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Entanglement between uncoupled modes with time-dependent complex frequencies
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In this work we present the general unified description for the unitary time evolution generated by time-
dependent non-Hermitian Hamiltonians embedding the bosonic representations of su(1, 1) and su(2) Lie
algebras. We take into account a time-dependent Hermitian Dyson maps written in terms of the elements of those
algebras with the relation between non-Hermitian and its Hermitian counterpart being independent of the algebra
realization. As a direct consequence, we verify that a time-evolved state of uncoupled modes modulated by a
time-dependent complex frequency may exhibits a nonzero entanglement even when the cross operators, typical
of the interaction between modes, are absent. This is due the nonlocal nature of the nontrivial dynamical Hilbert
space metric encoded in the time-dependent parameters of the general Hermitian Dyson map, which depend
on the imaginary part of the complex frequency. We illustrate our approach by setting the PT -symmetric case
where the imaginary part of frequency is linear on time for the two-mode bosonic realization of Lie algebras.
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I. INTRODUCTION

Entanglement as a quantum resource can naturally arise
when more than one quantum system is considered, and
therefore has become an indispensable tool for characterizing
quantum many-body systems [1]. It is essential for many
applications in the field of quantum information, such as
quantum key distribution [2], quantum teleportation [3], and
quantum computation [4]. The generation of entanglement
in optical setups may be achieved, for example, by means
of parametric amplifiers considered for cavity modes whose
coupling dynamics is modeled by a bilinear Hamiltonian
Ĥ ∝ â1â2 + H.c. [5,6]. Also, a beam splitter acts as an en-
tangler, and is described by the Hamiltonian Ĥ ∝ â1â†

2 + H.c.
[7,8]. Nevertheless, entanglement may also be produced and
manipulated in different physical scenarios as NMR [9], su-
perconducting qubits [10], optomechanical systems [11], and
others [12,13]. The entanglement characterization is based
on well-established criteria, which provide various conditions
and require different experimental techniques to be evaluated
[14,15]. As an example, in continuum-variables systems, the
Hillery and Zubairy criteria [16,17] and the Nha and Zubairy
criterium [18,19] provide a class of inequalities involving the
two-mode bosonic realizations of su(1, 1) and su(2) Lie alge-
bras whose violation indicates the presence of entanglement.
Some conditions for entanglement in multipartite systems are
derived in Ref. [20]. Genuine multipartite entanglement and
EPR steering for continuum variables are discussed by Teh
and Reid [21], which may be applied on three-mode sponta-
neous parametric down conversion to detect tripartite genuine
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non-Gaussian entanglement [22]. In this sense, we extend the
study of entanglement quantum systems considered in the
scope of non-Hermiticity.

Non-Hermitian systems can be used to model open and
dissipative dynamics assuming the dynamics described by
means of non-Hermitian Hamiltonian operators as found in
Refs. [23–26]. However, new perspectives have been ad-
dressed to the foundations of quantum theory since the publi-
cation of the seminal work of Bender and Boettcher [27]. They
conjectured that a non-Hermitian Hamiltonian has real eigen-
values if it exhibits unbroken parity-time (PT ) symmetry
[28]. Shortly after, a formalism embracing the special class of
non-Hermitian Hamiltonians, called pseudo-Hermitian, was
presented by Mostafazadeh [29–31]. He showed that pseudo-
Hermiticity and the existence of a positive-defined metric of
Hilbert space are the necessary conditions for an operator to
exhibit a real spectrum, and generate a unitary time evolution
within a consistent quantum mechanical framework. Simula-
tions of quantum PT -symmetric systems are usually done in
optical experimental setups, in the sense that the mathematical
equivalence between the quantum mechanical Schrödinger
equation and the optical wave equation allows the realization
of complex potentials within the framework of optics as sug-
gested in Refs. [32–35]. Similar simulations of non-Hermitian
quantum systems are found in the context of silicon pho-
tonics [36]. In addition, the relevance of these mathematical
developments is noteworthy in many topics of physics as com-
plex scattering potentials [37–39], tight-binding chain [40],
anisotropic XY model [41], quantum brachistochrone prob-
lem in both theoretical [42,43], and experimental [44] scenar-
ios, coupled optomechanical systems [45], geometric phase
[46], pseudochirality [47], and non-Hermitian version of
Jaynes-Cummings optical model obtained from κ-deformed
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Dirac oscillator [48]. Furthermore, in the field of quan-
tum information, there are many interesting investigations
in the context of pseudo-Hermiticity considered for optimal-
speed evolution generation [49], pseudo-Hermitian networks
[50], perfect state transfer in non-Hermitian networks [51],
information retrieval [52], holonomic gates [53], and an exper-
imental quantum cloning protocol was presented in Ref. [54].
Recently, an efficient simulation scheme of a finite PT -
symmetric system with LOCC was proposed in Ref. [55].

In addition, when a time-dependent non-Hermitian Hamil-
tonian is considered, Mostafazadeh demonstrated that by
applying a time-dependent metric operator we cannot ensure
the unitarity of the dynamics simultaneously with the observ-
ability of the Hamiltonian as happens in the time-independent
scenario [56,57]. To settle this issue, Fring and Moussa [58]
have proposed to treat the Hamiltonian as a mere generator
of time evolution preserving the unitary dynamics and as-
suming a time-dependent metric, which leads to a distinction
between the observable energy operator and the Hamiltonian
[59]. Recently, it has been shown that these time-dependent
non-Hermitian Hamiltonians can generate squeezed states of
the radiation field with an infinite degree of squeezing in a
finite time interval [60,61], which also can be achieved by
considering a single-mode oscillator modulated by a time-
dependent pure imaginary frequency in applying a quadratic
non-Hermitian Dyson map [62]. These previous results also
lead to an enhancement in the photon production by the
dynamical Casimir effect (DCE) described by a DCE-like
non-Hermitian Hamiltonian [63].

In time-dependent pseudo-Hermitian context, the no-go
theorems are discussed in Ref. [64] in a modified formula-
tion of pseudo-Hermitian quantum mechanics based on the
geometry of Hilbert spaces [65]. Moreover, Fring and Frith
[66] investigated the von Neumann entropy behavior of an in-
teracting PT -symmetric bosonic system, and they verify that
the entropy decays asymptotically to a finite constant value
when the symmetry is spontaneously broken. Frith [67] also
considers a non-Hermitian version of the Jaynes-Cummings
model in which an exotic behavior of the entanglement ap-
pears in the PT -symmetric broken regime.

In this work, we consider a more general Hermitian coun-
terpart embedding both su(1, 1) and su(2) Lie algebras as
done in Refs. [68,69]. We observe that a pseudo-Hermitian
Hamiltonian describing uncoupled modes, modulated by a
time-dependent complex function, can exhibit entanglement
even when the cross operators, typical of the interaction
between modes, are absent. We evaluate the entangle-
ment between two modes by means of the linear entropy
[14]. The nontrivial entanglement between uncoupled modes
comes from the general time-dependent Hermitian Dyson
map, which generates a dynamical inseparable Hilbert space
through which one of the quantum correlations are encoded.
In this context, it is significant to understand the relevance of
the physics following from pseudo-Hermitian Hamiltonians
and its possible applications to quantum information.

This paper is organized as follows. Section II brings a brief
review of the formalism of time-dependent pseudo-Hermitian
Hamiltonian with time-dependent metric, showing how to
build the time-dependent Dyson map to obtain the general
Hermitian counterpart Hamiltonian carrying in a unified form

both su(1, 1) and su(2) Lie algebras. Then, we exactly solve
the time-dependent Schrödinger equation to have a unitary
time-evolution operator. In Sec. III, we consider the sim-
plest pure algebraic case, which can be analyzed exactly. We
present the usual two-mode bosonic realizations of su(1, 1)
and su(2) in Sec. IV, we discuss the cases where we achieve
the maximum entanglement between the modes by means of
the linear entropy. We also present a qualitative discussion
toward a multimode bosonic realization for our approach.
Finally, in Sec. V, we point out our main conclusions.

II. TIME-DEPENDENT NON-HERMITIAN SYSTEM

A. Non-Hermitian approach

It has been shown that a time-dependent non-Hermitian
Hamiltonian operator can generate a unitary time evolution
provided that there are the following two Schrödinger equa-
tions (h̄ = 1) [58]

i∂t |�(t )〉 = Ĥ (t )|�(t )〉, Ĥ (t ) �= Ĥ†(t ), (1a)

i∂t |ψ (t )〉 = ĥ(t )|ψ (t )〉, ĥ(t ) = ĥ†(t ), (1b)

with both states related by means of the time-dependent
Dyson map η̂(t ) defined as

|ψ (t )〉 = η̂(t )|�(t )〉. (2)

Substituting Eq. (2) into the Eq. (1), the Hamiltonian operator
ĥ(t ) can be written in terms of Ĥ (t ) and η̂(t ) in the form

ĥ(t ) = η̂(t )Ĥ (t )η̂−1(t ) + i∂t η̂(t )η̂−1(t ), (3)

which is assumed to be Hermitian in order to generate a
unitary time evolution. Therefore, from the Hermiticity con-
dition on Eq. (3), ĥ†(t ) = ĥ(t ), we obtain the time-dependent
quasi-Hermiticity relation

Ĥ†(t )�̂(t ) − �̂(t )Ĥ (t ) = i∂t�̂(t ), (4)

with �̂(t ) = η̂†(t )η̂(t ) being the time-dependent metric oper-
ator [58]. It ensures the time-dependent probability densities
in the Hermitian and non-Hermitian systems to be related
according to the equation

〈�(t )|�̃(t )〉�̂(t ) = 〈�(t )|�̂(t )|�̃(t )〉 = 〈ψ (t )|ψ̃ (t )〉. (5)

Moreover, the Hermitian and non-Hermitian observables,
respectively represented by ô(t ) and Ô(t ), can be related
through the similarity transformation

ô(t ) = η̂(t )Ô(t )η̂−1(t ), (6)

in which the Dyson operator η̂(t ) appears as the central ele-
ment relating both operators. It also implies on the equality

〈�(t )|Ô(t )|�̃(t )〉�̂(t ) = 〈ψ (t )|ô(t )|ψ̃ (t )〉, (7)

which shows that the equality of the expectation values in
both non-Hermitian and Hermitian approaches. Unlike when
the metric is time dependent, in the case of time-independent
metric operator, the Eqs. (3) and (4) reduce to the forms

ĥ(t ) = η̂Ĥ (t )η̂−1, (8a)

Ĥ†(t ) = �̂Ĥ (t )�̂−1, (8b)
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which means that the Eq. (6) holds, and therefore the Hamilto-
nian operator represents an observable in the quantum system.

In Ref. [59], the authors discuss a remarkable issue arising
from the case of time-dependent metric operator in the Hilbert
space. The non-Hermitian Hamiltonian operator can not be
associated with the observable correspondent to the energy
operator, understood here only as the generator of time evo-
lution. This means that its eigenvalues are not necessarily real
any time. Nevertheless, a non-Hermitian observable related to
the energy operator, H̃ (t ), is defined from Eq. (6) as

H̃ (t ) ≡ η̂−1(t )ĥ(t )η̂(t ) = Ĥ (t ) + iη̂−1(t )∂t η̂(t ), (9)

where H̃ (t ) cannot be called “Hamiltonian,” since it does not
satisfy the Eq. (1).

B. Non-Hermitian Hamiltonian and Dyson map

For our main purpose we consider the non-Hermitian
Hamiltonian operator in the following form:

Ĥs(t ) = 2ω(t )K̂0 + 2α(t )K̂− + 2β(t )K̂+, (10)

where the operator K̂i is used to represent the ith generators
of su(1, 1) or su(2) Lie algebras, which can be written in the
unified form:

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = 2sK̂0. (11)

Here the choice of the parameter s = ±1 determines the cor-
respondent su(2) and su(1, 1), respectively. In the context of
these Lie algebras, we now introduce the Hermitian time-
dependent Dyson map defined in terms of the generators K̂i,
and which has the form

η̂s(t ) = exp[2εsK̂0 + 2μsK̂− + 2μ∗
sK̂+], (12a)

= exp[λsK̂+] exp[ln sK̂0] exp[λ∗
sK̂−]. (12b)

Notice the parameters in both Eqs. (12a)–(12b) are time de-
pendent, and we suppress it in the notation for simplicity. The
Eq. (12b) comes from the Gauss decomposition [70] applied
on Eq. (12a), with λs and s conveniently written in the form

λs = �se−iϕs , (13a)

s = 1 − tanh2 �s

(1 − εs tanh �s/�s)2 , (13b)

with s > 0, and

�s = εs tanh �s/�s

1 − εs tanh �s/�s

|zs|. (14)

In the Eq. (14) the parameter zs = 2μs/εs = |zs|eiϕs is
known to be the free parameter of the map, where we are
assuming the parameter εs as a positive real function and

μs = |μs|eiϕs . Also, we have the parameter �s =√
ε2
s + 4s|μs|2 = εs

√
1 + s|zs|2 such that �s ∈ R by

assumption. Unlike the su(2) case, which does not imply
any constraint to |zs|, the assumption �s ∈ R implies that we
need to consider the additional condition |zs| � 1 for the case
of su(1, 1) Lie algebra.

The Eq. (14) allows us to express the parameter εs in terms
of zs and �s in the form

εs = 1

2
√

1 + s|zs|2
ln

(1 +
√

1 + s|zs|2 )�s + |zs|
(1 −

√
1 + s|zs|2)�s + |zs|

. (15)

Conveniently, we also introduce the real function

χs = −s�2
s − s = −2�s

|zs| − 1, (16)

which simplifies the notation. Also, it allows us to obtain
the modulus of the free parameter |zs| in terms of the time-
dependent parameters �s and s,

|zs| = 2�s

s + s�2
s − 1

. (17)

We only have defined the Dyson map so far, and now we are
able to build the Hermitian counterpart (3).

C. Hermitian counterpart

Since we are considering the structure of the non-
Hermitian Hamiltonian operator in terms of the generators
of the su(2) and su(1, 1) Lie algebras, the operator corre-
spondent to the Hermitian counterpart ĥ(t ), obtained from
the Eq. (3), have to be written in terms of same Lie algebra
generators:

ĥs(t ) = 2Ws(t )K̂0 + 2Us(t )K̂− + 2Vs(t )K̂+. (18)

To determine the explicit form of the coefficients in (18), we
apply the following transformations:

η̂sK̂0η̂
−1
s = s�2

s − χs

s

K̂0 + λ∗
s

s

K̂− + λsχs

s

K̂+, (19a)

η̂sK̂−η̂−1
s = 2sλs

s

K̂0 + 1

s

K̂− − sλ2
s

s

K̂+, (19b)

η̂sK̂+η̂−1
s = 2sλ∗

sχs

s

K̂0 − sλ∗2
s

s

K̂− + χ2
s

s

K̂+, (19c)

together the additional result corresponds to the term involv-
ing the time derivative on the Dyson map appearing in Eq. (9):

∂t η̂sη̂
−1
s = 1

s

(̇s + 2sλ̇∗
sλs)K̂0 + λ̇∗

s

s

K̂−

+ 1

s

(
λ̇ss − ̇sλs − sλ̇∗

sλ
2
s

)
K̂+. (20)

Here like everywhere else, the dot at the top of functions
means time derivative. After simple algebraic manipulations,
we obtain the time-dependent coefficients in the Eq. (18),
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which are written as

Ws(t ) = 1

s

[
ω

(
s�2

s − χs

) + 2s(αλs + βλ∗
sχs)

+ i

2
(̇s + 2sλ̇∗

sλs)

]
, (21a)

Us(t ) = 1

s

[
ωλ∗

s + α − sβλ∗2
s + i

λ̇∗
s

2

]
, (21b)

Vs(t ) = 1

s

[
ωλsχs − sαλ2

s + βχ2
s

+ i

2

(
λ̇ss − ̇sλs − sλ̇∗

sλ
2
s

)]
. (21c)

Notice the obtained Hamiltonian operator from transforma-
tion Eq. (3) is not a Hermitian in general, due to the algebraic
structure of the Dyson mapping. We have to impose the
Hermiticity condition on ĥs(t ), reads as ĥs(t ) = ĥ†

s(t ), which

leads to the following relations:

Ws(t ) = W∗
s (t ), Vs(t ) = U∗

s (t ). (22)

Thus, the Hermiticity condition on ĥs(t ) implies to the Her-
mitian counterpart of the operator (10) the restrictive form

ĥs(t ) = 2Ws(t )K̂0 + 2Us(t )K̂− + 2U∗
s (t )K̂+, (23)

wherein the time-dependent coefficients Ws(t ) and Us(t ):

Ws(t ) = ωR − 2s�s

χs − 1

× [|α| cos (ϕs − ϕα ) − |β| cos (ϕs + ϕβ )], (24a)

Us(t ) = 1

1 − χs

[α − χsβ
∗ + ieiϕs�sωI]. (24b)

Here α = |α|eiϕα , β = |β|eiϕβ and ω = ωR + iωI with ωR and
ωI the real and imaginary part of ω, respectively. The Dyson
map parameters are now constrained to the following set of
coupled nonlinear differential equations:

�̇s = 2

χs − 1

{
[�sωI − |α| sin (ϕs − ϕα )]

(
1 + s�2

s

) + |β| sin (ϕs + ϕβ )
[
s(2χs − 1)�2

s + χ2
s

]}
, (25a)

ϕ̇s = 2ωR − 2

(χs − 1)�s

{|α| cos (ϕs − ϕα )
(
1 + s�2

s

) − |β| cos (ϕs + ϕβ )
(
s�2

s + χ2
s

)}
, (25b)

̇s = 2s

{(
2s�2

s

χs − 1
− 1

)
ωI − 2s�s

χs − 1
[|α| sin (ϕs − ϕα ) − |β|(2χs − 1) sin(ϕs + ϕβ )]

}
, (25c)

which arise due to the Hermiticity conditions expressed in
Eq. (22). Otherwise, we reinforce that the Hamiltonian (23)
is Hermitian for each Dyson map parameter that satisfies the
Eq. (25). Also, as in Refs. [60–62], we refer to zs as being
the only free parameter determining the Dyson map, with �s,
ϕs, and s coming from the set of coupled equations (25),
and εs coming from Eq. (15). This implies that a given
pair (|zs|, �s) must be further corroborated by a real and
positive εs.

The results described up to Eq. (21) were obtained in
Refs. [68,69] for which the authors just considered the sim-
plest case Vs(t ) = Us(t ) = 0. On the other hand, we have
imposed more general conditions (22) to achieve the Her-
miticity of ĥs(t ). Furthermore, notice that for the case of the
su(1, 1) Lie algebra, our results reproduce exactly the same
obtained in Refs. [60,61,71], where the authors considered
the one-mode realization of the Lie algebra, which reinforces
the fact that the Hermitian counterpart is independent of the
Lie algebra realization, such as in the time-independent case
treated in Ref. [72].

D. Time evolution

The first step in studying the dynamic behavior of the
system described by the non-Hermitian Hamiltonian oper-
ator (10) was given by obtaining the associated Hermitian
Hamiltonian operator (23) by means of the time-dependent
Dyson mapping. From now on, our discussion concerns the
procedure for solving the Schrödinger equation (1b). For this
purpose, we follow a similar strategy adopted in Ref. [73],

whereby we have to consider the transformation

|ψs(t )〉 = Ŝs(t )|ψ̃s(t )〉, (26)

with the unitary operator Ŝs(t ) defined as follows:

Ŝs(t ) = exp[ξs(t )K̂+ − ξ ∗
s (t )K̂−]. (27)

In Eq. (27) the time-dependent parameter ξs(t ) = rs(t )eiφs(t )

with rs(t ), φs(t ) real functions and rs(t ) � 0. By substituting
the Eq. (26) into Eq. (1b), we obtain the Schrödinger equa-
tion for the vector state |ψ̃s(t )〉

i∂t |ψ̃s(t )〉 = Ĥs(t )|ψ̃s(t )〉, (28)

for which the transformed Hamiltonian reads

Ĥs(t ) = Ŝ−1
s ĥsŜs + i∂t Ŝ

−1
s Ŝs. (29)

After straightforward calculations, the transformed Hamilto-
nian Ĥs reduces to

Ĥs(t ) = 2�s(t )K̂0, (30)

with

�s = Ws − 2
√−s|Us| tanh (

√−srs) cos (φs + ϕUs
), (31)

and the parameters rs and φs having to satisfy the set of
coupled differential equations

ṙs = −2|Us| sin (φs + ϕUs
), (32a)

φ̇s = −2Ws − 4
√−s|Us| coth (2

√−srs) cos (φs + ϕUs
),

(32b)
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where we have adopted the polar form Us = |Us|eiϕUs . There-
fore, the formal solution of Eq. (28) becomes

|ψ̃s(t )〉 = R̂s(t )|ψ̃s(0)〉, (33)

in which R̂s(t ) is defined as

R̂s(t ) = exp[−2i�̃s(t )K̂0], (34)

with the time-dependent function �̃s(t ) = ∫ t
0 dτ�s(τ ). Fi-

nally, the formal solution to Eq. (1b) reads

|ψs(t )〉 = ûs(t )|ψs(0)〉, (35)

where the unitary time-evolution operator ûs(t ) is given by

ûs(t ) = Ŝs(t )R̂s(t )Ŝ†
s(0). (36)

Furthermore, the solution of Schrödinger equation (1a)
becomes

|�s(t )〉 = η̂−1
s (t )ûs(t )|ψs(0)〉

= η̂−1
s (t )ûs(t )η̂s(0)|�s(0)〉, (37)

from where we identify the time-evolution operator Ûs(t ) as

Ûs(t ) = η̂−1
s (t )ûs(t )η̂s(0). (38)

After discussing the formal apparatus establishing the connec-
tion between non-Hermitian aspects of the system dynamics
with its Hermitian counterpart, we are able to analyze any
cases associated with the Hamiltonian operator (10) without
considering the algebra realization.

III. K̂0 CASE

The simplest model associated with the non-Hermitian
Hamiltonian (10) is obtained assuming the time-dependent
coefficients α(t ) = β(t ) = 0, such that the Hamiltonian op-
erator has the form

Ĥs(t ) = 2ω(t )K̂0. (39)

The correspondent Hermitian counterpart (23) becomes

ĥs(t ) = 2ωRK̂0 + 2i
�sωI

1 − χs

[eiϕs K̂− − e−iϕs K̂+], (40)

wherein the time-dependent coefficients from Eq. (24) read
Ws(t ) = ωR and Us(t ) = ieiϕs�sωI/(1 − χs). The time-
dependent Dyson map parameters given by Eq. (25) reduce
to the following forms:

�̇s = 2�s

(
1 + s�2

s

)
χs − 1

ωI, (41a)

ϕ̇s = 2ωR, (41b)

̇s = 2s

(
2s�2

s

χs − 1
− 1

)
ωI. (41c)

The solutions of these set of differential equations are given
by

�s(t ) = �s(0)
s(0) + s�2

s(0) + 1

s(0) + [
s�2

s(0) + 1
]
e2

∫ t
0 dτωI (τ )

, (42a)

ϕs(t ) = ϕs(0) + 2
∫ t

0
dτωR(τ ), (42b)

s(t ) = s(0)
s�2

s(t ) + 1

s�2
s(0) + 1

e−2
∫ t

0 dτωI (τ ), (42c)

whereas the modulus of the free parameter zs becomes com-
pletely defined by the Eq. (17).

In order to obtain the time evolution of the quantum
system, we have to solve the set of differential equations ex-
pressed in Eq. (32). For this purpose, notice that

Us(t ) = |Us|eiϕUs = −i
�s

χs − 1
ωIe

iϕs ,

leads to the identities

|Us| cos ϕUs
= �sωI

χs − 1
sin ϕs, (43a)

|Us| sin ϕUs
= − �sωI

χs − 1
cos ϕs, (43b)

which allows us to rewrite Eq. (32) as

ṙs = 2�s

χs − 1
ωI cos (ϕs + φs), (44a)

φ̇s = −2ωR − 4
√−s�sωI

χs − 1
coth (2

√−srs) sin (ϕs + φs).

(44b)

A considerable simplification is brought for Eqs. (43) if we
assume that

ϕs = lπ − φs, (45)

which implies in the maximum rate of change in time of the
function rs for a given Us. Furthermore, from the Eq. (41a),
we obtain the following equality:

2�s

χs − 1
ωI = �̇s

1 + s�2
s

,

which leads to the simpler set of differential equations

ṙs = (−1)l �̇s

1 + s�2
s

, (46a)

φ̇s = −2ωR. (46b)

We note that both equations in Eq. (46) become uncoupled,
and they can be directly integrated obtaining the solutions in
the form

rs(t ) = rs(0) + (−1)l

2
√−s

ln
�s(t )

�s(0)
, (47a)

φs(t ) = lπ − ϕs(0) − 2
∫ t

0
dτωR(τ ), (47b)
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with the function �s(t ) reading

�s(t ) = 1 + √−s�s(t )

1 − √−s�s(t )
. (48)

The integer l can be chosen in order to make rs > 0 every
time. Furthermore, to determine the unitary time-evolution
operator in Eq. (36), we still have to calculate the parameter
�s(t ) given in Eq. (31), which yields

�s(t ) = ωR, (49)

under the previous assumptions. Although rs(t ) seems to be
a complex function when s = 1, straightforward calculations
show that the complex logarithm may be rewritten in terms
of the arc-tangent multivalued real function. These solutions
are similar to those obtained in Ref, [62] by considering the
single-mode realization of su(1, 1), and correspond to the
well-known time-dependent Swanson oscillator with a pure
imaginary time-dependent frequency (ωR = 0). The authors
devise this kind of system by taking into account an oscillator
with a strongly parametric quadratic pumping.

As mentioned before, we reinforce that the obtained so-
lutions up to this point in our discussion are independent of
the Lie algebra realizations. Focusing our interest on the en-
tanglement occurring in the non-Hermitian scenario, in what
follows, we consider the two-mode bosonic realizations of
Lie algebras, and make a qualitative discussion on how to
generalize our investigation to the multimode noninteracting
case.

IV. TWO UNCOUPLED MODES AND ENTANGLEMENT

The su(1, 1) and su(2) Lie algebras have immediate rele-
vance on issues concerning the nonclassical properties of light
in the context of quantum optics [74–76]. For instance, Lie-
group-theoretical approach is applied to analyze SU (1, 1) and
SU (2) interferometers in Ref. [77]. Also, the bosonic realiza-
tions of su(1, 1) are applied to describe the (non)degenerate
parametric amplifier [5,6,78,79], while beam splitters [7,8,80]
are described by means of the su(2) Lie algebra. Impor-
tant results concerning the multimode bosonic realizations of
Lie algebras are obtained, which are relevant for generalized
coherent states [81–84]. In what follows, we restrict our anal-
ysis to the usual two-mode bosonic realizations of the three
elements of su(1, 1) and su(2) as defined, for example, in
Ref. [85].

As a measure of entanglement, the linear entropy is deter-
mined from

Ss(t ) = 1 − Tr
[
ρ̂ (1)
s (t )

]2
, (50)

with ρ̂
(1)
s (t ) being the reduced density matrix for the first

mode, which is obtained by the sum over all the degree of
freedom of second mode, i.e., ρ̂

(1)
s (t ) = Tr2|ψs(t )〉〈ψs(t )|. In

fact, it corresponds to an approximation of the well-known
von Neumann entropy [14].

In addition, hereafter, we adopt the following notation:
when we make explicit the s value, rather than use the sub-
script s = ±1 in functions and operators we index them by
the minus or plus (− or +) in according to the sign of s.

A. su(1, 1) entanglement

We have the elements of su(1, 1) related with the bosonic
operators âi and â†

j , which satisfy the Weyl-Heisenberg alge-
bra [86],

[âi, â j] = [â†
i , â†

j ] = 0, [âi, â†
j ] = δi j . (51)

The relations are written as [74,85]

K̂0 = 1
2 (â†

1â1 + â†
2â2 + 1), (52a)

K̂†
+ = K̂− = â1â2, (52b)

and it is just the well-known realization commonly applied on
description of the two-mode squeezing of light fields [75].

For our purpose, we consider the initial separable two-
mode vacua state |ψ−(0)〉 = |0, 0〉 for which the condition
r−(0) = 0 is true, and for which the Eq. (35) provides

|ψ−(t )〉 = e−i�̃−

cosh r−

∞∑
n=0

einφ− tanhn r−|n, n〉, (53)

and the reduced density matrix becomes

ρ̂
(1)
− (t ) =

∞∑
n=0

tanh2n r−
cosh2 r−

|n〉〈n|, (54)

and the correspondent linear entropy (50) is given by

S−(t ) = 1 − sech[2r−(t )]. (55)

From the Eq. (55) we see that the entanglement is zero
when r−(t ) = 0, which is true for the initial state |ψ−(0)〉 =
|0, 0〉. The enhancement of the entanglement is always ver-
ified whenever the value of r−(t ) increases in time, and we
note that the maximum entanglement occurs with infinite
squeezing, which seems to be possible as recently demon-
strated by Dourado and coworkers [62]. According to them,
an infinite squeezing into a finite time interval is possible, for
the bosonic one-mode realization of su(1, 1), by considering
a time-dependent pure imaginary frequency generated by a
strong parametric pumping. Since the results represented in
Eqs. (42) and (47) are independent of the realization, our
solutions correspond to their ones by applying the change
�−(t ) → −�−(t ) for all the results, and taking l = 1 at
Eq. (47a).

Let us consider the imaginary part of complex frequency
being linear in time such that

ωI(t ) = γ 2t . (56)

In what follows, we examine the validity of time-dependent
Dyson map parameters expressed in (42) under the above
imaginary part of frequency by changing �− → −�− in all
previous results. Actually, this transformation is just conve-
nient for recovering the results obtained in Ref. [62]. Further,
the authors demonstrated that there is a region where the mod-
ulus of the free parameter exceeds the unity. In this region,
the Hermitization process fails since we assume initially the
condition |z−(t )| � 1.

In order to perform a more rigorous analysis, we verify
that the modulus of free parameter |z(t )| becomes equal to
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0 1 2
0

1

γt

|z −
(t

)|

γT

FIG. 1. The modulus of free Dyson map parameter |z−(t )| in
the dimensionless time γ t with γ = 1/2 s−1 for the initial values
�−(0) = 102 and −(0) = 10−2. We evaluate the time evolution
until the dimensionless time γ T ≈ 2.15.

the unity at two different times, namely, T± given by

T± = 1

γ

√
ln

[
�−(0) − −(0)

�−(0) ± 1

]
, (57)

and then we calculate the time T at which the maximum value
of |z−(t )| occurs by solving the equation

d|z−(t )|
dt

∣∣∣∣
t=T

= 0.

It provides

T =
√

2

2

√
T 2− + T 2+, (58)

and at this time, the free parameter can be read as

|z−(T )| =
1 − −(0)

�2−(0)
− 1

�2−(0)√[(
1 − −(0)

�2−(0)

)2 − 1
�2−(0)

][
1 − 1

�2−(0)

] , (59)

by considering �−(0) > 0. It implies to set �2
−(0) −

−(0) � 1 to guarantee |z−(T )| � 0. If �−(0)  1, we can
neglect terms of order O[1/�2

−(0)], and then Eq. (59) reduces
to

|z−(T )| ≈ 1. (60)

Just as expected under these considerations, we note that both
times T± becomes approximately equal to T . In other words,
we have the approximation

T ≈ T± ≈ 1

2

√
ln

[
�−(0) − −(0)

�−(0)

]
. (61)

Then, we numerically check the previous approximations to
|z−(T )| in Fig. 1, by plotting the modulus of the free pa-
rameter |z−(t )| in the dimensionless time scale γ t with γ =
1/2 s−1 assuming the initial values for the Dyson map param-
eters �−(0) = 102 and −(0) = 10−2. Whereas Fig. 2 shows
the Dyson map parameters �−(t ) and −(t ) in the dimension-
less time scale γ t assuming the same parameters set in Fig. 1.
As the time goes to T , we have �−(T ) � 1 and −(T ) � 0.
At the initial time, the Dyson map parameters in Eq. (12a)
assume the values ε−(0) ≈ 11.52 and μ−(0) ≈ 0.12 eiϕ−(0).

0 1 2
0

102

γt

Φ
−

(t
)

(a)

γT

0 1 2
0

10−2

γt

Λ
−

(t
)

(b)

γT

FIG. 2. The Dyson map parameters (a) �−(t ) and (b) −(t )
against the dimensionless time γ t with γ = 1/2 s−1 for the initial
values �−(0) = 102 and −(0) = 10−2. We evaluate the time evolu-
tion until the dimensionless time γ T ≈ 2.15.

Notice that both parameters are needed to engineering the
initial state |�−(0)〉 = η̂−1

− (0)|0, 0〉 necessary to achieve the
infinite squeezing. Additionally, in face of our assumptions,
�−(0)  1, our results are in completely agreement to the
analysis done in Refs. [60–62].

Furthermore, as mentioned before, in according to Eq. (55)
the maximum entanglement occurs in the limit r−(t ) → ∞,
and therefore, from Eq. (47a) with l = 1, we see this happens
exactly at t = T+ expressed in Eq. (57). Nevertheless, T+ can
be approximated to T as given by Eq. (61) by considering
�−(0)  1. In Fig. 3, we plot the linear entropy (55) in the
dimensionless time scale γ t assuming the same parameters
of the earlier plots. Additionally, we also plot the degree of
squeezing r−(t ) in the inset at Fig. 3, in which we observe the
further squeeze the state is, the greater entanglement measure
between modes becomes. In our case, the degree of squeezing
tends towards the infinite, and the linear entropy approximates
to its maximum value, which corresponds to the unity.

B. su(2) entanglement

The su(2) Lie algebra can be expressed in terms of two
bosonic operators as follows [85,87]:

K̂0 = 1
2 (â†

1â1 − â†
2â2), (62a)

K̂+ = K̂†
− = â†

1â2, (62b)
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0 1 2
0

1

γt

S −
(t

)

0 1 2
0

3

γt

r −
(t

)

γT

γT

FIG. 3. The linear entropy S−(t ) against the dimensionless time
γ t with γ = 1/2 s−1 for the initial values �−(0) = 102 and −(0) =
10−2. Also, we plot the degree of squeezing r−(t ) in the inset. The
critical dimensionless time at which the degree of squeezing diverges
is given by γ T ≈ 2.15.

which is nothing but Schwinger’s representation of angular
momentum. In the unitary representation of the Lie algebra
previously assumed, the total number n of bosons in the sys-
tem is constant. The vacuum state is understood as the state
with no boson in mode 1 and n = 2 j bosons in mode 2 with
j = 0, 1

2 , 1, 3
2 , · · · meaning that |ψ+(0)〉 = |0, n〉, such that

K̂−|0, n〉 = 0, for which we have assumed r+(0) = 0. Under
these conditions, the time-evolved state in Eq. (35) reduces to

|ψ+(t )〉 = ζn cosn r+
n∑

k=0

C
1
2

n,keikφ+ tank r+|k, n − k〉, (63)

where ζn = exp [in�̃+] is a time-dependent global phase fac-
tor while Cn,k = (n

k

)
the binomial coefficient.

Similarly as done before for the case of the SU (1, 1), we
start from the reduced density matrix for the first mode written
as

ρ̂
(1)
+ (t ) =

n∑
k=0

Cn,k tan2k r+
[1 + tan2 r+]n

|k〉〈k|, (64)

for which the correspondent linear entropy S+(t ) is given by

S+(t ) = 1 − cosn(2r+)Pn

[
1 + cos2(2r+)

2 cos(2r+)

]
, (65)

determined in terms of the Legendre polynomial Pn(·). Note
that while for the SU (1, 1) the linear entropy depends on
the hyperbolic functions on r−, for the case of SU (2) the
dependence occurs in terms of polynomial forms on the
trigonometric functions, evidencing the periodic behavior of
the entropy in time. Moreover, it can be verified that, for
a given n, the maximum entanglement measure occurs for
r+ → π/4 + 2kπ with k ∈ Z. At this limit, the linear entropy
(65) reduces to

Smax
+ = 1 − �

(
n + 1

2

)
√

πn!
. (66)

We see the entanglement measure has a direct dependence on
the total number n of bosons, and it goes to the maximum

0 100
0

1

n

Sm
a
x

+

FIG. 4. The linear entropy in function of the total number n of
bosons when r+ = π/4. Each point corresponds to the maximum
entanglement measure for a given n. In this case, the linear entropy
approximates to unity in the limit n → ∞. The black diamonds are
use to indicate the cases plotted as function of time in Fig. 7.

value Smax
+ = 1 when n → ∞. This dependence on n is plot-

ted in the Fig. 4.
Here, we also restrict our analysis to the linear imaginary

part ωI(t ) given by Eq. (56). Thus, before analyzing the pos-
sibility of achieving the maximum entanglement as done for
the SU (1, 1) case, we investigate the Dyson map parameters.

From Eq. (17), we can obtain the time at which the mod-
ulus of the free parameter goes to its upper limit, which
corresponds to |z+(t )| → ∞. We have this happen when the
following condition is complied:

�2
+(T ) = 1 − +(T ), (67)

for 0 < +(T ) � 1, where we are supposing it is achieved at
the time instant T , which is given by

T = 1

γ

√√√√√√1

2
ln

⎡
⎢⎣�2+(0)

(
1 + +(0)

�2+(0)

)2
+ 1

�2+(0)

1 + 1
�2+(0)

⎤
⎥⎦. (68)

In fact, T represents the largest time in which the Dyson map
(12a) can Hermitize the non-Hermitian Hamiltonian through
the relation expressed in Eq. (3). The behavior of the free
Dyson map parameter |z+(t )| is represented in the Fig. 5.

We can suppose the function r+(t ) → π/4 at the time t =
T ′, such that

lim
t→T ′

r+(t ) = π

4
,

which is achieved when the following equation holds:

T ′ = 1

γ

√√√√√ln

⎡
⎣�+(0)

1 + 1
�+(0) + +(0)

�2+(0)

1 − 1
�2+(0)

⎤
⎦, (69)

by assuming r+(T ) = π/4 and l = 1 in Eq. (47a). Addition-
ally, if we consider �+  1 and + � 1, we can neglect
terms of order O[1/�−(0)]. So that, under these assump-
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0 1 2
0

5

γt

|z +
(t

)|

γT

FIG. 5. The modulus of free Dyson map parameter |z+(t )| in
the dimensionless time γ t with γ = 1/2 s−1 for the initial values
�+(0) = 102 and +(0) = 10−2. We evaluate the time evolution
until the dimensionless time γ T ≈ 2.15.

tions, both times T and T ′ expressed into Eqs. (68) and
(69), respectively, become approximately equal to each other,
and then

T ≈ T ′ ≈ 1

γ

√
ln �+(0). (70)

Therefore, there are no inconsistencies occurring in time
evolution of the Dyson map parameters as can be seen
numerically in the Fig. 6. For these plots, we consider a
dimensionless time scale γ t with γ = 1/2 s−1, and the ini-

0 1 2
0

102

γt

Φ
+
(t

)

(a)

γT

0 1 2
0

10−2

γt

Λ
+
(t

)

(b)

γT

FIG. 6. The Dyson map parameters (a) �+(t ) and (b) +(t )
against the dimensionless time γ t with γ = 1/2 s−1 for the initial
values �+(0) = 102 and +(0) = 10−2. We evaluate the time evolu-
tion until the dimensionless time γ T ≈ 2.15.

0 1 2
0

1

γt

S +
(t

)

n = 1

n = 10

n = 100

0 1 2
0

π
4

γt

r +
(t

)

γT

γT

FIG. 7. For n = 1 (solid line), n = 10 (dashed line), and n = 100
(dotted line), we plot the linear entropy S+(t ) against the dimension-
less time γ t with γ = 1/2 s−1 for the initial values �+(0) = 102

and +(0) = 10−2. The dimensionless time at which the maximum
entanglement occurs is γ T ≈ 2.15. The black diamonds on the max-
imum values of entropy are used to indicate the correspondent value
at the plot in Fig. 4 by the same symbols.

tial time Dyson map parameters �+(0) = 102 and +(0) =
10−2. Moreover, the time-dependent Dyson map parameters
ε+(t ) and |μ+(t )| = ε+(t )|z+(t )|/2 can be obtained from
Eqs. (15) and (17). Both parameters are needed to engi-
neering the initial state |�+(0)〉 = η̂−1

+ (0)|0, n〉 necessary to
achieve the maximum entanglement value. Thus, at the ini-
tial time, the parameters of Dyson map ε+(0) ≈ 11.51 and
μ+(0) ≈ 0.12 eiϕ+(0).

Furthermore, at the time T given by Eq. (70), r+(T ) ≈ π/4
under the previous approximations. This value corresponds to
the maximum entanglement measure for a given n, expressed
in Eq. (65). The behavior of the linear entropy (65) is plotted
in the dimensionless time scale γ t with γ = 1/2s−1 in Fig. 7,
together with the parameter r+(t ) in the inset. We observe the
further r+ approximates to π/4, more the linear entropy goes
to its maximum value dependent on n, as expressed in Eq. (66)
and illustrated in Fig. 4. We indicate by big diamonds in Fig. 4,
the correspondent cases analyzed in Fig. 7.

C. Towards a generalization: Multimode realizations

Our analysis can be generalized to the multimode bosonic
realizations of both Lie algebras. For instance, we can con-
sider the multimode bosonic realizations proposed by Lo and
coworkers in Refs. [81–84]. It is clear that the mapping be-
tween non-Hermitian and Hermitian representations through
the time-dependent Dyson map remains the same as discussed
until Sec. III, see Eqs. (39) and (40). From Refs. [81–84], the
su(1, 1) multimode bosonic realization reads as

K̂0 =
N∑

i, j=1

Ki j (2â†
i â j + δi j ),

K̂+ = K̂†
− = 1

2

N∑
i, j=1

ki j â
†
i â†

j ,
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for which the equalities Ki j = K∗
ji and ki j = k ji are verified.

They arise from the commutation relations in Eq. (11) with
s = −1 that require

Ki j = 1

4

N∑
k=1

kikk∗
k j,

ki j =
N∑

k,l=1

kikk∗
klkl j .

In addition, the su(2) multimode bosonic realization can be
written as

K̂0 =
N∑

i, j=1

Ji j â
†
i â j,

K̂+ = K̂†
− =

N∑
i, j=1

ϑi j â
†
i â j .

Due to the commutation relations in (11) with s = 1, the
following conditions must hold:

Ji j = 1

2

N∑
k=1

(ϑikϑ
∗
jk − ϑ∗

kiϑk j ),

ϑi j =
N∑

k=1

(Jikϑk j − ϑikJk j ).

Therefore, we can develop a similar analysis to character-
ize entanglement between uncoupled modes by setting the
representations in which the K̂0 operator is composed only
by uncoupled modes K̂0 ∝ â†

k âk , while the K̂+ = K̂†
− ∝ â†

j â
†
k

or K̂+ = K̂†
− ∝ â†

j âk with j �= k for the su(1, 1) and su(2),
respectively. The computation of the multipartite entangle-
ment measure is not an easy task, although it is possible to
investigate the existence of entanglement through multipartite
entanglement criteria as proposed by Hillery et al. in Ref. [20].
Also, bipartite multimode entanglement measures can be ana-
lyzed by means of the linear entropy of each bipartition.

V. CONCLUSION

In summary, we obtained the explicit solutions for Dyson
map and time-evolution operator without mentioning the Lie
algebras realization. In what follows, we note that there is no
apparent interaction between the modes in the non-Hermitian
Hamiltonian (39), when we look from the point of view of
conventional quantum mechanics and its trivial Hilbert space
metric. Nevertheless, the Hermitization procedure applied to
(39) consists in defining a nontrivial dynamical metric that
leads to a Hermitian counterpart (40), in which the interac-
tion between the two modes becomes evident, and quantum
correlations such as entanglement can exist in this case. The
key point in this discussion is that non-Hermitian Hamiltonian
operators describing a noninteracting two-modes system can
induce quantum correlations such as entanglement between
the modes due to non-Hermiticity only.

Basically, we presented a time-dependent non-Hermitian
Hamiltonian embedding the generators of SU (1, 1) and SU (2)
Lie groups in a unified form. By applying the Ansatz of

time-dependent Dyson map and metric operator described
by the same algebraic structure, we verify that the Hermi-
tian counterpart also exhibits a SU (1, 1) or SU (2) dynamical
symmetries. So that, the Hermitian counterpart becomes in-
dependent of the algebra realization, as demonstrated in
Ref. [72] for the time-independent Swanson model. Further-
more, the obtained Hermitian counterpart (23) reduces to that
one studied in Refs. [68,69] by setting Us = Vs = 0 rather
than the general assumptions read in (22). Nevertheless, these
more general constraints have allowed us to derive a nontrivial
result, from which a non-Hermitian system with a nonappar-
ent interacting term exhibits entanglement, which is verified
by mapping on its Hermitian counterpart. In terms of two-
mode Lie algebra realizations, we show that the uncoupled
non-Hermitian Hamiltonian (39) has a Hermitian counter-
part (40) in which the modes are coupled, and it leads to
a nontrivial entanglement only due to the time-dependent
complex frequency: which may be seen as a metric-dependent
entanglement. The nontrivial dynamical Hilbert space metric
allows us to correlate quantum systems even in the absence of
interaction terms in non-Hermitian Hamiltonian. It happens
due to the generality of the Hermitian Dyson map structure
(12a), which makes the metric to be nonlocal depending
on the choice of parameters. We investigated, for both Lie
algebras, the case where the non-Hermiticity is given by a
frequency ω(t ) = ωR(t ) + iγ 2t , also considering the transfor-
mation �− → −�− for comparison to the results obtained
in Ref. [62]. Our investigations showed that the maximum
entanglement measure by means of linear entropy is achieved
at a finite time interval T given by Eqs. (61) and (70), from
which we can write T ≈ (1/γ )

√
ln �± by assuming �±  1,

and neglecting the terms proportional to ±/�± � 1.
Although the authors in Ref. [88] argued that descriptions

of two interacting subsystems are possible if and only if the
metric operator of the compound system can be obtained as a
tensor product of positive operators on component spaces. We
believe this statement is too restrictive and not necessary since
the Dyson map is, in general, not unique and it may lead to
a wide class of nontrivial metrics associated with the Hilbert
space. Furthermore, the interpretation of non-Hermitian quan-
tum systems (with nontrivial metric operators in their Hilbert
spaces) is made by mapping the problem to locally Hermi-
tian ones with a standard trivial metric, which allows a clear
description of dynamics.

Thus, the algebraic structure of quantum mechanics al-
lows us to go towards generalizations of many interesting
mathematical structures and the physical phenomena asso-
ciated with them. In what concerns non-Hermitian quantum
mechanics, the algebraic language seems to play a key
role in understanding the physical aspects of non-Hermitian
physics, once the Hermiticity is closely related to the ge-
ometry of Hilbert space encoded in its metric. For instance,
in Ref. [48] was shown that a deformed algebra applied to
the study of Dirac oscillator leads to a natural map of the
relativistic system in the non-Hermitian version of the well-
known Jaynes-Cummings optical model. The symmetrical
approaches may be useful tools to understand non-Hermitian
effects, which are naturally explained by a duality between
non-Hermitian models in flat spaces and their counterparts,
which could be Hermitian, in curved spaces [89]. In this
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regard, the SU (1, 1) and SU (2) Lie groups and their corre-
spondent algebras may provide future investigation towards
hyperbolic and spherical spaces [90], and their nonstationary
generalizations.

In conclusion, our work may contribute to the theoretical
progress of time-dependent non-Hermitian quantum systems
in the context of compound systems to bring possibilities of
applications in quantum information areas, many-body quan-
tum physics, and also for improving our understanding of the
mathematical structure of quantum mechanics. Although en-
gineering effective non-Hermitian Hamiltonians seems to be
a feasible task by considering continuous measurements and
postselection [91], or even through adiabatic elimination tech-
niques [92,93], we believe the most intriguing non-Hermitian
phenomena in closed quantum systems are encoded at the
nontrivial Hilbert space metrics, and engineering them is still
a challenge. Recent discussions about curving Hilbert space
as done in Refs. [89] also point to this fact. Perhaps the

experimental breakthroughs of curved spaces in nanophotonic
structures [94,95], in which curved spaces may be designed,
might shed light on future investigations in this subject to
pave the way to build nontrivial geometries embracing the
non-Hermitian physics.
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