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Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted
by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where
the kernel involves quantum states, and the Gram matrix is calculated from the overlap between these states.
With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we
investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-
Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase
damping channels to create our quantum data set. We elaborate on different kernel functions to map the data
and kernel circuits to compute the overlap between quantum states. We show that our models deliver accurate
predictions that are comparable with the fully classical models.

DOI: 10.1103/PhysRevA.107.022402

I. INTRODUCTION

During the last decades we have witnessed the rapidly
growing fields of artificial intelligence (AI) and quantum
computing (QC). The basis for AI and QC were developed
in the past century. However, now this knowledge is widely
available for research, business, and health, among others.
AI aims to provide machines with human-like intelligence.
From the very beginning, AI has been conceived in differ-
ent ways, leading to the development of different branches,
known as machine learning (ML) [1–3], deep learning [4],
and reinforcement learning [5]. ML is based on statistical
learning, where the machine learns from data that has already
been labeled (supervised learning) or from unlabeled data
(unsupervised learning). In recent years, supervised learning
has undoubtedly impacted physics [2,3,6]. In particular, it
is known for unraveling patterns from data sets that yield
quantum phase transitions [7,8].

Quantum computing is also at the forefront of current tech-
nologies. Research groups have delivered highly functional
and fault-tolerant quantum algorithms encompassing a wide
variety of systems, including superconducting qubits [9,10],
trapped ions [11], cold atoms [12], photonics [13,14], and
color centers in diamond [15]. In the last years, quantum
computers have pushed further the boundaries of physics,
chemistry, biology, and computing itself, with groundbreaking
achievements in the simulation of novel materials [16] and
molecules [9,13,17,18] and in designing algorithms towards
quantum supremacy [10,19] and quantum machine learning
[20–40].

Among the main obstacles to be overcome in the devel-
opment of quantum technologies is the interaction of the
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quantum system with the environment. This interaction dis-
turbs the quantum state and, in general, can be divided into
two types of processes: Markovian and non-Markovian [41].
Non-Markovian processes are those in which memory effects
are taken into account, and their importance can be noted
in several processes and protocols such as state teleportation
[42], quantum metrology [43], and even in current quan-
tum computers [44]. In this paper we use quantum machine
learning to determine the degree of non-Markovianity of a
two-time quantum process [45], i.e., a quantum channel. We
focus on kernel-based machine learning models to learn from
quantum states. Our results show that the quantum computer
can create the data set, but also treat and learn from it, provid-
ing feedback on the very process in which it is involved.

The paper is organized as follows. In Sec. II, we intro-
duce two quantum machine learning models based on kernels,
namely, quantum support vector machine and quantum kernel
ridge models. The goal of these models is to estimate the
degree of non-Markovianity from a data set made of quan-
tum states. Furthermore, we elaborate on the performance
of the models based on three different kernel functions and
four different kernel circuits to measure the overlap between
two quantum states. All these possible combinations yield
different Gram matrices. In Sec. III, we introduce the digital
quantum simulation approach that we followed to describe
the evolution of the system in amplitude damping and phase
damping channels. In Sec. IV, we show our main results
regarding the prediction of the degree of non-Markovianity.
In Sec. V, we deliver the final remarks of this work.

II. KERNEL-BASED MACHINE LEARNING MODELS

Quantum machine learning aims to perform machine
learning tasks assisted by a quantum computer. In
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recent years, different implementations have been addressed,
including variational quantum circuits [46–48], quantum
nearest-neighbor methods [21], and quantum kernel methods
[20,23,35]. The latter naturally appears in models that
support a kernel function to represent the data into a feature
space. Two well-understood examples are the support vector
machine (SVM) and the kernel ridge regressor (KRR) models.
Their extension to the quantum domain via a precomputed
kernel is straightforward. Then, one could think of the kernel
as a function (that in our case results from a quantum circuit)
that we pass to the ML model to improve the learning
process. Next, we describe the SVM and KRR models and
their connection with the kernel.

A. Support vector machine

One of the most broadly used models in ML is support
vector machines (SVM) [49]. This model can be used for
classification [50,51] and regression [49,52,53] tasks. The
former gives rise to an intuitive representation that relies on
a hyperplane that splits the data set into different classes.
Therefore, predicting the label of unknown data only depends
on where the data samples fall regarding the hyperplane. In
general, other models also use a hyperplane. However, the
SVM sets the maximum margin, i.e., maximizing the distance
between the hyperplane and some of the boundary training
data, which are the data samples close to the edge of the class.
These particular samples are known as support vectors (SVs).
Since SVs are a subset of the training data set, this model is
suitable for situations where the number of training data sam-
ples is small compared to the feature vector’s dimension. Once
the model has fitted the training data set, it can be used as a
decision function that predicts new samples, without holding
the training data set (eager learning algorithm) in memory. In
this work we will focus on a regression task, which predicts a
real number rather than a class. In what follows, we briefly
describe the mathematical formulation of the optimization
problem. More details can be found in Ref. [54].

SVM delivers the tools for finding a function f (�x) that fits
the training data set {�xi, yi}, where �xi ∈ Rd are the feature
vectors with dimension d , and yi ∈ R are the corresponding
labels. Note that i runs over the number of training samples
(i = 1, 2, . . . , l). We begin with the linear function f (�x) =
�w · �x + b, with �w ∈ Rd and b ∈ R being fitting parameters.
We shall discuss the case of nonlinear separable data later on.
For ε-SVM [49], deviations of f (�x) from the labeled data (yi)
must be smaller than ε, i.e., | f (�x) − yi| � ε. Moreover, we
must address the model complexity as given by the l2-norm
‖ �w‖2, and the tolerance for deviations ξi, ξ

∗
i (slack variables)

larger than ε, that are weighted by C > 0. Therefore, the
optimization problem can be stated as [1,49,53]

minimize 1
2‖ �w‖2 + C

∑
i (ξi + ξ ∗

i )

subjected to

⎧⎨
⎩

yi − �w · �xi − b � ε + ξi

�w · �xi + b − yi � ε + ξ ∗
i

ξi, ξ
∗
i � 0

. (1)

One can solve this problem introducing the Lagrange
multipliers αi, α

∗
i , ηi, η

∗
i � 0, with the Lagrangian defined as

[49,52,53]

L = 1

2
‖ �w‖2 + C

∑
i

(ξi + ξ ∗
i ) −

∑
i

(ηiξi + η∗
i ξ

∗
i )

−
∑

i

αi(ε + ξi − yi + �w · �xi + b)

−
∑

i

α∗
i (ε + ξ ∗

i + yi − �w · �xi − b). (2)

From the vanishing partial derivatives ∂bL, ∂wL, ∂ξ L, and
∂ξ∗L the optimization problem can be recast as

maximize

{− 1
2

∑
i, j (αi − α∗

i )(α j − α∗
j )〈xi, x j〉

−ε
∑

i(αi + α∗
i ) + ∑

i yi(αi − α∗
i )

subjected to

{∑
i(αi − α∗

i ) = 0
αi, α

∗
i ∈ [0,C] . (3)

For convenience, we have written the dot product as an in-
ner product, 〈xi, x j〉 = �xi · �x j . From ∂wL = 0 we find �w =∑

i(αi − α∗
i )�xi, that leads to the decision function

f (�x) =
∑

i

(αi − α∗
i )〈xi, x〉 + b, (4)

that depends on the inner product between the unlabeled data
(�x) and the training data (�xi). We can recover b from the
Karush-Kuhn-Tucker (KKT) condition, which states that at
the solution point of the Lagrangian, the product between the
Lagrange multipliers and the conditions vanishes. We remark
that this calculation is computed internally in the scikit-learn
library [1]. We would like to stress that the decision function
in Eq. (4) has a sparse representation in terms of αi, α

∗
i . Only

a small subset of the training data set (support vectors) con-
tributes to the decision function. In Appendix A, we show the
arguments for the sparsity and the calculation of b.

We have introduced so far a linear decision function that
can handle linearly separated data. For nonlinearly separated
data, it is possible to define a clever kernel function k(xi, x)
that generalizes 〈xi, x〉 by taking the samples to a higher
dimensional space, where they are linearly separable. We
elaborate further on this idea later on.

B. Kernel ridge regressor

KRR is another important nonlinear machine learning
model. It has been successfully used to predict the evolution
of quantum systems [55]. It combines ridge regression with
the kernel trick [1,56]. The former, provides a linear solution
based on least squares with l2 regularization that penalizes
large coefficients. Like in SVM, the l2 norm prevents model
complexity, while the kernel allows the model to learn a
nonlinear function in the original space. This model offers a
straightforward optimization problem stated by [1]

minimize
N∑

i=1

‖ �w · �xi − yi‖2 + α‖ �w‖. (5)
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The above problem can be written in an equivalent way as
[56]

minimize
N∑

i=1

(yi − �w · �xi − b)2,

subjected to ‖ �w‖2 � αd , (6)

where there is a one-to-one correspondence between the hy-
perparameters α and αd . Introducing the Lagrange multipliers
as in the previous subsection, the decision function can be
found as

f (�x) =
∑

i

βik(xi, x) + b, (7)

with βi and b being fitting parameters.
It is worth noting that SVM and KRR are similar in terms

of the l2 regularization and that both use the kernel trick,
but the loss function is different. While SVM relies on a
linear ε-insensitive loss, KRR uses squared error loss. The
former implies that all the training points that result in errors
that fall inside the ε tube do not contribute in the solution,
which originates sparseness. In contrast, KRR considers all
the training points. This yields differences in the performance
of these models.

Machine learning algorithms have greatly profited from
kernel functions [6,28,35]. Therefore, we now introduce a
generalization of the decision function to learn from non-
linear data. The kernel can be understood as a measure of
similarities between two vectors, and it supports representa-
tions ranging from polynomial to exponential functions [1].
Along this paper we consider three different functions for
the kernel k(xi, x j ), namely, linear 〈xi, x j〉 + c, polynomial
(〈xi, x j〉 + c)d , and exponential exp(−σ

√
1 − 〈xi, x j〉).

We have so far addressed the classical part (optimization
problem) of this hybrid quantum machine learning approach.
In the next subsection we will focus on implementing the
kernel through a quantum circuit.

C. Quantum kernels

We have noted that the kernel provides efficient separabil-
ity in nonlinear regions. The main idea behind the kernel is
that it allows to map the data to a higher-dimensional space,
termed as a “featured space” [54]. In general lines, let us
consider a feature map φ : x ∈ χ → φ(x) ∈ H that encodes
information from a certain domain χ (commonly χ ∈ Rn) to
a feature space H . The advantages of using the map rely on
the “kernel trick” [6], which allows us to set the decision
function without the explicit calculation of φ(x). This idea
has encouraged researchers to bridge classical and quantum
machine learning [25,26,35]. Let us consider a Hilbert space
H that contains the states of a quantum system. Now, instead
of encoding the information of χ in a feature space given
by functions φ(x), with x ∈ χ , the information is encoded
in quantum states |φ(x)〉 ∈ H [35,57,58], which is known as
quantum embedding. Quantum embedding is a crucial step
in the process and, in some cases, may lead to a disadvan-
tage against classical models—for instance, because of the
noise in the embedding ansatz. To overcome this, we resorted
to performing digital quantum simulation of the quantum

dynamics rather than classical simulation [54], which allows
us to handle quantum states to build up the kernel. We use
the kernel to calculate a symmetric and semipositive definite
matrix (Gram matrix) over all possible combinations in the
training data set and we use it to train our model.

A natural choice to obtain the kernel from the training
samples ρi is the pairwise trace distance between the quantum
states (Tr[ρiρ j]), which is commonly carried by the swap test
[59,60]. In what follows we describe the circuit implemen-
tation. First, we encode the information into two different
qubits. Each of these qubits undergoes a NM (non-Markovian)
evolution, induced by independent ancilla qubits. Then, the
overlap between states ρi and ρ j yields the matrix element
k(θi, θ j ) = Tr[ρiρ j], where θi is the parameter that control
the NM evolution. We note that for the case of pure states,
ρi = |ψi〉〈ψi| and ρ j = |ψ j〉〈ψ j |, the kernel simply reduces
to |〈ψi|ψ j〉|2.

We describe next different implementations for the over-
lapping.

1. Swap test

The swap test is a high-level sequence of quantum op-
erations that involves two system qubits, an ancilla qubit,
two-qubit gates (CNOT), one-qubit gates, and a final mea-
surement on the ancilla [59], see Fig. 1. By measuring the
probability of finding the ancilla in state |0〉 (P0), one obtains
the state overlapping by computing Tr[ρiρ j] = 2P0 − 1.

2. Inversion test

Our second kernel considers the quantum state of a closed
system (unitary evolution) that encompasses the system qubit
and the environment ancilla qubit [61]. It begins with two
quantum states driven by unitary evolution U (θ ), such that
|�θ 〉 = U (θ )|00〉, with |00〉 = |0〉s ⊗ |0〉a. The kernel is de-
fined as the probability to reach the initial state after two
subsequent evolutions, assuming that the inverse evolution
U †(θ ) can be implemented. The matrix elements read

k(θi, θ j ) = |〈�θi |�θ j 〉|2 = |〈00|U †(θi )U (θ j )|00〉|2

= |〈00|�〉|2, (8)

where |�〉 = U †(θi )U (θ j )|00〉. In contrast to the swap test
kernel, this one requires two measurements, which allows us
to decrease the number of quantum registers (Fig. 1). We
remark that this kernel is not experimentally feasible for the
particular goal of detecting non-Markovianity. In general, one
has no access to perform measurements upon the environ-
ment. In addition, it requires reverse unitary interactions of
the system-environment dynamics. Nevertheless, we consider
it because it may be applied to other machine learning tasks
[61] and it delivers the best accuracy we found in this paper.

3. Ancilla-based algorithm

The Ancilla-based algorithm (ABA) is a variation of the
swap test that conveniently reduces the number of gates. It
was first discovered in the context of quantum optics [62],
and rediscovered later with the assistance of a neural net-
work and introduced for quantum circuits [60]. The circuit
is depicted in Fig. 1, and it is composed by two-qubit CNOT
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Swap test

Inversion test

Ancilla-based algorithm

Bell-basis algorithm

•
• •

•

FIG. 1. Quantum circuits compute the overlap between two quantum states in the kernel function to calculate the Gram matrix. For the
inversion test U represents either the amplitude damping or phase damping channel depicted in Fig. 2. For the ancilla-based algorithm (ABA)
U = T †H [60].

gates and single-qubit U = T †H gates. T introduces a π/4 ro-
tation around the z axis, and H is the Hadamard gate. Similar
to the swap test, the final outcome is computed as 2P0 − 1.

4. Bell-basis algorithm

The Bell-basis algorithm (BBA) considers less resources
than the previous one (ABA), but demands Bell-basis mea-
surements on all the system qubits [60]. The circuit is depicted
in Fig. 1, and it only requires a CNOT gate and a Hadamard
gate. However, the postprocessing is more involved and de-
mands computing all outcomes as P00 + P01 + P10 − P11.

In this paper we do not intend to explicitly compare the
accuracy of all these approaches for estimating the overlap-
ping (for a comparison between swap test, ABA, and BBA,
see Ref. [60]). We will compare them in terms of the accuracy
of the decision function.

In the next section we describe the quantum circuits that
account for the interaction between the system qubit with
the environment ancilla qubit that ultimately yields non-
Markovianity.

III. DIGITAL QUANTUM SIMULATION
OF NON-MARKOVIAN CHANNELS

The main purpose of this paper is to determine the degree
of non-Markovianity of a quantum process using a quan-
tum machine learning algorithm. We begin with simulating
two non-Markovian channels, amplitude damping and phase
damping, whose degree of non-Markovianity can be con-
trolled. For this purpose we simulate the processes using
usual circuit routines, taking auxiliary qubits to represent
the environment. In this section, we show how the degree
of non-Markovianity is calculated and present how the non-
Markovian amplitude damping and phase damping processes
can be simulated using a quantum circuit.

A. Calculating the degree of non-Markovianity

There are different ways to measure the degree of non-
Markovianity. The most popular measures are based on the
trace distance dynamics [63], the dynamics of entanglement
[64,65], and mutual information [66], among others [45]. In
this paper we consider the measure based on entanglement

dynamics of a bipartite quantum state that encompasses the
system that interacts with the environment and an ancilla
qubit that is isolated from it [65]. It is worthwhile to no-
tice that this ancilla only serves the purpose of quantifying
non-Markovianity and it is not implemented in the quantum
circuits, in contrast to the ancilla used to simulate the effect
of the environment for the amplitude damping and phase
damping processes.

A monotonic decrease in the entanglement of the bipartite
system implies that the dynamics is Markovian. An increase in
the entanglement during the evolution is a result of memory
effects and thus non-Markovian. The measure can be calcu-
lated as

N = max
∫

dE (t )/dt>0

dE (t )

dt
dt, (9)

where the maximization is done over all possible initial states
and E is the measure of entanglement. It has been found that
the maximization is achieved for Bell states [67]. Therefore,
we consider a bipartite system in a Bell state and use the
concurrence as the measure of entanglement [68].

B. Amplitude damping

For the amplitude damping (AD) channel, we consider a
qubit interacting with a bath of harmonic oscillators, given by
the Hamiltonian (h̄ = 1) [69,70]

H = ω0σ+σ− +
∑

k

ωka†
kak +

∑
k

(g∗
kσ+ak + gkσ−a†

k ).

(10)

Here, σ+ = σ
†
− = |1〉〈0| with |1〉 (|0〉) corresponding to the

excited (ground) state of the qubit with transition frequency
ω0, ak (a†

k ) is the annihilation (creation) operator of the kth
mode of the bath with frequency ωk , and gk is the coupling
between the qubit and the kth mode. We assume that the bath
has a Lorentzian spectral density

J (ω) = 1

2π

γ0λ
2

(ω0 − ω)2 + λ2
, (11)

where λ ≈ 1/τr , with τr being the environment correlation
time, γ0 ≈ 1/τs, where τs is the typical time scale of the
system.
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Amplitude damping (AD)

Phase damping (PD)

FIG. 2. Quantum circuits for simulating AD and PD channels.

The dynamics of the qubit that is coupled resonantly with
the environment can be expressed as

ρ(t ) =
1∑

i=0

Mi(t )ρ(0)M†
i (t ), (12)

where the Kraus operators are given by [71,72]

M0(t ) = |0〉〈0| +
√

p(t )|1〉〈1|, (13)

M1(t ) =
√

1 − p(t )|0〉〈1|, (14)

in which

p(t ) = e−λt

[
λ

d
sinh(dt/2) + cosh(dt/2)

]2

, (15)

with d =
√

λ2 − 2γ0λ. The dynamics is known to be non-
Markovian in the strong coupling regime λ < 2γ0 (τs < 2τr )
[73]. We have scaled our AD simulations with γ0 = 1, and
considered λ in the range [0.1, 3].

The AD process can be simulated for a general scenario
with a quantum circuit via an ancilla qubit [71,72]. After
tracing out the ancilla qubit we obtain the desired mixed
state. Figure 2 shows the quantum circuit. The Hadamard gate
prepares the qubit in the superposition state (|0〉 + |1〉)/

√
2,

while the controlled rotation and CNOT gates simulate the
interaction of the qubit with the environment. In this circuit,
the angle θa is given by [71,72]

θa = 2 arccos(
√

p(t )), (16)

where p(t ) is given in Eq. (15).

C. Phase damping

For the phase damping (PD) channel, following Ref. [74],
we consider a qubit undergoing decoherence induced by a col-
ored noise given by the time-dependent Hamiltonian (h̄ = 1)

H (t ) = �(t )σz. (17)

Here, �(t ) is a random variable which obeys the statistics
of a random telegraph signal defined as �(t ) = α(−1)n(t ),
where α is the coupling between the qubit and the external

influences, n(t ) is a random variable with Poisson distribution
with mean t/(2τ ), and σz is the Pauli z operator. In this case,
the dynamics of the qubit is given by the following Kraus
operators [74]:

M0(t ) =
√

1 + �(t )

2
I, (18)

M1(t ) =
√

1 − �(t )

2
σz, (19)

where

�(t ) = e−t/(2τ )

[
cos

(
μt

2τ

)
+ 1

μ
sin

(
μt

2τ

)]
, (20)

with μ =
√

(4ατ )2 − 1, and I being the identity matrix.
For ατ > 1/4 the dynamics is non-Markovian, while for

ατ < 1/4 it is Markovian. We have scaled our PD simulations
with α = 1, and considered τ in the range [0.1, 0.75]. The PD
channel can be simulated using a quantum circuit, shown in
Fig. 2 [71]. In this circuit, the Hadamard gate prepares the
qubit into the superposition state and the controlled rotation
simulates the interaction with the environment. The angle θp

is given by

θp = 2 arccos [�(t )], (21)

where �(t ) is given in Eq. (20).

IV. RESULTS

We perform our simulations with the statevector_simulator
and qasm_simulator, integrated in the Aer package from IBM
Qiskit [75]. For comparison, we also run simulations us-
ing the Pennylane library [76], obtaining similar outcomes.
The statevector_simulator is an ideal simulator that con-
siders the evolution of the wave function. In contrast, the
qasm_simulator mimics the open dynamics of the IBM quan-
tum computer. This means that it considers losses and shot
noise. However, it allows us to set all qubits equal and fully
connected, without relying on a specific quantum hardware.

It is well known that the quantum state of a qubit can
be represented as a point in a sphere of radius one (Bloch’s
sphere). A generic state can be represented in the Bloch’s
sphere in terms of the expectation values as

ρ = 1

2

⎛
⎝I +

∑
i=x,y,z

〈σi〉σi

⎞
⎠, (22)

where I is the 2 × 2 identity matrix.
For illustration we firstly focus on the amplitude damping

channel. In Fig. 3 we show the expectation values calcu-
lated using the statevector_simulator and qasm_simulator.
The former provides outcomes with no dispersion (top),
as expected from the ideal simulation. On the other hand,
qasm_simulator delivers more realistic results that include
dispersion (bottom). This dispersion will be important for
selecting the best algorithm that computes the overlap. In con-
trast, statevector_simulator brings no significant difference in
the prediction. Therefore, it can be misleading when selecting
a machine learning model, and thus hereafter we restrict our
analysis to qasm_simulator.
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FIG. 3. Expectation values delivered by the noisy qasm_simulator exhibit small dispersion after 8000 shots, in contrast to the ideal
statevector_simulator. We only observe correlations in the plane defined by 〈σx〉 and 〈σz〉.

In Fig. 4 we show the degree of NM for the amplitude
damping channel as a function of the parameter θ (rotation
angle that controls NM introduced in Sec. III B). For the
calculations, we used qasm_simulator with the exponential
kernel function that yields the best accuracy, as shown in
Appendix B. For exploration of the algorithms we only focus
on QSVM. We manually seek optimal hyperparameters and
report the prediction on the training data set. A more robust
analysis will be given later on. We can observe that the inver-
sion test leads to a feature space that allows better prediction
of the degree of NM. We note that the BBA algorithm can
be improved for a different set of parameters, but it still
underperforms.

We now compare the performance between quantum SVM
(QSVM) and quantum KRR (QKRR). Hereafter, we focus on
simulations on the qasm_simulator for the inversion test with
exponential function. To prevent overfitting, we use two steps
for cross-validation. First, we use the train_test_split function
in scikit-learn [1] to randomly split the training set from
the test set. Then, we use the GridSearchCV function to ex-
plore the best-fitting hyperparameters for each model, and we
use a fivefold cross-validation. Thus, GridSearchCV provides
the best estimator for the range of given parameters averaged
over five different samplings of the training set. Finally, we
used these estimators to predict the test set, which contains the
data that the model has not seen. In Fig. 5 we show our pre-
dictions for amplitude damping and phase damping. One can
observe that both models succeeded in predicting the degree

of non-Markovianity, besides small differences in the score
(mean squared error). However, there are important aspects
that might be taken into account before selecting one over
the other. First, we remark that QSVM requires less training
data to deliver good fittings. This is known, and it results from
the sparseness in the training samples (only SVs contribute).
Therefore, QSVM provides a major advantage given that the
most time-consuming operation is the calculation of the Gram
matrix. Thus, less training samples reduces the overall com-
putation time. In contrast, we observe that as the number of
data samples increases, QKRR improves.

For comparison, we estimate the degree of non-
Markovianity using a classical kernel, i.e., the radial ba-
sis function (RBF). We follow the procedure reported in
Ref. [54], where the training is carried out with the expec-
tation values 〈σx〉, 〈σy〉, and 〈σz〉. Thus, instead of using
quantum states to build up a kernel, we resort to using classical
data, i.e., measurement outcomes. However, the process to
obtain the states to be measured is the same we outlined in
Sec. III—in Ref.[54] the authors used a master equation ap-
proach instead of digital quantum simulation.

In Table I we show the mean squared errors for each model
for the AD and PD channels. We remark that the quantum
versions, where the kernel is calculated from the overlap be-
tween quantum states, deliver accurate predictions that are
comparable with the classical models, albeit we found that
SVM with a RBF kernel provides the best accuracy, as evi-
denced in terms of the mean squared error and the coefficient
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FIG. 4. QSVM prediction of non-Markovianity as a function
of the rotation angle θ for different kernel circuits. The inversion
test outperforms the others. We considered the amplitude damping
channel, the exponential kernel function, and the hyperparameters
{C = 0.5, ε = 0.01}.

of determination R2 (not shown here). This particular problem
illustrates that extending the kernel to be quantum provides
interesting insights and contributes to concatenate quantum
blocks of operations. It does not necessarily outperform a fully
classical training process but delivers useful outcomes.

V. CONCLUSIONS

In this paper we have thoroughly studied kernel-based
quantum machine learning models to predict the degree of
non-Markovianity using quantum data (quantum states). Each
state is obtained through digital quantum simulation, where an
ancilla qubit originates the non-Markovian behavior. We focus
on two different decoherence channels, amplitude damping
and phase damping. These quantum states are mapped to a
Gram matrix by calculating its overlap. We investigate differ-
ent kernel functions (linear, polynomial and exponential) and

TABLE I. The table shows the accuracy of the quantum and
classical versions of the studied machine learning models. The hyper-
parameters for AD (PD) are as follows: QSVM: C = 4 × 10−1(2 ×
10−1), ε = 10−2; QKRR: α = 10−1(2 × 10−1); SVM: C = 102, ε =
10−3; KRR: α = 10−4(10−5).

QSVM QKRR SVM KRR

AD 6.0 × 10−5 2.7 × 10−5 2.6 × 10−6 1.4 × 10−5

PD 3.3 × 10−4 1.6 × 10−4 5.9 × 10−5 1.8 × 10−4

FIG. 5. Both QSVM and QKRR deliver accurate predictions of
the degree of non-Markovianity, based on the mean squared error
score. For a small training data set QSVM performs better (not shown
here). For a sufficiently large number of points QKRR provides a
smaller mean squared error.

different kernel circuits to compute the overlap (inversion test,
bell-basis algorithm, ancilla-based algorithm, and the swap
test). We found that the inversion test with the exponential
function delivers the best results. We draw our attention to two
well-known kernel-based machine learning models, SVM and
KRR. When the models are trained with precomputed quan-
tum kernels we dubbed them QSVM and QKRR, respectively.
By optimizing the learning process through cross-validation
steps and grid search, we found a good accuracy in our mod-
els. We found QSVM to be slightly better than QKRR, not
only in the prediction’s accuracy but also in requiring less
training samples.

Finally, we compare our results with their classical coun-
terpart, i.e., when using classical data (expectation values) to
train the models. While there are not significant differences,
we observe that SVM with an RBF kernel delivers the best
performance. This means that in this particular case it is better
to measure upon the system and then process the measurement
outcomes with machine learning techniques.
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APPENDIX A: LAGRANGIAN CALCULATIONS
WITH SVM

We begin with the Lagrangian in Eq. (2),

L = 1

2
‖ �w‖2 + C

∑
i

(ξi + ξ ∗
i ) −

∑
i

(ηiξi + η∗
i ξ

∗
i )

−
∑

i

αi(ε + ξi − yi + �w · �xi + b)

−
∑

i

α∗
i (ε + ξ ∗

i + yi − �w · �xi − b). (A1)

Taking the partial derivatives with respect to the primal
variables (b,w, ξi, ξ

∗
i ) yields

∂bL =
∑

i

(α∗
i − αi ) = 0, (A2)

∂wL = w −
∑

i

(αi − α∗
i )xi = 0, (A3)

∂ξ L = C − αi − ηi = 0, (A4)

∂ξ∗L = C − α∗
i − η∗

i = 0. (A5)

First, from the KKT condition we obtain ηiξi = 0. Multi-
plying Eq. (A4) by ξi, we deduce the relation as

(C − αi )ξi = 0. (A6)

FIG. 6. Exponential kernel function delivers the best prediction
of non-Markovianity.

This means that only samples with αi = C lie outside the ε

tube (ξi �= 0). We now consider the second constraint,

αi(ε + ξi − yi + �w · �xi + b) = 0. (A7)

Note that all samples inside the ε tube (| f (�xi) − yi| < ε)
have a vanishing Lagrange multiplier αi, which leads to the
sparse representation of f (�x) in Eq. (4). A similar procedure
can be followed for ξ ∗

i , η∗
i , α

∗
i , which allows to approach the

value for b [53].

APPENDIX B: KERNEL FUNCTIONS PERFORMANCE

We now compare three different functions for the ker-
nel k(xi, x j ): linear 〈xi, x j〉, polynomial (〈xi, x j〉 + 0.1)3, and
exponential exp(−3

√
1 − 〈xi, x j〉). Figure 6 shows that the

exponential kernel function provides the best fitting. The poly-
nomial function is only considered for completeness, since a
more thorough exploration of the parameters may lead to a
better fitting.
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[25] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning

with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[26] M. Schuld and N. Killoran, Quantum Machine Learning
in Feature Hilbert Spaces, Phys. Rev. Lett. 122, 040504
(2019).

[27] Z. He, L. Li, S. Zheng, X. Zou, and H. Situ, Quantum speedup
for pool-based active learning, Quantum Inf. Process. 18, 345
(2019).

[28] R. Mengoni and A. Di Pierro, Kernel methods in quantum
machine learning, Quantum Mach. Intell. 1, 65 (2019).

[29] K. Bartkiewicz, C. Gneiting, A. Černoch, K. Jiráková, K.
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