and
E is a unitary swap channel, in which case the observable E
measured in the system is identified with the pointer observ-
able Z of the apparatus, which can be chosen arbitrarily. This
is in contrast to the case where a measurement is constrained
by conservation laws; by the Yanase condition, the pointer
observable is restricted so that it commutes with the apparatus
part of the conserved quantity, and it follows that an observ-
able not commuting with the system part of the conserved
quantity is measurable only if it is unsharp, and only if the
apparatus preparation has a large coherence in the conserved
quantity [13].

The measurability of observables notwithstanding, let us
note that an instrument implemented by a trivial measurement
scheme is also trivial, i.e., it will hold that for all outcomes
x and states ρ, the operations of I satisfy Ix(ρ) = tr[Exρ]ξ .
Irrespective of what outcome is observed and what the initial
state is, the final state is always ξ . In such a case, I fails
all the properties (i)–(v) that are the subject of our investi-
gation. Therefore, whether or not an observable admits an
instrument—realizable by a measurement scheme constrained
by the third law as per Definition 5—with such properties
remains to be seen: We shall now investigate this.

A. Nondisturbance

An E-compatible instrument I does not disturb an observ-
able F := {Fy : y ∈ Y} if it holds that

tr[FyIX (ρ)] = tr[Fyρ]

for all states ρ and outcomes y [35]. In other words, I does
not disturb F if the statistics of F are not affected by a
prior nonselective measurement of E by I. See Fig. 1 for
a schematic representation of a nondisturbing measurement.
Nondisturbance is possible only for jointly measurable ob-
servables, since in such a case the sequential measurement
of E by I, followed by a measurement of F, defines a joint
observable for E and F [40]. In the absence of any constraints,
commutation of E with F is sufficient for nondisturbance.
That is, if F commutes with E, there exists an E-instrument
I that does not disturb F. Moreover, the Lüders E-instrument
IL does not disturb all F commuting with E [44]. This can
be easily shown by the following: If all effects of F and E

FIG. 1. The top half of the figure represents a sequential mea-
surement of possibly different observables in a system initially
prepared in state ρ, with the histograms representing the statistics ob-
tained for each measurement in the sequence. The bottom half shows
the case where the first measurement in the sequence is removed, and
only the second measurement takes place. When the statistics of such
a measurement are the same in both scenarios, for all states ρ, then
the first measurement is said to not disturb the second.

mutually commute, then by Eq. (2) we may write

tr
[
FyIL

X (ρ)
] =

∑
x

tr[Fy

√
Exρ

√
Ex]

=
∑

x

tr[
√

ExFy

√
Exρ]

=
∑

x

tr[ExFyρ] = tr[Fyρ].

In the second line we have used the cyclicity of the trace, and
in the third line we use [Ex, Fy] = O ⇐⇒ [

√
Ex, Fy] = O.

While commutation is sufficient for nondisturbance, it is in
general not necessary; if E and F do not commute but are both
sufficiently unsharp so as to be jointly measurable [45], then
it may be possible for a measurement of E to not disturb F,
but not always: While nondisturbance requires joint measura-
bility, joint measurability does not guarantee nondisturbance.
Let us consider an example where nondisturbance is permit-
ted for two noncommuting observables. Consider the case
that HS = C2 ⊗ C2, with the orthonormal basis {|k〉 ⊗ |m〉 :
k, m = 0, 1}, and define the following family of operators on
C2:

A0 = |0〉〈0|, A1 = 1
2 |0〉〈0|, A2 = 1

2 |1〉〈1|,
A3 = 1

2 |+〉〈+|, A4 = 1
2 |−〉〈−|, A5 = |1〉〈1|,

where |±〉 := 1√
2
(|0〉 ± |1〉). Now consider the binary ob-

servables E := {E0, E1} and F := {F0, F1} acting in HS ,
defined by

E0 = A0 ⊗ |0〉〈0| + (A2 + A4) ⊗ |1〉〈1|,
E1 = (A1 + A3) ⊗ |1〉〈1| + A5 ⊗ |0〉〈0|,
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and

F0 = A0 ⊗ |0〉〈0| + (A1 + A4) ⊗ |1〉〈1|,
F1 = (A2 + A3) ⊗ |1〉〈1| + A5 ⊗ |0〉〈0|.

One can confirm that [E, F] 
= O. But we can construct an
E-instrument I with operations

I0(ρ) = tr[ρ(A0 ⊗ |0〉〈0| + A4 ⊗ |1〉〈1|)]|0〉〈0| ⊗ |0〉〈0|
+ tr[ρ(A2 ⊗ |1〉〈1|)]|1〉〈1| ⊗ |0〉〈0|,

I1(ρ) = tr[ρ(A5 ⊗ |0〉〈0| + A3 ⊗ |1〉〈1|)]|1〉〈1| ⊗ |0〉〈0|
+ tr[ρ(A1 ⊗ |1〉〈1|)]|0〉〈0| ⊗ |0〉〈0|,

which does not disturb F.
However, we show that under the third law constraint,

commutation is in fact necessary for nondisturbance. That is,
if an E-instrument I can be implemented by a measurement
scheme constrained by the third law, such that I does not dis-
turb F, then [E, F] = O must be satisfied. In Appendix D we
show that for any instrument I, implemented by a measure-
ment scheme constrained by the third law, there exists at least
one full-rank state ρ0 such that IX (ρ0) = ρ0. In such a case,
nondisturbance of Fy (i.e., tr[FyIX (ρ)] = tr[Fyρ] for all ρ)
implies nondisturbance of a sharp observable P = {Pz}, where
Pz are the spectral projections of Fy. That is, a sequential
measurement of E by the instrument I, followed by a mea-
surement of P, is a joint measurement of E and P. Since joint
measurability implies commutation when either observable is
sharp, it follows that E must commute with P, and hence with
Fy, for all y. In other words, given the existence of a full-rank
fixed state ρ0, then a measurement of E does not disturb F
only if they commute. See also Proposition 4 of Ref. [35].

But when the measurement of E is constrained by the third
law, we show that [E, F] = O is not sufficient for nondistur-
bance: The properties of E impose further constraints. We now
present our first main result.

Theorem 4.1. Under the third law constraint, a completely
unsharp observable E admits a measurement that does not
disturb any observable F that commutes with E. On the other
hand, if an observable E satisfies ‖Ex‖ = 1 for any outcome
x, then there exists F which commutes with E but is disturbed
by any measurement of E that is constrained by the third law.

That is, an E-compatible instrument I admits a measure-
ment scheme M that is constrained by the third law, such that
[E, F] = O ⇒ tr[FyIX (ρ)] = tr[Fyρ] for all y and ρ, if E is
completely unsharp and only if ‖Ex‖ < 1 for all outcomes x.
Note that an observable can satisfy ‖Ex‖ < 1 for all x without
being completely unsharp, since such effects can still have 0 in
their spectrum. The proof is presented in Appendix F (Propo-
sition F.1). To show sufficiency of complete unsharpness we
prove that, given the third law constraint, an observable admits
a Lüders instrument if and only if it is completely unsharp
(Proposition D.1). But since Lüders measurements are guar-
anteed to not disturb any commuting observable, the claim
immediately follows. On the other hand, the necessity that the
effects have norm smaller than 1 follows from the following:
If any effect of E has eigenvalue 1, the projection onto such
eigenspace commutes with E but is shown to be disturbed. In
particular, this implies that when a norm-1 observable (such as
a sharp observable) is measured under the third law constraint,

then there exists some observable F that commutes with E but
is nonetheless disturbed.

Of course, even if a sharp or norm-1 observable E fails
the strict nondisturbance condition, this does not imply that
some nondisturbed observables do not exist. In Appendix F
we show that if an observable is small-rank as per Definition
2, then it holds that a third-law-constrained measurement of
such an observable will disturb all observables, even if they
commute. Second, we show that if E is a nondegenerate ob-
servable as per Definition 3, then the class of nondisturbed
observables will be commutative, and any pair of nondis-
turbed observables will commute. That is, for any F and G
that are nondisturbed, then it will hold that [F, G] = [F, F] =
[G, G] = O. In other words, nondegeneracy of the measured
observable will spoil the “coherence” of the measured system.
Therefore, to ensure that a measurement of E does not disturb
a nontrivial class of (possibly noncommutative) observables,
then E must be a large rank (and degenerate) observable.

For the binary qubit observables E(λ) introduced in Eq. (1),
there exists a third-law-constrained measurement of E(λ) such
that all commuting observables F are nondisturbed if and
only if λ < 1, in which case E(λ) are completely unsharp. But
note that since E(λ) is always a degenerate observable when
0 < λ < 1, then the nondisturbed observables F must also
be commutative. On the other hand, if λ = 1, then E(λ) is a
small-rank observable, and so its measurement will disturb all
observables. In Appendix F we construct an explicit example
where the measurement of a sharp observable that is large-
rank, and hence degenerate, will not disturb a nontrivial class
of possibly noncommutative observables. This is a binary
observable E acting in a two-qubit system HS = C2 ⊗ C2,
defined by Ex = 1 ⊗ |x〉〈x|. Note that these effects have rank
2, and are hence also degenerate. In such a case, any observ-
able F with effects Fy ⊗ 1 will be nondisturbed, and it may be
the case that [F, F] 
= O.

B. First-kindness

An E-compatible instrument I is a measurement of the first
kind if I does not disturb E itself, i.e., if it holds that

tr[ExIX (ρ)] = tr[Exρ]

for all states ρ and outcomes x [34]. See Fig. 2 for a schematic
representation of a measurement of the first kind. In the ab-
sence of any constraints, commutativity of an observable is

FIG. 2. When the same observable is measured in succession,
and when the statistics of the second measurement are the same as
those of the first, for all input states ρ, then such a measurement is
said to be of the first kind.
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sufficient for it to admit a first-kind measurement; for any
observable E such that [E, E] = O holds, the corresponding
Lüders instrument is a measurement of the first kind. This
follows from analogous reasoning to that given above. But
we show that, under the third law constraint, commutativity is
necessary for first-kindness, but not sufficient. We now present
our second main result.

Theorem 4.2. Under the third law constraint, an observable
E admits a measurement of the first kind if and only if E is
commutative and completely unsharp.

In particular, note that a third-law-constrained measure-
ment of any norm-1 observable, such as a sharp observable,
necessarily disturbs itself. The proof is given in Appendix G
(Proposition G.1). The sufficiency follows from the fact that
any completely unsharp observable admits a Lüders instru-
ment, as discussed above. On the other hand, the following is
a sketch of the proof for the necessity of such a condition: A
nonselective measurement constrained by the third law always
leaves some full-rank state ρ0 invariant. Nondisturbance of
E therefore demands commutativity, as discussed above. But
every commutative observable E is a classical post processing
of a sharp observable P, i.e., we may write Ex = ∑

y p(x|y)Py

where {p(x|y)} is a family of nonnegative numbers satisfying∑
x p(x|y) = 1 for every y [46]. Given that IX has a full-rank

fixed state, then if I is a first-kind measurement, P is also not
disturbed [13]. Therefore, a sequential measurement of E by
I followed by measurement of P defines a joint measurement
of E and P. By Eq. (3), we obtain for every ρ the following:

tr[PyExPyρ] = tr[Py ⊗ ZxE (ρ ⊗ ξ )].

Now assume that ρ is full-rank. Given that a third-law-
constrained measurement employs a full-rank apparatus
preparation ξ , while E obeys Definition 1, then E (ρ ⊗ ξ ) is
full-rank. It follows that the term on the right-hand side is
strictly positive, and hence so too is the term on the left. But
this implies that PyExPy > O, and so 0 < p(x|y) < 1, for all
x, y. Therefore, E is completely unsharp.

For the binary qubit observables E(λ) introduced in Eq. (1),
there exists a third law-constrained measurement of the first
kind if and only if λ < 1, in which case E(λ) are commu-
tative and completely unsharp. In Appendix G we construct
an explicit example of a first-kind measurement (not given
by a Lüders instrument) of a commutative and completely
unsharp observable. We consider a system HS = CN with or-
thonormal basis {|n〉 : n = 1, . . . , N}, and an observable E :=
{Ex : x = 1, . . . , N} acting in HS given by the effects Ex =∑

n p(n|x)|n〉〈n|. Here p(n|x) = q(x � n), where � denotes
subtraction modulo N , with q(n) some arbitrary probability
distribution satisfying 0 < q(n) < 1 for all n. Such an observ-
able is commutative and completely unsharp.

C. Repeatability

An E-compatible instrument I is repeatable if it holds that

tr[EyIx(ρ)] = δx,ytr[Exρ]

for all states ρ and outcomes x, y [47,48]. In other words, an
instrument I is a repeatable measurement of E if a second
measurement of E is guaranteed (with probabilistic certainty)
to produce the same outcome as I. See Fig. 3 for a schematic

FIG. 3. When the same observable is measured in succession,
and when the outcome obtained by the second is guaranteed with
probabilistic certainty to coincide with that of the first, for all input
states ρ, then such a measurement is said to be repeatable.

representation of a repeatable measurement. It is simple to
verify that repeatability implies first-kindness, since if I is
repeatable, then we have

tr[EyIX (ρ)] =
∑

x

tr[EyIx(ρ)] = tr[Eyρ].

While a first-kind measurement need not be repeatable in
general, repeatability and first-kindness coincide for the class
of sharp observables (Theorem 1 in Ref. [34]). For example,
if E is commutative then the corresponding Lüders instrument
is a measurement of the first kind, but such an instrument is
repeatable if and only if E is sharp; note that tr[ExIL

x (ρ)] =
tr[E2

xρ], which satisfies the repeatability condition if and only
if E2

x = Ex.
An observable E admits a repeatable instrument only if it

is norm-1, and in the absence of any constraints, all norm-1
observables admit a repeatable instrument. For example, if E
is a possibly unsharp observable with the norm-1 property,
and if |ψx〉 are eigenvalue-1 eigenvectors of the effects Ex,
then an instrument with operations Ix(ρ) = tr[Exρ]|ψx〉〈ψx|
is repeatable. Note that if the system is a qubit, then only sharp
observables admit repeatable measurements. For example, the
binary qubit observables E(λ) introduced in Eq. (1) are norm-1
if and only if λ = 1, in which case the observable is also sharp.
Now we present our third main result.

Theorem 4.3. Under the third law constraint, no observable
admits a repeatable measurement.

This is an immediate consequence of Theorem 4.2 which
shows that, under the third law constraint, norm-1 observ-
ables do not admit a measurement of the first kind. Since
repeatability is admitted only for norm-1 observables, and
since repeatability implies first-kindness, then the statement
follows. In fact, we can show that for every sequence of out-
comes x and y, there exists a state ρ such that tr[EyIx(ρ)] > 0.
See Corollary G.1 for further details.

D. Ideality

An instrument I is said to be an ideal measurement of E if
for every outcome x there exists a state ρ such that tr[Exρ] =
1, and if for every outcome x and every state ρ the following
implication holds:

tr[Exρ] = 1 ⇒ Ix(ρ) = ρ.

That is, I is an ideal measurement if it does not change
the state of the system whenever the outcome can be pre-
dicted with certainty [49]. See Fig. 4 for a schematic
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FIG. 4. When an observable is measured in a system such that
whenever an outcome can be predicted with certainty, the state of the
measured system is unperturbed, then such a measurement is said to
be ideal.

representation of an ideal measurement. Note that ideality
can be enjoyed only by norm-1 observables; since tr[Exρ] �
‖Ex‖, then any E that does not enjoy the norm-1 property
fails the antecedent of the ideality condition, in which case
such condition becomes void. Conversely, in the absence of
any constraints all norm-1 observables admit an ideal mea-
surement; the condition tr[Exρ] = 1 holds if and only if ρ

only has support in the eigenvalue-1 eigenspace of Ex, which
implies that Exρ = ρEx = ρ. But in such a case, we obtain
IL

x (ρ) = √
Exρ

√
Ex = Exρ = ρ, and so the Lüders measure-

ment of a norm-1 observable is ideal.
For the class of sharp observables, the ideal measure-

ments are precisely the Lüders instruments (see Theorem
10.6 in Ref. [30]). Since the third law permits only Lüders
instruments for completely unsharp observables, then we may
immediately infer that ideal measurements of any sharp ob-
servable, even those represented by a possibly degenerate
self-adjoint operator, are prohibited by the third law. For ex-
ample, the binary qubit observables E(λ) introduced in Eq. (1)
are norm-1 if and only if λ = 1, in which case the observable
is also sharp. Therefore, such observables never admit an ideal
measurement when constrained by the third law.

However, unsharp observables admit ideal measurements
that are not given by the Lüders instrument. For exam-
ple, consider a system HS = C3 with orthonormal basis
{|−1〉, |0〉, |1〉}. Let E := {E+, E−} be a binary norm-1 ob-
servable acting in HS , defined by E± = | ± 1〉〈±1| + 1

2 |0〉〈0|.
It can easily be verified that an instrument with operations

I±(·) = 〈±1| · | ± 1〉| ± 1〉〈±1| + 〈0| · |0〉1S
6

is an ideal measurement of E. Therefore, the restriction
imposed by the third law on the realizability of Lüders
instruments does not by itself rule out the possibility of
ideal measurements for unsharp norm-1 observables. Now we
present our fourth main result.

Theorem 4.4. Under the third law constraint, no observable
admits an ideal measurement.

The proof is given in Appendix H (Proposition H.1), and
the following is a rough sketch. If I is an ideal measurement
of E, and if ρ is a state for which outcome x can be predicted
with certainty, then Iy(ρ) = O for all y 
= x, which implies
that IX (ρ) = ρ. But given the third law constraint, for every

FIG. 5. A system may be measured by an instrument obtained
by a probabilistic mixture of two distinct instruments. An extremal
instrument is such that cannot be recovered as a probabilistic mixture
of two distinct instruments.

state ρ such that tr[Exρ] = 1, it is shown that ρ cannot be a
fixed state of IX , and so I cannot be ideal.

E. Extremality

For any fixed value space X , the set of instruments is
convex. That is, given any λ ∈ [0, 1], and any pair of in-
struments I (i) := {I (i)

x : x ∈ X }, i = 1, 2, we can construct an
instrument I with the operations

Ix(·) = λ I (1)
x (·) + (1 − λ)I (2)

x (·).
An instrument I is extremal when for any λ ∈ (0, 1) such a
decomposition is possible only if I = I (1) = I (2). Intuitively,
this implies that an extremal instrument is “pure,” whereas
a nonextremal instrument suffers from “classical noise.” See
Fig. 5 for a schematic representation of an extremal instru-
ment. For an in-depth analysis of extremal instruments and
their properties, see Refs. [36,50]. A simple example of an ex-
tremal instrument is the Lüders instrument compatible with an
observable with linearly independent effects. Since such lin-
ear independence is trivially satisfied for norm-1 observables,
then their corresponding Lüders instruments are extremal. But
it is also possible for the effects of a completely unsharp
observable to be linearly independent. For example, a bi-
nary observable E := {E0, E1} acting in HS = C2, defined as
E0 = 3/4|0〉〈0| + 1/4|1〉〈1| and E1 = 1 − E0, is completely
unsharp with linearly independent effects. Indeed, the effects
of the qubit observables E(λ) defined in Eq. (1) are linearly
independent for any 0 < λ < 1. Since the Lüders instruments
for such observables are extremal, and can be implemented
under the third law constraint, then we can immediately infer
that extremality is permitted by the third law. Now we present
our final main result.

Theorem 4.5. Under the third law constraint, an observ-
able E acting in HS admits an extremal instrument only if
rank(Ex ) �

√
dim(HS ) for all outcomes x, and a measuring

apparatus can implement an extremal instrument only if it
interacts with the system with a nonunitary channel E .
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The proof is given in Appendix I (Proposition I.1). It
follows that under the third law constraint, extremality is
permitted only for large-rank observables. Note in particular
that since Lüders measurements of completely unsharp ob-
servables may be extremal, then the above result indicates that
they are realisable under the third law constraint only with
nonunitary measurement interactions; indeed, our proof for
the sufficiency of complete unsharpness for the realisability
of Lüders instruments (Proposition D.1) uses a nonunitary
interaction channel. Furthermore, note that in contradistinc-
tion to the other properties discussed above, unsharpness of
E is not a necessary condition for extremality. Indeed, sharp
observables with sufficiently large rank admit an extremal
instrument, albeit such instruments cannot be Lüders due to
the previous results. In Appendix I, we provide a concrete
model for an extremal instrument compatible with a binary
sharp observable E acting in HS = C2 ⊗ C2, defined by Ex =
1 ⊗ |x〉〈x|. Since rank(Ex ) = 2 = √

dim(HS ), we see that the
bound provided in the above theorem is in fact tight.

V. DISCUSSION

We have generalized and strengthened the results of
Ref. [26], in the finite-dimensional setting, in several ways.
We have considered the most general class of (discrete)
observables—both the observable to be measured and the
pointer observable for the measuring apparatus—and not just
those that are sharp and rank-1. Moreover, we have considered
a more general class of measurement interactions, between the
measured system and measuring apparatus, constrained only
by our operational formulation of the third law and thus not
restricted to the standard unitary or rank nondecreasing frame-
work. Within the extended setting thus described, we have
shown that ideal measurements are categorically prohibited by
the third law for all observables and, a fortiori, we showed that
the third law dictates that whenever a measurement outcome
can be predicted with certainty, then the state of the measured
system is necessarily perturbed upon measurement. Moreover,
we showed that the third law also forbids repeatable measure-
ments, where we note that repeatability and ideality coincide
only in the case of sharp rank-1 observables. In addition to the
aforementioned impossibility statements, however, our results
also include possibility statements as regards extremality and
nondisturbance: The third law allows for an extremal instru-
ment that measures an observable with sufficiently large rank,
and for a measurement of a completely unsharp observable so
that such a measurement will not disturb any observable that
commutes.

Our results have interesting consequences for the role of
unsharp observables in the foundations of quantum theory,
and the question: What is real? There are two deeply con-
nected traditional paradigms for the assignment of reality to a
system, both of which are formulated with respect to sharp ob-
servables: The Einstein-Podolsky-Rosen (EPR) criterion [51],
and the macrorealism criteria of Leggett-Garg [52].

The EPR criterion for a physical property to correspond to
an element of reality reads: “If, without in any way disturbing
a system, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this

physical quantity.” In other words, the EPR criterion rests on
the possibility of ideal measurements: An eigenvalue of some
self-adjoint operator exists in a system when the system is in
the corresponding eigenstate, so that an ideal measurement
of the observable reveals the eigenvalue while leaving the
system in the same state. But the EPR criterion is shown to
be in conflict with the third law of thermodynamics: It is in
fact not possible to ascertain any property of the system, with
certainty, without changing its state. As argued by Busch and
Jaeger [31,32], however, the EPR criterion is sufficient, but not
necessary; a necessary condition for a property of a system to
correspond to an element of reality is that it must have the
capacity of influencing other systems, such as a measuring
apparatus, in a way that is characteristic of such property.
Indeed, since the influence the system has on the appara-
tus may come in degrees—quantified by the probability, or
“propensity,” for the apparatus to register that such property
obtains a given value in the system—then even an unsharp
observable may correspond to an element of “unsharp reality.”
But note that this weaker criterion makes no stipulation as
to how the state of the system changes upon measurement,
and does not rely on the possibility of ideal measurements:
A property may exist in a system even if its measurement
changes the state of the system. Consequently, our results
provide support for the unsharp reality program of Busch and
Jaeger from a thermodynamic standpoint, as it is shown to be
compatible with the third law.

On the other hand, Leggett and Garg proposed Macroreal-
ism as the conjunction of two postulates: (MR) Macrorealism
per se and (NI) Noninvasive measurability. MR rests on the
notion of definiteness, i.e., that at any given time, a system
can be only in one out of a set of states that are perfectly dis-
tinguishable by measurement of the observable describing the
system—for example, an eigenstate corresponding to some
eigenvalue of a self-adjoint operator. On the other hand, NI re-
quires that measurement of such observable not influence the
statistics of other observables at later times. In other words, NI
relies on the possibility of a nondisturbing measurement. But
we showed that the third law permits nondisturbance only for
unsharp observables without the norm-1 property. Since such
observables do not admit definite values in any state, i.e., no
two states can be perfectly distinguished by a measurement
of such observables, the third law is incompatible with the
conjunction of MR and NI. It follows that if we want to keep
NI, then we must drop MR; once again we are forced to adopt
the notion of an unsharp reality.

To be sure, the third law of thermodynamics should not be
considered in isolation; a complete analysis of how the laws
of thermodynamics constrain channels and quantum measure-
ments demands that the third law be considered in conjunction
with the first (conservation of energy) and with the second (no
perpetual motion of the second kind). Indeed, our operational
formulation of the third law is independent of any notion of
temperature, energy, or time. We expect that in the complete
picture, that is, when the other laws are also taken into ac-
count, our generalized formulation will recover the standard
notions of the third law in the literature. It is also an interesting
question to ask how our formulation of the third law, and
the constraints imposed by such law on measurements, can
be extended to the infinite-dimensional setting. A complete
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operational formulation of channels constrained by the laws
of thermodynamics, and for more general systems than those
of finite dimension, is thus still an open problem; our work
constitutes one part of such a program, which extends the
research discipline devoted to the “thermodynamics of quan-
tum measurements” [53–69]. While our impossibility results
are expected to carry over to the more complete framework,
the question remains as to how our positive claims must be
adapted in light of the other laws of thermodynamics: The
combined laws may impose further constraints. Indeed, as
witnessed by the Wigner-Araki-Yanase theorem, conservation
of energy imposes constraints on the measurability of ob-
servables that do not commute with the Hamiltonian [5–14].
This is in contradistinction to the third law, which imposes no
constraints on measurability. We leave such open questions
for future work.
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APPENDIX A: PRELIMINARIES

Before presenting the proofs for our main results, let us
establish some basic notation and definitions. We denote the
algebra of linear operators on a finite-dimensional complex
Hilbert space H as L(H). For any subset A ⊆ L(H), we
denote the commutant as

A ′ := {B ∈ L(H) : [A, B] = O∀ A ∈ A }.
A “Schrödinger picture” operation is defined as a com-

pletely positive (CP), trace-nonincreasing linear map � :
L(H) → L(K), where H is the input space and K is the
output space. When both input and output spaces are the
same, i.e., H = K, we say that � acts in H. The associated
“Heisenberg picture” dual operation is a completely positive
linear map �∗ : L(K) → L(H), defined by the trace duality
tr[A�(B)] = tr[�∗(A)B] for all A ∈ L(K) and B ∈ L(H). �∗
is subunital, i.e., �∗(1K) � 1H and is unital when the equal-
ity holds, which is the case exactly when � is a channel, i.e.,
when � preserves the trace. We shall also refer to unital CP
maps �∗ as channels.

The rank of an operator A ∈ L(H) is defined as rank(A) :=
dim(ImA) = dim(AH), which coincides with the number of
strictly positive eigenvalues of A∗A. A positive operator A >

O is said to be full-rank, or to have full rank in H, if all of its
eigenvalues are strictly positive. That is, A is full-rank in H
when rank(A) = dim(H). A state on H is a positive operator
of unit trace, and a full-rank state is also faithful, where a
state ρ is called faithful if for any A ∈ L(H) the following
implication holds: tr[ρA∗A] = 0 ⇐⇒ A = O. Now we show
a useful property of full-rank states which shall be frequently
employed in this paper.

Lemma A.1. Consider the states ρ and σ on H. If ρ is full-
rank, then there exists λ ∈ (0, 1) such that ρ � λσ .

Proof. Let us first note that ρ − λσ � O if and only
if tr[E (ρ − λσ )] � 0 for all E ∈ E (H), where we define
E (H) := {E ∈ L(H) : O < E � 1} as the space of (nonva-
nishing) effects on H. Therefore, let us define

ε := inf
E∈E (H)

{tr[Eρ]} ∈ [0, 1],

δ := sup
E∈E (H)

{tr[Eσ ]} = 1.

If ρ is full-rank, then it holds that ε > 0. Choosing λ = ε/δ,
we thus have tr[E (ρ − λσ )] � ε − ε = 0 for all E ∈ E (H).
Therefore, there exists 0 < λ < 1 such that ρ � λσ . �

APPENDIX B: PROPERTIES OF CHANNELS
CONSTRAINED BY THE THIRD LAW

Recall from Definition 1 that a channel is constrained by
the third law if it maps full-rank states to full-rank states. We
now show that the the set of channels constrained by the third
law is closed under composition.

Lemma B.1. Consider the channels �1 : L(H) → L(K)
and �2 : L(K) → L(R). If each channel is constrained by the
third law, then so too is their composition �2 ◦ �1 : L(H) →
L(R).

Proof. Assume that �i are constrained by the third law.
Let ρ be a full-rank state on H. It follows that �1(ρ) is a full-
rank state on K, and so �2 ◦ �1(ρ) is a full-rank state on R.
As such, �2 ◦ �1 maps all full-rank states on H to full-rank
states on R, and so by Definition 1 is constrained by the third
law. �

We shall now prove a useful result that will allow for
equivalent formulations of channels constrained by the third
law.

Lemma B.2. Consider a channel � : L(H) → L(K). The
following statements are equivalent:

(i) For every full-rank state ρ on H, �(ρ) is a full-rank
state on K.

(ii) There exists a state σ on H such that �(σ ) is a full-
rank state on K.

(iii) For every A ∈ L(K), �∗(A∗A) = O ⇐⇒ A = O.
(iv) In the case that H = K, there exists a full-rank state

ρ0 on H such that �(ρ0) = ρ0.
Proof. (i) ⇒ (ii): This is trivial.
(ii) ⇒ (i): By Lemma A.1, for any full-rank state ρ, and for

any state σ , there exists λ ∈ (0, 1) such that ρ � λσ . Assume
that �(σ ) is full-rank. It holds that for any full-rank state
ρ, and for any unit vector |φ〉 ∈ K, we have 〈φ|�(ρ)|φ〉 �
λ〈φ|�(σ )|φ〉 > 0, which implies that �(ρ) is full-rank.

(ii) ⇒ (iii): For any channel �∗, it holds that ‖�∗(A)‖ �
‖A‖, and so A = O ⇒ �∗(A∗A) = O follows. Now as-
sume that for some A, it holds that �∗(A∗A) = O. Then
tr[�(σ )A∗A] = tr[σ�∗(A∗A)] = 0 for any state σ . But if
�(σ ) is full-rank, this holds only if A = O.

(iii) ⇒ (ii): Consider the complete mixture σ =
1/ dim(H), and let P � 1 be the minimal support projection
on �(σ ), with P⊥ := 1 − P � O its orthogonal complement.
It follows that tr[�∗(P⊥)σ ] = tr[P⊥�(σ )] = 0. But by (iii),
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this holds if and only if P⊥ = O, and hence P = 1. That is, �

maps the complete mixture to a full-rank state.
(i) ⇒ (iv): Assume that H = K, so that for any n ∈ N we

may define the channel �n : L(H) → L(H) as n consecutive
applications of the channel �. Now consider the channel

�av(·) := lim
N→∞

1

N

N∑
n=1

�n(·),

where we note that this limit exists as dim(H) < ∞. Let us
define the state ρ0 := �av(σ ), where σ = 1/ dim(H) is the
complete mixture. Since the complete mixture is full-rank,
then �n(σ ) will be full-rank for all n ∈ N, and so it holds
that ρ0 is full-rank. But note that

�(ρ0) = lim
N→∞

1

N

N∑
n=1

�n+1(σ )

= lim
N→∞

1

N

( N∑
n=1

�n(σ ) + �N+1(σ ) − �(σ )

)

= �av(σ ) = ρ0.

and so there exists a full-rank state ρ0 such that �(ρ0) = ρ0.
(iv) ⇒ (ii): This is trivial. �
Corollary B.1. The following channels are constrained by

the third law:
(i) Rank nondecreasing channels acting in H.
(ii) Bistochastic channels acting in H.
(iii) Gibbs-preserving channels acting in H.
(iv) Partial trace channels trA : L(HS ⊗ HA) → L(HS ).
(5) Composition channels �ξ : L(HS ) → L(HS ⊗ HA),

ρ �→ ρ ⊗ ξ , where ξ is a full-rank state on HA.
Proof. (i) This is trivial.
(ii) Bistochastic channels preserve both the trace and the

identity. Consider the complete mixture σ := 1/ dim(H). It
trivially holds that if � is bistochastic, then �(σ ) = σ . Such
a channel satisfies property (ii) of Lemma B.2 and is hence
constrained by the third law.

(iii) A Gibbs-preserving channel � acting in H satisfies
�(τβ ) = τβ for some τβ := e−βH/tr[e−βH ], where H = H∗,
β > 0. Gibbs states τβ , with β > 0, are full-rank. It fol-
lows that a Gibbs-preserving channel satisfies property (ii) of
Lemma B.2 and is hence constrained by the third law.

(iv) Let ρ and σ be full-rank states on HS and HA, re-
spectively, so that ω = ρ ⊗ σ is full-rank in HS ⊗ HA. Given
that trA[ω] = ρ, which is full-rank in HS , it follows that the
partial trace satisfies property (ii) of Lemma B.2 and is hence
constrained by the third law.

(v) If ξ is full-rank, then �ξ (ρ) = ρ ⊗ ξ is full-rank for
all full-rank states ρ on HS . As such, �ξ is constrained by the
third law. �

Given that unitary channels preserve the spectrum, they
are clearly rank nondecreasing channels. Since unitary chan-
nels are a special subclass of bistochastic channels, one may
wonder whether or not all bistochastic channels are rank non-
decreasing. The following lemma answers such a conjecture
in the affirmative.

Lemma B.3. Bistochastic channels � acting in H are rank
nondecreasing.

Proof. Consider a state ρ, whose minimal support projec-
tion is P. Since ρ and P/tr[P] are both full-rank states in
PH, then by Lemma A.1 there exists λ1, λ2 > 0 such that
λ1P/tr[P] � ρ � λ2P/tr[P]. Now consider an arbitrary chan-
nel �, and define the state σ := �(P/tr[P]). By complete
positivity, it follows that λ1σ � �(ρ) � λ2σ . Now let us note
that A � B � O implies that rank(A) � rank(B). This follows
from the fact that for any A � O, the condition |ψ〉 ∈ ker(A)
is equivalent to 〈ψ |A|ψ〉 = 0. We thus obtain rank(σ ) �
rank(�(ρ)) � rank(σ ), which implies that

rank(�(ρ)) = rank(σ ). (B1)

Assume that � is bistochastic, so that it preserves the iden-
tity. In such a case, if ρ is full-rank so that P = 1 and
σ = �(1/ dim(H)) = 1/ dim(H) hold, we find by Eq. (B1)
that rank(�(ρ)) = rank(ρ). Now let us suppose that ρ is not
full-rank. By decomposing the identity as

1 = tr[P]
P

tr[P]
+ tr[P⊥]

P⊥

tr[P⊥]
,

we obtain for any bistochastic � the following:

1 = �(1) = tr[P]σ + tr[P⊥]μ,

where we define μ := �(P⊥/tr[P⊥]), which implies that

tr[P⊥]μ = 1 − tr[P]σ.

Since μ is nonnegative, it must hold that 1 � tr[P]‖σ‖ =
rank(ρ)‖σ‖, where the equality follows from the fact that
rank(ρ) = tr[P]. This gives rank(ρ) � 1/‖σ‖. But it holds
that 1 = tr[σ ] � ‖σ‖rank(σ ) = ‖σ‖rank(�(ρ)), where the
equality follows from Eq. (B1). This gives rank(�(ρ)) �
1/‖σ‖. We finally arrive at

rank(�(ρ)) � 1

‖σ‖ � rank(ρ),

which proves our claim. �
Let us note that while any rank nondecreasing channel �

acting in H is constrained by the third law, a channel acting
in H that is constrained by the third law may decrease the
rank for some input states. To see this, consider H � C3, with
orthonormal basis {|i〉 : i = 0, 1, 2}. Consider the projections
Pi = |i〉〈i|, and a full-rank state ρ0 on H. Now define the
channel �(ρ) = tr[ρP0]ρ0 + tr[ρP⊥

0 ]P1. This channel clearly
maps all full-rank states ρ to a full-rank state, and so is
constrained by the third law. However, a rank-2 state P⊥

0 /2
is mapped to a rank-1 state P1.

APPENDIX C: OPERATIONAL JUSTIFICATION
FOR DEFINITION 1

Consider a system H with a Hamiltonian that has the spec-
tral decomposition H = ∑N

i=0 εiPi, with the (distinct) energy
eigenvalues arranged in increasing order, i.e., εi < εi+1. The
state of such a system at inverse temperature β = 1/T is the
Gibbs state τβ := e−βH/tr[e−βH ]. In such a case, rank(τβ ) =
dim(H). When cooled to absolute zero temperature, i.e.,
β = ∞, the state reads τ∞ = P0/tr[P0], and it holds that
rank(τ∞) < dim(H). Indeed, any state whose support is in
P0H can be considered as having zero temperature. Therefore,
the third law can be seen as prohibiting any channel � such
that �(τβ ) = τ∞. Definition 1 is a generalization of such an
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intuitive idea, and below, we shall show that the existence of
a channel which is unconstrained by the third law as defined
by Definition 1, i.e., a channel that may map a full-rank state
on some system to a non-full-rank state of a possibly different
system, is both necessary and sufficient for the preparation of
some system in a pure state.

Proposition C.1. Let us consider a system S described by
HS with 2 � dim(HS ) < ∞, and suppose that the system is
given with an unknown input state ρ. Assume that we can
employ arbitrary channels constrained by the third law as per
Definition 1. The following statements are equivalent:

(i) We may implement some known channel that is uncon-
strained by the third law.

(ii) We may prepare the system S in an arbitrary desired
state (in particular, an arbitrary pure state), from any given
unknown prior state ρ.

Proof. (ii) ⇒ (i): Assume that we can implement only
channels that are constrained by the third law. By Lemma B.1,
the class of third-law-constrained channels is closed under
composition, and so a full-rank input state ρ can be trans-
formed only to another full-rank state. Therefore, the ability
to prepare an arbitrary state, such as a pure state, from any
input ρ, including one that is full-rank, requires a channel that
is unconstrained by the third law.

(i) ⇒ (ii): Consider a system HS = CN , with the or-
thonormal basis {|0〉, . . . , |N − 1〉}, initially prepared in some
unknown state ρ. Consider a channel � acting in HS , defined
by �(·) = tr[·1]ρ0, where ρ0 = ∑N−1

n=0 λn|n〉〈n| is a known
full-rank state. Such a channel maps full-rank states to full-
rank states, and so is constrained by the third law. We may
therefore use this channel to prepare HS in the state ρ0,
independently of the input ρ.

Now let us assume that we may implement a known chan-
nel E : L(K) → L(R) which is unconstrained by the third
law, i.e., assume that there exists a full-rank state � on K
which is mapped to state ξ on R that is not full-rank. But
preparation channels that prepare a full-rank state are con-
strained by the third law. As such, we may prepare K in
such a state �, which is known, so that by applying the
channel E , we may prepare R in the state ξ , which is also
known. Let us write such a state as ξ = ∑M−1

m=0 pm|m〉〈m|,
where {|0〉, . . . , |M − 1〉} is an orthonormal basis that spans
R = CM , such that pm = 0 for at least one m.

By preparing D copies of ξ , we may write the state on the
total system HS ⊗ R⊗D, i.e., ρ0 ⊗ ξ⊗D = ρ ⊗ ξ ⊗ · · · ⊗ ξ ,
as

ρ0 ⊗ ξ⊗D =
N−1∑
n=0

M−1∑
m1=0

· · ·
M−1∑
mD=0

Cn,m1,...,mD

× |n, m1, · · · , mD〉〈n, m1, · · · , mD|,
where we define Cn,m1,...,mD := λn pm1 · · · pmD . Now choose a
unitary channel acting in the total system, with a unitary
operator U which permutes the basis {|n, m1, . . . , mD〉}. We
obtain

U (ρ0 ⊗ ξ⊗D)U ∗ =
N−1∑
n=0

M−1∑
m1=0

· · ·
M−1∑
mD=0

Cπ (n,m1,...,mD )

× |n, m1, . . . , mD〉〈n, m1, . . . , mD|.

By choosing D to be sufficiently large so that rank(ξ )DN �
MD is satisfied, then the permutation can be chosen so that
Cπ (n,m1,...,mD ) = 0 for n 
= 0, and so the above state will read
U (ρ0 ⊗ ξ⊗D)U ∗ = |0〉〈0| ⊗ ω. The restriction of the final
state |0〉〈0| ⊗ ω on HS is thus a pure state |0〉〈0|. To ob-
tain an arbitrary target state σ , we apply a channel �(·) =
〈0| · |0〉σ + tr[(1 − |0〉〈0|)·] 1N , which maps full-rank states to
full-rank states, and so is constrained by the third law. �

APPENDIX D: MEASUREMENTS CONSTRAINED
BY THE THIRD LAW

Consider again the composition channel �ξ : L(HS ) �→
L(HS ⊗ HA), ρ �→ ρ ⊗ ξ . We now define the restriction
map �ξ : L(HS ⊗ HA) → L(HS ) as dual to the composition
channel, i.e., �ξ = �∗

ξ . The restriction map therefore satis-
fies tr[�ξ (B)ρ] = tr[B(ρ ⊗ ξ )] for all B ∈ L(HS ⊗ HA) and
states ρ on HS . Using such a map, and a channel E acting
in HS ⊗ HA, we define the channel �E

ξ : L(HS ⊗ HA) →
L(HS ) as

�E
ξ (·) := �ξ ◦ E∗(·). (D1)

We may thus write the dual of the operations in Eq. (3) im-
plemented by the measurement scheme M := (HA, ξ , E, Z)
as

I∗
x (·) = �E

ξ (· ⊗ Zx ),

to hold for all x ∈ X . As such, we may write the channel
implemented by M as I∗

X (·) = �E
ξ (· ⊗ 1A). Moreover, recall

that an instrument is compatible with E if tr[Ix(ρ)] = tr[Exρ]
for all outcomes x and for all states ρ, which may equivalently
be written as Ex = I∗

x (1S ) for all x. We may therefore write
the effects of the observable implemented by the measurement
scheme M as

Ex = �E
ξ (1S ⊗ Zx ).

Lemma D.1. Let M := (HA, ξ , E, Z) be a measurement
scheme for an E-compatible instrument I acting in HS . As-
sume that M is constrained by the third law. The following
hold:

(i) For every A ∈ L(HS ⊗ HA), it holds that �E
ξ (A∗A) =

O ⇐⇒ A = O.
(ii) There exists at least one full-rank state ρ0 on HS such

that IX (ρ0) = ρ0.
(iii) For every A ∈ L(HS ) and x, it holds that I∗

x (A∗A) =
O ⇐⇒ A = O.

(iv) For every x, let Px be the minimal projection on the
support of Ex. For every state ρ such that PxρPx has full rank
in PxHS , Ix(ρ) has full rank in HS .

Proof.
(i) By Definition 5, ξ is full-rank and E maps full-rank

states to full-rank states. Since �ξ is dual to the composi-
tion channel, then by Corollary B.1 �ξ is constrained by
the third law. By Lemma B.1, it follows that �E

ξ = �ξ ◦ E∗
is constrained by the third law. The statement follows from
Lemma B.2.

(ii) Since I∗
X (·) = �E

ξ (· ⊗ 1A), then by the above it fol-
lows that IX satisfies property (iii), and hence (iv), of
Lemma B.2.
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(iii) Given that 0 < ‖Ex‖ = ‖�E
ξ (1S ⊗ Zx )‖ � ‖Zx‖, it

holds that Zx > O for all x. Now note that I∗
x (A∗A) =

�E
ξ (A∗A ⊗ Zx ). By item (i), it follows that I∗

x (A∗A) = O if and
only if A∗A ⊗ Zx = O, which holds if and only if A = O.

(iv) We may always write I∗
x (·) = √

Ex�
∗
x (·)√Ex for

some channel �x acting in HS . It follows that I∗
x (·) =

PxI∗
x (·)Px. By (iii), for any O 
= A ∈ L(HS ), it holds that

L(PxHS ) � I∗
x (A∗A) = PxI∗

x (A∗A)Px > O. But for any ρ

for which PxρPx has full-rank in PxHS , it follows that
tr[I∗

x (A∗A)ρ] > 0. By writing tr[A∗AIx(ρ)] = tr[I∗
x (A∗A)ρ],

it follows that tr[A∗AIx(ρ)] = 0 ⇐⇒ A = O, and so Ix(ρ)
must be full-rank in HS . �

Condition (iv) of the above lemma shows that the third
law restricts the possible conditional state transformations by
measurements. That is, it is impossible to prepare a system in
a state of low rank, given an arbitrary input state, by measure-
ment and selection of an outcome. Moreover, the class of input
states that may be prepared in a state of low rank diminishes
as the rank of the observable’s effects decrease. Indeed, if an
effect Ex has rank 1, so that it may be written as Ex = λ|ψ〉〈ψ |
for some unit-vector |ψ〉 and λ ∈ (0, 1], then for any state ρ

such that 〈ψ |ρ|ψ〉 > 0, Ix(ρ) will be full-rank. In particular,
we obtain the following result.

Proposition D.1. Let IL be a Lüders instrument compati-
ble with a nontrivial observable E. IL admits a measurement
scheme M := (HA, ξ , E, Z), which is constrained by the
third law, if and only if E is completely unsharp.

Proof. First, let us show the only if statement. By item
(iv) of Lemma D.1, IL

x (·) = √
Ex · √

Ex must map full-rank
states to full-rank states. Consider the complete mixture σ =
1S/ dim(HS ), which is full-rank. IL

x (σ ) = Ex/ dim(HS ) is
full-rank if and only if Ex is full-rank. Since E is nontriv-
ial, and there must be at least two outcomes x for which
O < Ex < 1S , then the spectrum of all effects Ex must be
contained in (0,1). E is thus completely unsharp.

Now we shall show the if statement. Let us consider a com-
pletely unsharp observable E = {Ex}N

x=1 acting in HS . Let the
apparatus Hilbert space be HA = CN , with an orthonormal
basis {|y〉}N−1

y=0 , and choose the apparatus preparation as the
complete mixture ξ = 1A/N . Choose an interaction channel
E (·) = ∑

x Kx · K∗
x , with Kraus operators

Kx :=
∑

a

√
Ex⊕a ⊗ |x ⊕ a〉〈a|, (D2)

where ⊕ represents summation modulo N . Then for an arbi-
trary state ρ on HS , we obtain

E (ρ ⊗ ξ ) =
∑

x

∑
a

∑
b

√
Ex⊕aρ

√
Ex⊕b ⊗ 1

N

×
∑

c

|x ⊕ a〉〈x ⊕ b|δacδbc

=
∑

x

√
Exρ

√
Ex ⊗ |x〉〈x|.

To show that E is constrained by the third law, let us note that
for ρ = 1S/ dim(HS ), we have

E (ρ ⊗ ξ ) = 1

dim(HS )

∑
x

Ex ⊗ |x〉〈x|.

To show that this state is full rank, we observe that for an
arbitrary vector |ϕ〉 = ∑

x |ϕx〉 ⊗ |x〉, it holds that

〈ϕ|E (ρ ⊗ ξ )|ϕ〉 = 1

dim(HS )

∑
x

〈ϕx|Ex|ϕx〉,

which is nonvanishing if every Ex is full-rank. By item (ii) of
Lemma B.2, E is constrained by the third law. Finally, choos-
ing the pointer observable as Zx = |x〉〈x|, then by Eq. (3) we
obtain

trA[(1S ⊗ Zx )E (ρ ⊗ ξ )] =
√

Exρ
√

Ex =: IL
x (ρ),

and so the above measurement scheme implements the Lüders
instrument. �

We obtain the following as an immediate consequence of
the above.

Corollary D.1. Let E be a completely unsharp observable.
Define I as the set of all E-compatible instruments I such
that, for every full-rank state ρ and for every outcome x, Ix(ρ)
is full-rank. It holds that every I ∈ I admits a measurement
scheme M = (HA, ξ , E, Z) that is constrained by the third
law.

Proof. The operations of every E-instrument may be writ-
ten as Ix(·) = �x ◦ IL

x (·), where IL is the Lüders instrument
for E and �x is an arbitrary channel. It is easy to show
that I ∈ I if and only if �x is constrained by the third
law. That is, �x(ω) is full-rank for every full-rank ω. To
see this, let σ = 1S/ dim(HS ) be the complete mixture,
and define ω := IL

x (σ )/tr[IL
x (σ )] = Ex/tr[Ex] which, given

complete unsharpness of E, is guaranteed to be full-rank.
Therefore, Ix(σ ) is full-rank if and only if �x(ω) is full-rank.
The claim follows from item (ii) of Lemma B.2.

Now let us define a channel E2 by

E2(A ⊗ B) =
∑

x

�x(A) ⊗ |x〉〈x|B|x〉〈x|,

where �x is an arbitrary channel which is constrained by
the third law. In such a case, E2 is also constrained by the
third law; it is easily verified that E2(1S ⊗ 1A) has full rank.
Therefore, a concatenated channel E := E2 ◦ E1, where E1 is
a channel defined by the Kraus operators in Eq. (D2), is
also constrained by the the third law. But the measurement
scheme M = (HA, ξ , E, Z), with ξ the complete mixture and
Zx = |x〉〈x|, implements Ix(·) = �x ◦ IL

x (·). �

APPENDIX E: FIXED-POINT STRUCTURE OF
MEASUREMENTS CONSTRAINED BY THE THIRD LAW

We define the fixed-point sets of the E-channel IX and its
dual I∗

X as

F (IX ) := {A ∈ L(HS ) : IX (A) = A},
F (I∗

X ) := {A ∈ L(HS ) : I∗
X (A) = A}.

Now let us define the channels

Iav(·) := lim
N→∞

1

N

N∑
n=1

(IX )n(·),

I∗
av(·) := lim

N→∞
1

N

N∑
n=1

(I∗
X )n(·).
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I∗
av is a CP projection on F (I∗

X ) = F (I∗
av), i.e., it holds that

I∗
av = I∗

av ◦ I∗
X = I∗

X ◦ I∗
av = I∗

av ◦ I∗
av. Similarly, Iav is a CP

projection on F (IX ) = F (Iav). Now let us assume that the
measurement scheme for I is constrained by the third law. It
follows from item (ii) of Lemma D.1 that F (IX ) contains a
full-rank state ρ0. This in turn implies that F (I∗

X ) is a von
Neumann algebra, i.e., the fixed points of I∗

X satisfy multi-
plicative closure [70,71]. But since HS is finite-dimensional,
then F (I∗

X ) is a finite von Neumann algebra A , which may
have an Abelian nontrivial center Z := A ∩ A ′ generated
by the set of ortho-complete projections {Pα}. That is, every
self-adjoint B ∈ Z can be written as B = ∑

α λαPα . We may
therefore decompose A into a finite direct sum A = ⊕αAα ,
where each Aα = PαA is a type I factor (a finite dimensional
von Neumann algebra with a trivial center) on PαHS = Kα ⊗
Rα , written as Aα = L(Kα ) ⊗ 1Rα

. It follows that we may
write

F (IX ) =
⊕

α

L(Kα ) ⊗ ωα,

(E1)
F (I∗

X ) =
⊕

α

L(Kα ) ⊗ 1Rα
,

and

Iav(·) =
∑

α

trRα
[Pα · Pα] ⊗ ωα,

(E2)
I∗

av(·) =
∑

α

�ωα
(Pα · Pα ) ⊗ 1Rα

,

where ωα are states on Rα; �ωα
: L(Kα ⊗ Rα ) → L(Kα ) are

restriction maps; and trRα
: L(Kα ⊗ Rα ) → L(Kα ) are par-

tial traces [72].
Note that the third-law constraint implies that ωα are full-

rank states on Rα . This can be immediately inferred by noting
that, given the complete mixture σ = 1S/ dim(HS ), it holds
that Iav(σ ) ∝ ⊕α1Kα

⊗ ωα . By property (i) of Lemma B.2,
this state must be full-rank, which holds if and only if ωα are
full-rank for all α.

Finally, let us note that since F (I∗
X ) is a von Neumann

algebra, then it holds that

F (I∗
X ) ⊆ E′ := {A ∈ L(HS ) : [E, A] = O}, (E3)

that is, the fixed points of I∗
X are contained in the commutant

of E [35]. We now provide a useful result indicating the form
that the effects of E must take in light of the fixed-point
structure of the measurement channel.

Lemma E.1. Let M := (HA, ξ , E, Z) be a measurement
scheme for a nontrivial observable E, with instrument I, act-
ing in HS . Assume that M is constrained by the third law.
Then the effects of E are of the form

Ex =
⊕

α

1Kα
⊗ Ex,α,

where O < Ex,α < 1Rα
for all x and α.

Proof. By the channel �E
ξ defined in Eq. (D1), we

may write I∗
x (·) = �E

ξ (· ⊗ Zx ), and so we may write Ex =
I∗

x (1S ) = �E
ξ (1S ⊗ Zx ) and I∗

X (·) = �E
ξ (· ⊗ 1A). Since

F (I∗
X ) is a von Neumann algebra, for any A ∈ F (I∗

X ) it holds
that A∗A, AA∗ ∈ F (I∗

X ). By the multiplicability theorem [73],

this implies that A�E
ξ (B) = �E

ξ ((A ⊗ 1A)B) and �E
ξ (B)A =

�E
ξ (B(A ⊗ 1A)) for all B ∈ L(HS ⊗ HA). By choosing B =

1S ⊗ Zx, we may therefore write

I∗
x (A) = �E

ξ (A ⊗ Zx ) = AEx = ExA

for all A ∈ F (I∗
X ). Now assume that AEx = O. By the above

equation this implies that I∗
x (A∗A) = A∗AEx = O. By item

(iii) of Lemma D.1, it follows that for any A ∈ F (I∗
X ), it holds

that AEx = O ⇐⇒ A = O.
Now note that the condition F (I∗

X ) ⊂ E′ implies that
E ⊂ F (I∗

X )′. By Eq. (E1) it holds that F (I∗
X )′ = ⊕

α 1Kα
⊗

L(Rα ). That the effects of E are decomposed as in the state-
ment of the lemma directly follows. Now assume that Ex,α =
O for some α. It will hold that an operator A = Aα ⊗ 1Rα

∈
F (I∗

X ) exists, with Aα 
= O, such that AEx = O. But this
contradicts what we showed above. Therefore, all Ex,α must
be strictly positive. Finally, since E is nontrivial, then there
exists at least two distinct outcomes, and so by normalization
it holds that Ex,α < 1Rα

. �

APPENDIX F: NONDISTURBANCE

An observable F := {Fy : y ∈ Y} is nondisturbed by an E-
compatible instrument I if tr[FyIX (ρ)] = tr[Fyρ] holds for
all states ρ and outcomes y. This can equivalently be stated
as I∗

X (Fy) = Fy for all y, which we denote as F ⊂ F (I∗
X ).

If the measurement scheme for I is constrained by the third
law, then as discussed surrounding Eq. (E3) it holds that
F (I∗

X ) ⊆ E′, and so a necessary condition for nondisturbance
of F is for F to commute with E. As we show below, however,
commutation is not sufficient; properties of the measured ob-
servable impose further constraints.

Proposition F.1. Let M := (HA, ξ , E, Z) be a measure-
ment scheme for an E-compatible instrument I acting in HS .
The following hold:

(i) If ‖Ex‖ = 1 for any x, then there exists a projection
P ∈ E′ such that P /∈ F (I∗

X ) for any instrument I that can be
implemented by a scheme M that is constrained by the third
law.

(ii) If E is completely unsharp, then a scheme M that
is constrained by the third law can be chosen so that
F (I∗

X ) = E′.
Proof.
(i) By Lemma E.1, we may write

E′ =
⊕

α

L(Kα ) ⊗ E ′
α,

where E ′
α := {A ∈ L(Rα ) : [Ex,α, A] = O∀ x ∈ X }. If

F (I∗
X ) = E′, then by Eq. (E1) it must hold that E ′

α = C1Rα

for all α.
Recall that for each α, {Ex,α : x ∈ X } is a POVM acting

in Rα , where O < Ex,α < 1Rα
and

∑
x Ex,α = 1Rα

. Assume
that for some α, there exists x such that Ex,α has eigenvalue
1. Let P be the projection on the eigenvalue-1 eigenspace of
Ex,α . Since E is nontrivial, then P < 1Rα

. By normalization,
it follows that PEx′,α = Ex′,αP = δx,x′P for all x′, and so there
exists P 
∝ 1Rα

∈ E ′
α . Therefore, F (I∗

X ) = E′ holds only if
Ex,α does not have eigenvalue 1, and so ‖Ex‖ < 1 for all x.

(ii) By Proposition D.1, a completely unsharp observ-
able E admits a Lüders instrument IL, given the third law
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constraint. In finite dimensions, for the Lüders instrument
compatible with E, it holds that F (IL

X
∗) = E′ [44]. �

In other words, an observable E admits an instrument
I so that F (I∗

X ) = E′, with such instrument realisable by
a measurement scheme M that is constrained by the third
law, if E is completely unsharp, and only if ‖Ex‖ < 1 for
all x. Note that by item (i), if ‖Ex‖ = 1 for some x, then
there exists a POVM {P, P⊥ := 1S − P} that commutes with
E, but is disturbed by any realisable E-instrument I, since
I∗
X (P) 
= P. In particular, the above proposition implies that

for any possible measurement of a norm-1 observable E,
such as a sharp observable, there exists some F ⊂ E′ that is
disturbed.

Of course, while a measurement of a norm-1 observable
E is guaranteed to disturb some observable that commutes,
this does not imply that there are no nondisturbed observ-
ables. Below, we provide necessary conditions on E so that
its measurement allows for a nontrivial class of nondisturbed
observables.

Proposition F.2. Let M := (HA, ξ , E, Z) be a measure-
ment scheme for an E-compatible instrument I acting in
HS , and assume that M is constrained by the third law. The
following hold:

(i) If E is a small-rank observable, then F (I∗
X ) = C1S .

(ii) If E is a nondegenerate observable, then F (I∗
X ) is

Abelian.
Proof.
(i) Recall from Definition 2 that a small-rank observable

has at least one effect that is rank-1. By Lemma E.1, the rank
of every effect of E is bounded as rank(Ex ) �

∑
α dim(Kα ).

Therefore, if any effect of E is rank-1, then it must hold that
the number of indices α is 1, and that dim(Kα ) = 1, so that by
Eq. (E1) we have F (I∗

X ) = C1S .
(ii) Recall from Definition 3 that E is nondegenerate if

one of its effects has no multiplicities in its strictly positive
eigenvalues. By Lemma E.1, nondegeneracy of such an ef-
fect implies that dim(Kα ) = 1 for every α. It follows from
Eq. (E1) that F (I∗

X ) = ⊕αC1Rα
, i.e., for any A, B ∈ F (I∗

X ),
it holds that [A, B] = O. �

In other words, for the class of nondisturbed observ-
ables to be nontrivial, then the measured observable must
be large-rank. Additionally, for the nondisturbed observables
to be noncommutative, then the measured observable must
be degenerate. We now provide a concrete example for a
measurement scheme constrained by the third law, which
measures a sharp observable that is large-rank and hence
degenerate, that does not disturb a nontrivial class of possibly
noncommutative observables.

Example F.1. Consider HS := H1 ⊗ H2 and HA := H3,
with Hi = C2. Let E be a unitary channel which acts trivially
in H1 and implements a swap in H2 ⊗ H3, i.e., E∗(A ⊗ B ⊗
C) = A ⊗ C ⊗ B. As shown in Corollary B.1 this channel is
constrained by the third law. Now define a pointer observable
Zx := |x〉〈x| acting in HA. A measurement scheme M :=
(HA, ξ , E, Z), with ξ a full-rank state on HA, is constrained
by the third law, and measures the sharp, large-rank and
degenerate observable with effects Ex = 11 ⊗ |x〉〈x| in HS .
The fixed-point set of the instrument I implemented by M
is easily verified to be F (I∗

X ) = L(H1) ⊗ 12 ⊂ E′, which is
a nontrivial and noncommutative proper subset of E′. That

is, any possibly noncommutative observable F with effects
Fy = Fy ⊗ 12 will be nondisturbed.

APPENDIX G: FIRST-KINDNESS AND REPEATABILITY

An E-compatible instrument I is a measurement of the first
kind if E ⊂ F (I∗

X ). A subclass of first-kind measurements
are repeatable, satisfying the additional condition I∗

y (Ex ) =
δx,yEx. Only norm-1 observables admit a repeatable instru-
ment. Repeatability implies first-kindness, since I∗

X (Ex ) =∑
y I∗

y (Ex ) = Ex. We now show that the third law permits
first-kindness only for completely unsharp observables and so
categorically prohibits repeatability.

Proposition G.1. A nontrivial observable E admits a mea-
surement of the first kind, given a measurement scheme M :=
(HA, ξ , E, Z) that is constrained by the third law, if and only
if E is commutative and completely unsharp.

Proof. Let us first show the only if statement. An E-
compatible instrument I is a measurement of the first kind
if E ⊂ F (I∗

X ). Now, recall that F (I∗
X ) = F (I∗

av), so that the
first-kind condition also reads as I∗

av(Ex ) = Ex for all out-
comes x. By Lemma E.1 and Eq. (E2), it follows that Ex =
⊕αλα (x)1Kα

⊗ 1Rα
with λα (x) := tr[Ex,αωα]. Since O <

Ex,α < 1Rα
and ωα is full-rank for all α and x, then λα (x) ∈

(0, 1). The claim immediately follows.
To show the if statement, recall from Proposition D.1 that

a completely unsharp observable admits a Lüders instrument
under the third law constraint, and that if such an observable
is also commutative, then the Lüders instrument is a first-kind
measurement. �

Corollary G.1. Let M := (HA, ξ , E, Z) be a measure-
ment scheme for an E-compatible instrument I. If M is
constrained by the third law, then I cannot be repeatable.
Moreover, for every pair of outcomes x, y, there exists a state
ρ such that tr[EyIx(ρ)] > 0.

Proof. If I is repeatable, then it is also first-kind. By
Proposition G.1, given the third law constraint only a com-
pletely unsharp observable admits a first-kind measurement.
Since repeatability is admitted only for norm-1 observables,
and completely unsharp observables lack the norm-1 property,
then I cannot be repeatable. Now note that we may write
I∗

x (Ey) = �E
ξ (Ey ⊗ Zx ). Since Ey ⊗ Zx > O for all x, y, then

by item (i) of Lemma D.1 it holds that I∗
x (Ey) > O, and so

tr[EyIx(ρ)] = tr[I∗
x (Ey)ρ] > 0 for some ρ. �

Below we provide a model for a measurement scheme that
is constrained by the third law, and which implements a first-
kind measurement of a completely unsharp observable. Note
that the model does not implement a Lüders instrument.

Example G.1. Consider HS = HA = CN with an or-
thonormal basis {|n〉 : n = 0, . . . , N − 1} for each system.
Consider the unitary channel E (·) = U · U ∗ acting in HS ⊗
HA, with the unitary operator U defined as

U =
∑
m,n

|n〉〈n| ⊗ |m ⊕ n〉〈m|,

where ⊕ denotes addition modulo N . As shown in Corollary
B.1 this channel is constrained by the third law. Consider
a full-rank state on HA given as ξ = ∑

n q(n)|n〉〈n| with
q(n) > 0 for all n. Let Zn = |n〉〈n| be a pointer observable
acting in HA. The measurement scheme M := (HA, ξ , E, Z)
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is therefore constrained by the third law. Moreover, the oper-
ations of the instrument I implemented by M satisfy

I∗
x (A) = �E

ξ (A ⊗ Zx ) =
∑

n

q(x � n)〈n|A|n〉|n〉〈n|,

where � denotes subtraction modulo N . The measured ob-
servable is therefore commutative and completely unsharp,
with effects Ex = ∑

n q(x � n)|n〉〈n|, whose eigenvalues are
in (0,1). Additionally, the fixed-point set of the E-channel is
F (I∗

X ) = ⊕nC|n〉〈n| ⊂ E′, which is nontrivial. In particular,
we have E ⊂ F (I∗

X ), and so this model describes a first-kind
measurement for E.

APPENDIX H: IDEALITY

Proposition H.1. Let M := (HA, ξ , E, Z) be a measure-
ment scheme for a nontrivial norm-1 observable E, with the
instrument I, acting in HS . If M is constrained by the third
law, then I cannot be ideal.

Proof. Assume that I is ideal, so that for every state
ρ and for every outcome x such that tr[Exρ] = 1, it holds
that Ix(ρ) = ρ. Since tr[Exρ] = 1 is equivalent to tr[Eyρ] =
δx,y, and hence Iy(ρ) = O for all y 
= x, this implies that
IX (ρ) = ∑

y Iy(ρ) = Ix(ρ) = ρ, and hence ρ ∈ F (IX ) =
F (Iav). But by Eq. (E2), we have

ρ = Iav(ρ) =
⊕

α

σα ⊗ ωα, (H1)

where ωα are fixed full-rank states on Rα and σα :=
trRα

[PαρPα] are subunit-trace positive operators on Kα .
Since E is norm-1, then by Lemma E.1 it follows that

for each outcome x, there exists at least one α such that
‖Ex,α‖ = 1. Any state on Kα ⊗ Rα written as ρ = σα ⊗
μα , such that tr[Ex,αμα] = 1, will give tr[Exρ] = tr[(1Kα

⊗
Ex,α )(σα ⊗ μα )] = tr[Ex,αμα] = 1. By Eq. (H1), if I is ideal
we must have

σα ⊗ μα = σα ⊗ ωα,

that is, tr[Ex,αμα] = 1 ⇐⇒ μα = ωα . But given that ωα

are full-rank states on Rα , tr[Ex,αμα] = 1 if and only if
dim(Rα ) = 1, so that Ex,α = 1Rα

. But by Lemma E.1, if
E is nontrivial, Ex,α < 1Rα

must hold. We therefore have a
contradiction, and so I cannot be ideal. �

In particular, let us highlight the fact that if E is a nontrivial
norm-1 observable, then for every outcome x, and for every
state ρ such that tr[Exρ] = 1, then a third-law-constrained
measurement will give Ix(ρ) 
= ρ.

APPENDIX I: EXTREMALITY

Let {K (x)
i : i = 1, . . . , Mx} be a minimal Kraus represen-

tation for the operation Ix of an E-compatible instrument I,
with Mx the Kraus rank of Ix. The following is a series of
necessary conditions for extremality of such an instrument:

Lemma I.1. The instrument I is extremal only if the fol-
lowing conditions are met:

(i) The operations Ix are all extremal.
(ii) Mx � rank(Ex ) for all x.
(iii) {K (x)∗

i K (x)
j : x ∈ X ; i, j = 1, . . . , Mx} are linearly in-

dependent (this condition is necessary and sufficient).

Proof.
(i) This trivially follows from the definition of extremal

instruments.
(ii) By Remark 6 of Ref. [74], a subunital CP map

�∗ : L(K) → L(H), with minimal Kraus representation {Ki :
i = 1, . . . , M}, is extremal only if {K∗

i Kj ∈ L(H)} are lin-
early independent. Since the cardinality of this set is M2,
while dim(L(H)) = dim(H)2, it follows that M � dim(H)
must hold. Now, since we may always write I∗

x (·) =√
Ex�

∗(·)√Ex, it holds that I∗
x : L(HS ) → L(PxHS ), with

Px the minimal projection on the support of Ex so that
dim(PxHS ) = rank(Ex ). By above, extremality of Ix implies
that Mx � rank(Ex ).

(iii) Theorem 5 of Ref. [36]. �
Now we shall provide some useful results that will allow

us to investigate how the third law constrains extremality in
the sequel.

Lemma I.2. Let �ξ : L(HS ⊗ HA) → L(HS ) be a restric-
tion map. Assume that �ξ (A) is independent of the state ξ . It
holds that A = B ⊗ 1A.

Proof. Let {|en〉} and {|b j〉} be orthonormal bases that span
HS and HA, respectively. If �ξ (A) is independent of ξ , it
follows that for any unit vector |ψ〉 ∈ HA,

〈em|�|ψ〉〈ψ |(A)|en〉 = 〈em ⊗ ψ |A|en ⊗ ψ〉 = Cm,n.

Now, for any choice of j and k, define |φ±〉 := 1√
2
(|b j〉 ±

|bk〉) and |ϕ±〉 := 1√
2
(|b j〉 ± i|bk〉). We obtain

〈em|�|φ±〉〈φ±|(A)|en〉

= Cm,n ± 1 − δ j,k

2

× (〈em ⊗ b j |A|en ⊗ bk〉 + 〈em ⊗ bk|A|en ⊗ b j〉),

and

〈em|�|ϕ±〉〈ϕ±|(A)|en〉

= Cm,n ± i
1 − δ j,k

2

× (〈em ⊗ b j |A|en ⊗ bk〉 − 〈em ⊗ bk|A|en ⊗ b j〉).

Thus we conclude that 〈em ⊗ b j |A|en ⊗ bk〉 = δ j,kCm,n. It fol-
lows that

A =
∑
m,n

∑
j,k

〈em ⊗ b j |A|en ⊗ bk〉|em〉〈en| ⊗ |b j〉〈bk|,

=
∑
m,n

∑
j

Cm,n|em〉〈en| ⊗ |b j〉〈b j | = B ⊗ 1A.

�
Lemma I.3. Let M := (HA, ξ , E, Z) be a measurement

scheme for an instrument I acting in HS . Assume that M
is constrained by the third law. If I is extremal, then it holds
that

E∗(· ⊗ Zx ) = I∗
x (·) ⊗ 1A

for all x.
Proof. If M is constrained by the third law, then ξ is full-

rank. By Lemma A.1, for an arbitrary unit vector |φ〉 ∈ HA,
there exists a 0 < λ < 1 such that ξ � λ|φ〉〈φ|. Defining the
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state σ := (ξ − λ|φ〉〈φ|)/(1 − λ), we may thus decompose
ξ as ξ = λ|φ〉〈φ| + (1 − λ)σ . Using the map �E

ξ defined in
Eq. (D1), we may thus write

I∗
x (·) = �E

ξ (· ⊗ Zx ),

= λ�E
|φ〉〈φ|(· ⊗ Zx ) + (1 − λ)�E

σ (· ⊗ Zx ).

Since I is assumed to be extremal, it follows that

I∗
x (·) = �E

|φ〉〈φ|(· ⊗ Zx ) = �|φ〉〈φ| ◦ E∗(· ⊗ Zx )

must hold for arbitrary unit vectors |φ〉 ∈ HA. The claim
follows from Lemma I.2. �

We are finally ready to provide necessary conditions for
extremality of an instrument constrained by the third law.

Proposition I.1. Let M := (HA, ξ , E, Z) be a measure-
ment scheme for a nontrivial observable E, with the instru-
ment I, acting in HS . Assume that M is constrained by the
third law, and that I is extremal. The following hold:

(i) rank(Ex ) �
√

dim(HS ) for all x.
(ii) E cannot be a unitary channel.
Proof. Let us first prove (i). Let Px be the minimal projec-

tion on the support of Ex, where we note that dim(PxHS ) =
rank(Ex ). Consider a full-rank state ρ = ∑rank(Ex )

n=1 pn|ψn〉〈ψn|
on PxHS , where pn > 0 and |ψn〉 ∈ PxHS for all n. By item
(iv) of Lemma D.1, it holds that Ix(ρ) has full-rank in HS ,
i.e., rank(Ix(ρ)) = dim(HS ). Now, for any unit vector |ψ〉 ∈
PxHS it holds that

Ix(|ψ〉〈ψ |) =
Mx∑
i=1

|K (x)
i ψ〉〈K (x)

i ψ |.

We thus have dim(HS ) = rank(Ix(ρ)) � Mxrank(Ex ). By
item (ii) of Lemma I.1, extremality implies that Mx �
rank(Ex ). It follows that dim(HS ) � rank(Ex )2.

Now we shall prove (ii). If I is extremal, then by Lemma
I.3 it holds that E∗(· ⊗ 1A) = I∗

X (·) ⊗ 1A. If E∗(·) = U ∗ · U
is a unitary channel, then I∗

X is also a unitary channel, and so
there exists a unitary operator V ∈ L(HS ) such that I∗

X (·) =
V ∗ · V , and we may thus write

U ∗(A ⊗ 1)U = V ∗ ⊗ 1A(A ⊗ 1A)V ⊗ 1A

for all A ∈ L(HS ). This implies that L∗(A ⊗ 1A)L = A ⊗
1A, with L = U (V ∗ ⊗ 1A), for all A. As such, for all A the
following commutation relation must hold:

[A ⊗ 1A,U (V ∗ ⊗ 1A)] = O.

That is, there exists a unitary operator W such that U = V ⊗
W . Therefore, the unitary channel E is a product of unitary
channels acting separately in HS and HA, i.e., E = E1 ⊗ E2,
where E1(·) = V · V ∗ acts in HS and E2(·) = W · W ∗ acts in
HA. It follows that

Ex = �ξ ◦ E∗(1S ⊗ Zx ) = �ξ (E∗
1 (1S ) ⊗ E∗

2 (Zx ))

= �ξ (1S ⊗ W ∗ZxW ) = tr[ZxW ξW ∗]1S ,

which is a trivial observable. �
To show that extremality is indeed possible, and that the

bound rank(Ex ) �
√

dim(HS ) is tight, let us consider the
following model.

Consider HS := H1 ⊗ H2 and HA := H3, where Hi =
C2. Choose the apparatus state preparation as an arbitrary

full-rank state ξ , and choose a pointer observable Zx = |x〉〈x|.
Let the measurement interaction be the channel E := E2 ◦ E1,
where

E1(A ⊗ B ⊗ C) = A ⊗ C ⊗ B,

E2(A ⊗ B ⊗ C) = �(A ⊗ B) ⊗ C.

That is, at first a unitary swap channel is applied in H2 ⊗ H3,
and subsequently a channel � is applied in H1 ⊗ H2. The op-
erations of the instrument implemented by the measurement
scheme M := (HA, ξ , E, Z) are thus

I∗
x (A ⊗ B) = �ξ ◦ E∗

1 (�∗(A ⊗ B) ⊗ |x〉〈x|). (I1)

� is a channel defined by

�(A ⊗ B) =
1∑

x=0

1∑
f =0

Kx, f (A ⊗ B)K∗
x, f ,

with the Kraus operators defined below:

Kx, f := Vf ⊗ |ϕ f 〉〈x|,
where |ϕ0〉 = |0〉, |ϕ1〉 = |+〉 = 1√

2
(|0〉 + |1〉), and {Vf } are

Kraus operators for some channel acting in H1, and are

V0 =
⎡
⎣

√
1
4 0

0
√

3
4

⎤
⎦,

V1 = σx

⎡
⎣

√
3
4 0

0
√

1
4

⎤
⎦ =

⎡
⎣ 0

√
1
4√

3
4 0

⎤
⎦.

As E1 is a unitary channel, it is constrained by the third law.
To confirm that E2 is constrained by the third law, it is enough
to check if � is so constrained. We have

�

(
1

2
⊗ 1

2

)
= 1

4

∑
x

∑
f

Vf V
∗
f ⊗ |ϕ f 〉〈ϕ f |

= 1

2

∑
f

Vf V
∗
f ⊗ |ϕ f 〉〈ϕ f |

= 1

2

[
1
4 0
0 3

4

]
⊗ (|0〉〈0| + |+〉〈+|).

As the complete mixture is mapped to a full-rank state, then
�, and hence also E2, satisfies property (ii) of Lemma B.2
and is thus constrained by the third law. Finally, since third-
law-constrained channels are closed under composition, and
given that the apparatus preparation is full-rank, then M is
constrained by the third law. Moreover, note that E is evidently
not a unitary channel.

Now note that �∗ may also be written as

�∗(A ⊗ B) =
∑
x, f

K∗
x, f A ⊗ BKx, f

=
∑
x, f

〈ϕ f |B|ϕ f 〉V ∗
f AVf ⊗ |x〉〈x|

=
∑

f

〈ϕ f |B|ϕ f 〉V ∗
f AVf ⊗ 1. (I2)
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By Eq. (I1) and Eq. (I2), we may thus write

I∗
x (A ⊗ B) = �ξ ◦ E∗

1 (�∗(A ⊗ B) ⊗ |x〉〈x|)
=

∑
f

〈ϕ f |B|ϕ f 〉�ξ ◦ E∗
1 (V ∗

f AVf ⊗ 1 ⊗ |x〉〈x|)

=
∑

f

〈ϕ f |B|ϕ f 〉�ξ (V ∗
f AVf ⊗ |x〉〈x| ⊗ 1)

=
∑

f

〈ϕ f |B|ϕ f 〉V ∗
f AVf ⊗ |x〉〈x|

=
∑

f

K∗
x, f (A ⊗ B)Kx, f .

In particular, the measured observable is

Ex = I∗
x (1 ⊗ 1) =

∑
f

V ∗
f Vf ⊗ |x〉〈x| = 1 ⊗ |x〉〈x|.

We see that E is sharp, and that rank(Ex ) = 2. But since HS =
C2 ⊗ C2, and so dim(HS ) = 4, it holds that rank(Ex ) =√

dim HS . As such, the necessary condition for extremality
is satisfied, with the model saturating the bound rank(Ex ) �√

dim HS . But by item (iii) of Lemma I.1, I is extremal if
and only if {K∗

x, f Kx,g}x, f ,g is a linearly independent set. These
operators are written as

K∗
x, f Kx,g = 〈ϕ f |ϕg〉V ∗

f Vg ⊗ |x〉〈x|,
where

V ∗
0 V0 =

[
1/4 0
0 3/4

]
, V ∗

1 V1 =
[

3/4 0
0 1/4

]
,

V ∗
0 V1 =

[
0 1/4

3/4 0

]
, V ∗

1 V0 =
[

0 3/4
1/4 0

]
.

The above operators are linearly independent, and so
{K∗

x, f Kx,g}x, f ,g is a linearly independent set. Therefore our
model, which is constrained by the third law, implements an
extremal instrument, with the rank of the measured observ-
able’s effects taking their smallest possible values.
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