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Optimal discrimination of geometrically uniform qubit and qutrit states
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We consider discrimination of geometrically uniform states, and analytically solve this problem for qubits.
For qutrits, we obtain the exact solution to the optimal measurement when the defining unitary matrix for the
geometrically uniform states is degenerate. We also show that if the unitary is nondegenerate then the optimal
measurement for discriminating geometrically uniform qubits or qutrits can always be expressed as a rank-1
operator, which converts the original discrimination problem into an optimization of a sum of trigonometric
functions with two real variables in the case of qutrits. Additionally, a geometrical interpretation of the optimal
measurement for discriminating geometrically uniform qubits is given via the Bloch sphere representation.
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I. INTRODUCTION

Given an ensemble of quantum states {ρi,wi} with the
prior probability distribution {wi}, the task of discrimination
is to find the optimal measurement {�i} such that the success
probability ps = ∑

i Tr(wiρi�i ) is maximized. This kind of
problem is typical in quantum information processing [1–10],
and has practical applications in quantum communications
[11–16]. Investigation of quantum state discrimination was
started in the 1970s, and has been a popular topic for decades;
concepts such as squared-root measurements [17–22] and ge-
ometrically uniform states [18,20] are introduced and studied
for a better understanding of the problem. In the theoretical
aspect, the following necessary and sufficient condition for
the optimal measurement is fundamental [1,2,5,23].

Theorem 1. The measurement {�i} is optimal for discrim-
inating the ensemble {ρi,wi} if and only if∑

i

wiρi�i − wkρk � 0 ∀k. (1)

As a tool, Theorem 1 is indispensable in almost every
derivation about quantum state discrimination. For example,
condition (1) implies that

∑
wiρi�i = ∑

wi�iρi and( ∑
wiρi�i − wkρk

)
�k = 0 ∀k, (2)

or �k ∈ N (
∑

i wiρi�i − wkρk ), where N (X ) denotes the
null space of the operator X . Since rank(A + B) � rank(A) +
rank(B) for any matrices A and B, we immediately conclude
that the rank of �k cannot be larger than that of ρk [24], a fact
that will be crucial in our later discussion.

In general, it is difficult to obtain analytical expressions
for the optimal measurements. In fact, after more than 40
years of efforts, except two-state discrimination [3] and a
few cases with strong symmetry properties [18–22,25–27],
there exist no exact solutions. Even for the simplest case of
qubits, general explicit solutions are still unknown and are
expected to be of complicated form [28,29]. On the other

hand, there exist numerical algorithms based on semidefinite
programming [24], which solve the problem efficiently. How-
ever, numerical results provide few insights into the nature
of the discrimination task, and are often insufficient to ana-
lyze its theoretical relations with other quantum mechanical
problems. In fact, various links between quantum state dis-
crimination and important concepts in quantum mechanics,
such as quantum coherence [30–32], quantum discord [33,34],
and complementarity [35,36], were discovered and studied
recently, and hence motivate more analytical solutions to the
discrimination problem which may shed light on fundamental
understandings of quantum mechanics and offer quantifiers to
abstract concepts with clear operational significance. For this
purpose, we focus on discrimination of geometrically uniform
states, which provides interesting examples of exact solutions:
the problem is solved for pure states with the square-root
measurement [18] and states with density matrices consisting
exclusively of real numbers [25]. In this paper, we would
like to further analyze the symmetry provided by geometri-
cally uniform states, and therefore establish additional results
about them. By diagonalizing the defining unitary U of the
symmetry group, we provide an analytical solution to the dis-
crimination problem of geometrically uniform qutrits whose
U has a degenerate eigenvalue. On the other hand, when U
is nondegenerate, we show that there exists an explicit char-
acterization of the corresponding optimal measurement for
qubits and qutrits. In particular, the optimal measurement can
always be expressed as rank-1 operators. As a result, with the
additional assumption that U is nondegenerate, the problem
is completely solved for qubits, and an analytical expression
for the optimal measurement is given, whereas for qutrits
the discrimination problem is converted to an unconstrained
optimization of a sum of trigonometric functions with two
angle variables. In this way, the original problem is much
simplified and more insights about the optimal measurement
are provided.

We collect relevant results about discrimination of geo-
metrically uniform states in Sec. II. Some notations that will
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be used consistently in the paper are also fixed in this sec-
tion. Analyses of geometrically uniform qubits and qutrits
are then carried out in Secs. III and IV, respectively, where
we show the optimal measurements are always rank 1 for
nondegenerate U , and provide the exact solution in the qutrit
case when U is degenerate. The main result of this paper is
summarized as Theorem 2 in Sec. IV. The paper is then closed
with conclusions and suggestions of further works.

II. GEOMETRICALLY UNIFORM STATES

An important family of ensembles that exhibits useful sym-
metry properties is the geometrically uniform (GU) states,
which is defined by a generator state ρ0 ∈ D(Cd ) and a cyclic
symmetry group {U i} generated by a unitary U ∈ SU (d ) sat-
isfying U n = 1, where notation D(Cd ) is to denote the set of
all d-dimensional density matrices and SU (d ) is for the Lie
group of d-dimensional special unitary matrices. Throughout
this paper, we will use d to denote the dimension of the
generator state ρ0, and n to denote the number of states to
be discriminated. The difference between d and n is also
manifested in the choice of indices: the index i is always from
zero to n − 1, while j is always from zero to d − 1. For GU
states with respect to the symmetry group {U i}, the ensemble
to be discriminated is defined as

{ρi = U iρ0U
−i, 1/n}. (3)

It is known that for pure states [18], i.e., ρ0 = |ψ〉〈ψ |, the
optimal measurement is the square-root measurement [17],
defined generally as

�k =
(∑

i

ρi

)−1/2

ρk

(∑
i

ρi

)−1/2

. (4)

Moreover, it is always possible to represent the optimal mea-
surement {�i} so that it is covariant with the symmetry group
[21], i.e.,

�i = U i�0U
−i. (5)

In fact, if {�′
i} is an optimal measurement for discrim-

inating {U iρ0U −i, 1/n}, then for any fixed number i0, the
transformed measurement {U i0�′

i�i0U
−i0} also gives the op-

timal success probability

popt
s =

∑
i

Tr(U iρ0U
−i�′

i ), (6)

where the symbol � denotes subtraction modulo n. Conse-
quently, the averaged operators

�i = 1

n

n−1∑
l=0

U l�′
i�lU

−l (7)

= 1

n

∑
l

U l⊕i�′
�lU

−(l⊕i) (8)

= U i�0U
−i (9)

satisfy all the requirements of being a measurement and pro-
duce the optimal success probability, so that without loss
of generality, for GU ensembles, it is sufficient to consider
measurements satisfying the covariance condition (5), and the

discrimination problem is simplified in such a way that only
the operator �0 � 0 satisfying∑

i

U i�0U
−i = 1, (10)

and maximizing Trρ0�0, needs to be determined. In the fol-
lowing, we will restrict our attention to diagonalized U ∈
SU (d ) only, i.e.,

U =
∑

j

| j〉〈 j|λ j with λn
j = 1. (11)

In other words, the eigenbasis {| j〉} of U is chosen to be
the computational basis. By doing so, the conjugation UXU †

affects only the off-diagonal entries of any d-dimensional
matrix X . In particular, this implies that for the generating
operator �0 of any measurement {U i�0U −i}, condition (10)
requires all the diagonal entries of �0 to be 1/n.

In Secs. III and IV, we will apply those observations in the
preceding paragraph to the special cases of discriminating GU
qubits (d = 2) and qutrits (d = 3), respectively. Specifically,
when d = 2, there is only one real parameter to be determined,
which can be fixed by maximization consideration. When d =
3, the existence of a degenerate eigenvalue further simplifies
the problem so that exact solutions can be readily constructed,
while in the nondegenerate case, similarly as d = 2, it can be
shown that the optimal measurement is rank 1, and in this way,
a characterization of the optimal measurement in terms of two
real phases can be established. In conclusion, by exploiting the
symmetry provided by the GU states, it is possible to obtain
more exact solutions to the discrimination problem.

III. GU QUBITS

In this section, we solve the discrimination problem of
GU ensembles with the extra assumption of d = 2, i.e., ρ0 ∈
D(C2). Without loss of generality, we may assume that U 	=
λ1 with any λn = 1 so that the Hermitian operator

∑
i ρi�i

is diagonal in the eigenbasis {| j〉} of U . We would like to
show that the optimal measurement is rank 1 for all interesting
GU qubits, and therefore obtain an explicit expression for
the generating operator �0. Then, by considering the Bloch
sphere representation, we give a geometrical interpretation of
this optimal measurement.

A. Optimal measurement

Since rank �0 � rank ρ0, it is possible that rank �0 =
2. The two conditions that �0 ∈ N (

∑
i ρi�i − ρ0) and

rank �0 = 2 together imply that
∑

i ρi�i − ρ0 = 0. Since∑
i ρi�i is diagonal, we conclude that ρi = ρ0 ∀i. Hence if

rank �0 = 2, then all measurements are equally bad, a trivial
case. If otherwise

ρ0 =
(

ρ00 ρ01eiφ

ρ01e−iφ ρ11

)
with ρ jk > 0 (12)

is not diagonal, and the GU states are different so that there is a
nontrivial discrimination task, we necessarily have rank �0 =
1, and we claim that

�0 = |μ〉〈μ|, with |μ〉 = 1√
n

(
1

e−iφ

)
, (13)

022401-2



OPTIMAL DISCRIMINATION OF GEOMETRICALLY … PHYSICAL REVIEW A 107, 022401 (2023)

where φ is the off-diagonal phase in (12).
This follows immediately from Theorem 1. Explicitly, if

�0 is defined as (13), then

1

n

n−1∑
i=0

ρi�i = diag ρ0�0 = 1

n

(
ρ00 + ρ01 0

0 ρ11 + ρ01

)
.

As a result,

1

n

n−1∑
i=0

ρi�i − 1

n
ρ0 = ρ01

n

(
1 −eiφ

−e−iφ 1

)
� 0. (14)

Hence Theorem 1 implies that �0 is the optimal generator.
Actually, assuming that the optimal measurement is rank 1, so
that it can be expressed as

�0 = 1

n

(
1 eiθ

e−iθ 1

)
, (15)

then

ps = Tr(ρ0�0) = 1

n
[1 + 2ρ01 cos(θ + φ)], (16)

which apparently attains its maximum (1 + 2ρ01)/n when θ +
φ = 0.

B. Bloch sphere representation

The optimal measurement generator �0 obtained in (13)
also bears a clear geometrically meaning in terms of the
Bloch sphere. Given any qubit ρ0 ∈ D(C2), one may associate
it with a point �v0 = (ξ, η, ζ )T ∈ R3 on or inside the Bloch
sphere in such a way that

ρ0 = 1
2 (1 + �σ · �v0), (17)

where �σ = (σx, σy, σz )T is formed by the three Pauli matrices
and the vector �v0 is called the Bloch vector. The positivity of
ρ0 requires the length of �v0 to be upper bounded by 1, and
this length also suggests the purity of ρ0. Specifically, when
|�v0| = 1, then state ρ0 is pure, while, on the other hand, |�v0| =
0 suggests that the state is the completely mixed state 1/2. The
effect of a unitary U ∈ SU (2) on the qubit ρ0 then corresponds
to a linear transformation R ∈ SO(3) on the three-dimensional
real vector �v0 such that

ρ0 → �v0 ⇒ Uρ0U
† → R�v0. (18)

The correspondence (18) provides a two-to-one homomor-
phism between the two groups SU (2) and SO(3), since both U
and −U map to the same R. In particular, a unitary U ∈ SU (2)
satisfying U n = ±1 then corresponds to R ∈ SO(3) such that
Rn = 1, or in other words, a rotation in the Bloch sphere such
that rotating n times returns any vector to its original position.
By Euler’s rotation theorem, any R ∈ SO(3) has an eigenvalue
1, and the corresponding eigenvector can be considered as the
axis of rotation. One may always fix this axis of rotation to be
the z axis, so that

R(ϕ) =
⎛
⎝cos ϕ − sin ϕ 0

cos ϕ sin ϕ 0
0 0 1

⎞
⎠, (19)

z

x

v0
v1

v2

ζ

φ

FIG. 1. The Bloch sphere representation of the generating state
�v0. By selecting the axis of rotation as the z axis, the three states
�v0, �v1, and �v2 all lie in the z = ζ plane, and the angle between any
two adjacent vectors in the z = ζ plane is 2π/3.

which corresponds to

U (ϕ) = ±
(

eiϕ/2 0
0 e−iϕ/2

)
. (20)

Consequently, by selecting the normalized eigenvectors
{|0〉, |1〉} of U to be the computational basis, the Bloch vectors
of any GU qubit ensemble always lie in a plane parallel to the
xy plane. The example of n = 3 is shown in Fig. 1. Actually,
since {1, σx, σy, σz} provides an orthonormal basis for the
space of 2 × 2 Hermitian matrices with respect to the Hilbert-
Schmidt inner product, the Bloch vector representation (17)
exists for any such matrices M0 and M1, and furthermore the
inner product

Tr(M†
0 M1) = 1

2 TrM0TrM1(1 + �a0 · �a1), (21)

if Mk = TrMk (1 + �σ · �ak )/2 for k = 0, 1. The positivity of
M again implies that the length of the corresponding Bloch
vector is less than or equal to 1. Specifically, let the optimal
measurement be generated by �0, then the success probability

ps = Tr(ρ0�0) (22)

turns into the form

ps = 1
2 Tr�0(1 + �v0 · �μ0) (23)

where �v0 and �μ0 are the Bloch vectors for ρ0 and �0, respec-
tively. The condition

n−1∑
i=0

U i�0U
−i = 1 (24)

implies that Tr�0 = 2/n, consequently the success probabil-
ity depends completely on the inner product �v0 · �μ0. Letting
{�vi} and {�μi} be the Bloch vectors for the GU qubit states
{ρi} and the optimal measurement {�i}, respectively, by fixing
the z axis as the axis of rotation, the z component of any
vector is unchanged by the rotation, so that the condition∑

�i = 1 implies that the z component �μi,z = 0 for any i.
In other words, any �μi lies in the equator plane z = 0. With
this observation, it is obvious that the maximum inner product
between �vi and �μi happens when �μi lies in the same line of the
projection of �vi on the equator plane. Therefore the azimuthal
angle φ in Fig. 1 determines the directions of the Bloch vec-
tors {�μi} for the optimal measurement. The length of those
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�v0

�v1
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φ

z = ζ

�v′
0

�v′
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�v′
1

x

y

φ

z = 0

(a) (b)

FIG. 2. (a) The projection of the Bloch vectors �v0, �v1, and �v2 of
the qubit states on z = ζ . Since the states are not required to be pure,
their Bloch vectors may not touch the border circle x2 + y2 = 1 − ζ 2.
The angle between any two adjacent vectors is 2π/3, and their po-
sition is completely determined by the length of the generating state
�v0 and the azimuthal angle φ. Only when the states are pure, i.e., the
vector �vi reaches the border circle, the optimal measurement is the
square-root measurement. In general, the optimal measurement for
discriminating {�v0, �v1, �v2} is the square-root measurement obtained
for {�v′

0, �v′
1, �v′

2}. (b) The optimal measurement on the equator plane.
The representing vectors �μ0, �μ1, and �μ2 are all of unit length, and
the measurement is completely determined by the azimuthal angle
φ. The Bloch vectors {�v0, �v1, �v2} and {�v′

0, �v′
1, �v′

2} both correspond to
the optimal measurement represented by the vectors {�μ0, �μ1, �μ2}.

vectors is determined by
∑

�i = 1, or equivalently Tr�i =
2/n for any i, which puts no restriction on the vectors �μi. This
suggests that one can always make them as large as possible,
which corresponds to pure states whose Bloch vectors are
unit length. In conclusion, the geometrical consideration from
the Bloch sphere solves the problem of discriminating GU
qubits completely. By expressing the generator state ρ0 in
the eigenbasis of U , the Bloch vector �μ0 for the generating
operator �0 lies in the equator plane with unit length and has
the same azimuthal angle φ as the Bloch vector �v0 for ρ0. The
case of n = 3 is shown in Fig. 2.

Fixing the axis of rotation as the z axis, the phase φ of
the off-diagonal entries of ρ0 ∈ D(C2) can be removed by
rotating the corresponding Bloch vector to make it lie in the
xz plane. For general d-dimensional states ρ ∈ D(Cd ), there
are totally d (d − 1)/2 independent phases for the off-diagonal
entries, and therefore cannot by completely removed by the
rotational symmetry alone. Hence the off-diagonal phases
start to play a role in the discrimination problem of GU en-
sembles when d � 3. As a result, except a few special cases,
the problem necessarily involves analysis of the phases, and is
hence much more complicated.

IV. GU QUTRITS

In this section, we consider the three-dimensional genera-
tor state

ρ0 =
⎛
⎝ ρ00 ρ01eiφ01 ρ02eiφ02

ρ01e−iφ01 ρ11 ρ12eiφ12

ρ02e−iφ02 ρ12e−iφ12 ρ22

⎞
⎠, ρ jk � 0, (25)

which is nondiagonal in the eigenbasis {| j〉} of U and
hence gives a nontrivial discrimination problem. The optimal

measurement {U i�0U −i} for discriminating the GU ensemble
{U iρ0U −i, 1/n} depends on the unitary U . Specifically, we
will give an explicit solution to the generator �0 when U has
a degenerate eigenvalue and show that it is rank 1 otherwise.

A. Degenerate U

If the defining unitary U has a degenerate eigenvalue, then
the optimal measurement {U i�0U −i} for discriminating the
GU ensemble {U iρ0U −i, 1/n}, which is generated by an arbi-
trary qutrit ρ0 ∈ D(C3), can be analytically solved. Explicitly,
without loss of generality, we may assume that

U =
⎛
⎝1 0 0

0 λ 0
0 0 λ

⎞
⎠ with λ 	= 1 and λn = 1. (26)

As discussed in Sec. II, condition
∑

i U i�0U −i = 1 requires
all diagonal entries of �0 to equal 1/n, and the degeneracy of
λ further implies that

�0 = 1

n

⎛
⎝ 1 x y

x∗ 1 0
y∗ 0 1

⎞
⎠ with x, y ∈ C, (27)

for any covariant measurement generator �0 satisfying (10).
Then the optimal value of x and y can be determined by
considering the maximization of ps = Tr(ρ0�0). Explicitly,

Tr(ρ0�0) = 1

n
+ 2

n
Re(xρ01e−iφ01 + yρ02e−iφ02 )

� 1

n
+ 2

n
(|x|ρ01 + |y|ρ02) (28)

� 1

n
+ 2

n

[
(|x|2 + |y|2)

(
ρ2

01 + ρ2
02

)]1/2
, (29)

where the equality in (28) is attained with

arg x = φ01, arg y = φ02 (30)

and the equality in (29) is attained with

|x| : |y| = ρ01 : ρ02. (31)

Together with the positivity requirement

�0 � 0 ⇒ |x|2 + |y|2 � 1, (32)

Eqs. (30) and (31) determine the optimal measurement opera-
tor �0 in (27) completely:

x = 1√
ρ2

01 + ρ2
02

ρ01eiφ01 , (33)

y = 1√
ρ2

01 + ρ2
02

ρ02eiφ02 , (34)

and the corresponding success probability

popt
s = 1

n
+ 2

n

√
ρ2

01 + ρ2
02. (35)

For a consistency check, let λ = −1 for the unitary U defined
in (26), then the Helstrom bound [3] gives

pHel
s = 1

2
+ 1

4
Tr|ρ0 − Uρ0U

†|, (36)

022401-4



OPTIMAL DISCRIMINATION OF GEOMETRICALLY … PHYSICAL REVIEW A 107, 022401 (2023)

with ρ0 defined in (25) and

Uρ0U
† =

⎛
⎝ ρ00 −ρ01eiφ01 −ρ02eiφ02

−ρ01e−iφ01 ρ11 ρ12eiφ12

−ρ02e−iφ02 ρ12e−iφ12 ρ22

⎞
⎠, (37)

so that the eigenvalues of the operator ρ0 − Uρ0U † are
{0,±2

√
ρ2

01 + ρ2
02}, and the Helstrom bound (36) is the same

as (35), as it should be.

B. Nondegenerate U

If the eigenspace of U is nondegenerate, i.e.,

U =
∑

j

| j〉〈 j|λ j (38)

with λn
j = 1 and λ j 	= λk for any unequal pair ( j, k), then

for any d-dimensional matrix X , the condition [U, X ] = 0 is
sufficient to ensure that X is diagonal. In particular, since the
two operators

∑
i ρi�i and

∑
i �i both commute with U , we

have ∑
i

ρi�i =
∑

i

U iρ0�0U
−i = ndiag ρ0�0, (39)

∑
i

�i =
∑

i

U i�0U
−i = ndiag �0. (40)

Therefore if U is nondegenerate, any positive operator whose
diagonal entries all equal 1/n is guaranteed to generate a
measurement. In particular, we may focus on rank-1 measure-
ments whose generator is of the following form:

�0 = |μ〉〈μ| with μ = 1√
n

∑
j

| j〉eiθ j , (41)

where all matrix elements of �0 have the same absolute
value 1/n. Note that such kind of operators fail to generate
a measurement when U is degenerate. In the remainder of
this section, we will show that the optimal measurement for
discriminating any GU ensemble that is defined by a nonde-
generate unitary U and an arbitrary qutrit ρ0 ∈ D(C3) is rank
1, so that only the phases {θ j} in (41) need to be determined.

Similarly as in Sec. III, the rank of the operator

�0 =
∑

i

ρi�i − ρ0 (42)

can be either 1 or 2, which implies that the rank of �0 can be
either 2 or 1. Define

� = φ01 + φ12 − φ02. (43)

Since

ρ̃0 = Dρ0D† =
⎛
⎝ρ00 ρ01 ρ02

ρ01 ρ11 ρ12ei�

ρ02 ρ12e−i� ρ22

⎞
⎠ (44)

with the transformation matrix

D =
⎛
⎝1 0 0

0 eiφ01 0
0 0 eiφ02

⎞
⎠, (45)

discriminating the GU ensemble {ρi, 1/n} is equivalent to
discriminating {ρ̃i = U iρ̃0U −i, 1/n}, but this time with only

one off-diagonal phase �. We next consider the two cases
� = 0 and � 	= 0 separately.

If � = 0, then we claim that the optimal measurement is
generated by

�̃0 = |μ̃〉〈μ̃|, with |μ̃〉 = 1√
n

⎛
⎝1

1
1

⎞
⎠, (46)

so that the optimal measurement for discriminating the origi-
nal ensemble is generated by

�0 = D†�̃0D. (47)

This is again a direct application of Theorem 1, since

�̃0 =
∑

i

ρ̃i�̃i − ρ̃0 = ndiag ρ̃0�̃0 − ρ̃0

=
⎛
⎝ρ01 + ρ02 −ρ01 −ρ02

−ρ01 ρ01 + ρ12 −ρ12

−ρ02 −ρ12 ρ02 + ρ12

⎞
⎠ � 0.

Similar consideration can be generalized to qudit

ρ0 =
∑

j

| j〉〈 j|ρ j j +
∑
k 	= j

| j〉〈k|ρ jkeiφ jk ∈ D(Cd ), (48)

and we therefore establish the following fact: if there are d
phases {θ j} so that the d (d − 1)/2 independent off-diagonal
phases {φ jk} in (48) can be expressed as φ jk = θ j − θk , then
the optimal measurement is rank 1 and generated by |μ〉 =∑

j | j〉eiθ j /
√

n. This generalizes the main result in [25].
Otherwise, if � 	= 0, then we claim that �̃0 cannot be rank

1, and therefore �̃0 and �0 are rank 1. Indeed, assuming that

�̃0 = |ν〉〈ν| with |ν〉 =
⎛
⎝ ν0

ν1e−iα1

ν2e−iα2

⎞
⎠ (49)

since
∑

ρ̃i�̃i is diagonal, the off-diagonal entries of �̃0 co-
incide with that of −ρ̃0. Then by comparing the off-diagonal
phases, we obtain that

α1 = α2 = 0 but α1 − α2 = � 	= 0, (50)

which is a contradiction. In conclusion, regardless of the value
of �, we always have rank �0 = 1.

We summarize the results about discrimination of GU
qubits and qutrits as the following theorem.

Theorem 2. The optimal measurement for discrimination
of the n equiprobable GU states {ρi = U iρ0U −i}n−1

i=0 generated
by a qubit or qutrit state

ρ0 =
d−1∑
j,k=0

| j〉〈k|ρ jkeiφ jk with ρ jk � 0, d = 2 or 3,

and a nondegenerate diagonal unitary matrix

U =
d−1∑
j=0

| j〉〈 j|λ j with λ j 	= λk ∀ j 	= k, (51)
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which satisfies U n = 1, is the rank-1 measurement {�i =
U i|μ〉〈μ|U −i}n−1

i=0 , with the generator

|μ〉 = 1√
n

d−1∑
j=0

| j〉eiθ j . (52)

The phases {θ j} are determined by maximizing the following
expression:

∑
j

∑
k 	= j

|ρ jk| cos(θk − θ j + φ jk ). (53)

Note that the success probability corresponding to the mea-
surement {�i} is

p{�i}
s (ρ0) = 〈μ|ρ0|μ〉 = 1

n

∑
j,k

|ρ jk| cos(θk − θ j + φ jk )

= 1

n
+ 1

n

∑
j

∑
k 	= j

|ρ jk| cos(θk − θ j + φ jk ), (54)

so that the optimal condition (53) is well posed. Actually, the
variables can be reduced by setting θ0 = 0, since an overall
phase factor makes no difference. It is also clear from (53)
that the diagonal entries play no role in such discrimination,
which is as expected. The choice of the computational basis
ensures that the unitary transformation does not change the
diagonal entries, and the difference between the discriminated
states {ρi} lies completely in the off-diagonal entries. It is
tempting to conjecture that similar results holds in every finite
dimension. Unfortunately, even in dimension 4, there are GU
ensembles, with nondegenerate defining unitary U , whose
optimal discrimination measurement cannot be expressed as
rank-1 operators [37].

By transformation (44), the optimal choice of the phases
{θ1, θ2} can be determined by solving the system of trigono-
metric equations:

ρ01 sin θ̃1 + ρ02 sin θ̃2 = 0, (55)

−ρ01 sin θ̃1 + ρ12 sin(θ̃2 − θ̃1 + �) = 0, (56)

where � is defined as in (43), and then performing the trans-
formation

θ1 = θ̃1 − φ01, θ2 = θ̃2 − φ02. (57)

If the off-diagonal entries of ρ0 have the same absolute value,
i.e.,

ρ0 =
⎛
⎝ ρ00 aeiφ01 aeiφ02

ae−iφ01 ρ11 aeiφ12

ae−iφ02 ae−iφ12 ρ22

⎞
⎠ with a > 0, (58)

then (55) and (56) admit simple analytical solutions. This
time, these equations become

sin θ̃1 + sin θ̃2 = 0, (59)

− sin θ̃1 + sin(θ̃2 − θ̃1 + �) = 0, (60)

and the solution for the optimal (θ̃1, θ̃2) is

θ̃1 = −θ̃2 = �′/3, (61)

where �′ = � + 2kπ for some k ∈ Z so that �′ ∈ [−π, π ].
The optimal success probability is then

popt
s = 1

n
+ 6a

n
cos(�′/3). (62)

V. CONCLUSION

We have derived the exact solution to discriminating
three-dimensional GU states whose defining unitary U has a
degenerate eigenvalue, and shown that if the unitary U is non-
degenerate, then the optimal measurement for discriminating
GU qubits or qutrits satisfies Theorem 2. In particular, this
solves the problem of discriminating GU qubits completely,
and simplifies that for GU qutrits. Although Theorem 2 cannot
be generalized to arbitrary dimensions, some of the observa-
tions will be helpful in further studies of discriminating GU
states. For example, by setting the basis such that the unitary
U is diagonalized, all the information useful for discrimina-
tion is gathered into the off-diagonal entries; additionally, only
the degeneracy of the unitary U plays a role in determination
of the optimal measurement, the actual eigenvalues and the
number of discriminated states are immaterial for the prob-
lem, and hence without loss of generality one may focus on
discriminating δ GU qudit states, where δ � d is the number
of different eigenvalues of U . It is also an interesting problem
to find extra conditions which will make Theorem 2 valid in
higher dimensions.
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