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General characterization of qubit-preserving impairments on two-qubit Bell nonlocality

Richard A. Brewster ,1,* Gerald Baumgartner,2 and Yanne K. Chembo 1

1University of Maryland, A. James Clark School of Engineering, Department of Electrical and Computer Engineering & Institute for
Research in Electronics and Applied Physics (IREAP), 8279 Paint Branch Dr, College Park, Maryland 20742, USA

2Laboratory for Telecommunication Sciences, 8080 Greenmead Drive, College Park, Maryland 20740, USA

(Received 30 August 2022; accepted 9 February 2023; published 27 February 2023)

A general technique for experimentally characterizing the effect of qubit-preserving impairments on the
Clauser-Horne-Shimony-Holt parameter is introduced. This technique is independent of the underlying qubit
encoding and is theoretically demonstrated for specific example impairments in polarization-encoded quantum-
optical qubits. Included in this analysis is how spectrotemporal impairments can be incorporated into this
technique.

DOI: 10.1103/PhysRevA.107.022225

I. INTRODUCTION

Entanglement [1–3] is a vital resource in the field of quan-
tum information. In quantum communications, entanglement
may be used for guaranteed secure communication [4] or the
transfer of quantum information through the process of quan-
tum teleportation [5]. Robust entanglement may be distributed
throughout a quantum network using the process of entangle-
ment swapping [6]. Furthermore, entangled states are a typical
desired output from a controlled NOT (CNOT) operation in
quantum computing [7–9].

Much like any informational resource in a real-world phys-
ical system, entanglement is subject to system impairments.
Nonideal experimental components can reduce the quality
of entanglement resources, which may result in errors in
quantum information processing protocols. It is therefore
desirable to have a means to characterize the quality of en-
tanglement in a system. Such characterization would ensure
that the quality of an entangled system is sufficient for the
relevant protocols before quantum information resources are
committed.

To this end, many entanglement measures have been
developed to gauge the quality of entanglement in a sys-
tem [3,10–14]. However, in order to experimentally compute
most of these entanglement measures, full-state quantum
tomography is required [3,15,16]. Such measurements re-
quire expending extensive amounts of a quantum resource,
which may be undesirable in a real-world system. This
issue may be mitigated to some extent by considering
entanglement witnesses [3,11,17–21]. However, entangle-
ment witnesses need to be tailored to specific classes
of entangled states, which may not be feasible in com-
plicated quantum networks. Nonlinear [3,22] or collec-
tive [3,23] witnesses may be used to improve the perfor-
mance of entanglement witnesses; however, entanglement
witnesses are also predominately focused on confirming
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the presence of entanglement and not characterizing its
quality.

Another potential solution that is relatable to entanglement
witnesses is a measurement of the nonlocality [2,24–26] of a
state. Nonlocality can be measured through the well-known
Bell inequality violation experiments [27]. One example
of such an experiment is the Clauser-Horne-Shimony-Holt
(CHSH) measurement [28] shown in Fig. 1(a). This ex-
periment requires only four experimental trials with N
measurements in each trial. An equivalent quantum full-state
tomography measurement would require fifteen trials, again
with each trial having N measurements [29]. Thus, a CHSH
measurement would vastly reduce the quantum resources
required compared to the entanglement measures discussed
above.

The result of a single CHSH experiment is the measurable
CHSH parameter S. Classical theory dictates that any given
CHSH parameter must be S � 2 [28]. However, the principles
of quantum mechanics allow for S � 2

√
2 [30]. Thus, when

a CHSH parameter is found to be S > 2, the measured input
state could not have been predicted by a local hidden variable
theory [27,28]. Such results in the absence of loopholes are
of interest because of their implications on testing local real-
ism [31]. A continuum of S values between 2 and 2

√
2 exists

that may be used to characterize nonlocality.
Nonlocality has been demonstrated to be equivalent to en-

tanglement measures for pure states [32,33]. It has also been
related to entanglement measures for certain classes of mixed
states [33–35]. Additionally, nonlocality has been demon-
strated to place an upper bound on the fidelity of quantum
teleportation experiments [36]. Therefore, for the purposes of
this work, we will let nonlocality be an approximate measure
of entanglement.

Depending on the settings of the components of the CHSH
measurement, we may not achieve the maximum possible
value for the CHSH parameter that exists for the underlying
physical system. The optimal value S = Smax that is given
by the ideal settings for a specified quantum state is the one
that is directly related to the measure of the nonlocality of
the system [25]. That is, if we consider Smax, we have that
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FIG. 1. Setups to measure a CHSH parameter for a state |ψout〉
subject to experimental impairments. These setups are independent
of the underlying qubit encoding. The boxes represent rotations by
the angles shown about the axes x j j ∈ {1, 2, 3} of the correspond-
ing Bloch sphere. The gray diamonds denote spatially splitting the
qubit according to its computational basis, which are received by
the measurement devices as shown. Coincidence counts are recorded
between pairs of measurements according to a typical CHSH mea-
surement. (a) The usual CHSH experiment. The angles θA, θ ′

A, θB,
and θ ′

B are the usual Bell test angles. This experiment is repeated
four times for each possible combination of the angles used in the
two paths. These angles are allowed to vary to yield the maximum
possible CHSH parameter. (b) A CHSH experiment where we have
fixed the Bell test angles to those shown. We have additional angles
α j , β j , j ∈ {1, 2, 3} that are about each of the corresponding axes of
the Bloch sphere. These angles are adjusted to yield the maximum
possible CHSH parameter given the fixed Bell test angles shown.

Smax = 2 for a product state [32] and Smax = 2
√

2 for a maxi-
mally entangled state [37,38].

It is therefore desired to find this optimal value. While
these settings are known for certain classes of states [39],
they are difficult to find for general states and/or without
knowledge of the underlying physical system. One must
then experimentally search for the optimal angles in general,
which would limit the advantages of nonlocality outlined
above. Recently, the problem has met with some interest,
where machine learning has been used to perform this opti-
mization [40,41]. As we shall demonstrate in the following
section, this problem can also be mitigated to some extent
by introducing the technique of Fig. 1(b) along with clas-
sical alignment. The two experiments of Fig. 1 depend on
the same physical parameters, allowing for a more efficient
means of measuring the nonlocality of the underlying physical
system.

In this paper, we will completely characterize the optimal
CHSH parameter Smax in the presence of qubit-preserving im-
pairments. We will introduce the concept of a qubit-preserving
impairment in the following section. As discussed, we will
also demonstrate the experimental advantages of the tech-
nique of Fig. 1(b). While this technique is independent of

the underlying qubit encoding, we will also theoretically
demonstrate the optimal CHSH parameter in the presence of
qubit-preserving impairments that affect qubits encoded in the
polarization degree of freedom for single photons. This anal-
ysis will further demonstrate the usefulness of the technique
of Fig. 1(b), and also gives an example for how the more
complicated spectrotemporal impairments affecting photons
can be incorporated into this technique.

This paper is structured as follows. In Sec. II, we provide
the theoretical framework for achieving the optimal CHSH pa-
rameter of the two experiments of Fig. 1. We also demonstrate
the relationship between these two experiments. In Sec. III, we
provide an example of the reductions to the CHSH parameter
found in polarization-encoded quantum-optical qubits. These
reductions due to polarization misalignments are described
in Sec. III A, spectrotemporal impairments in Sec. III B, and
white noise in Sec. III C. Finally, remarks and conclusions are
given in Sec. IV.

II. THEORETICAL DESCRIPTION

Before we characterize the qubit-preserving impairments
of a CHSH inequality violation, we first need to define
what we mean by an impairment that is qubit preserving.
First, consider a system that is represented by a quantum
state in an arbitrary dimensional Hilbert space. However, it
is desired to approximate this state as being a member of
a two-qubit (or four-dimensional) Hilbert space. A general
impairment is an undesired transformation to this two-qubit
state that could result from nonideal experimental components
or noisy transmission lines, for example. We then define a
qubit-preserving impairment as a transformation to the state
such that the two-qubit basis approximation of the output
state remains valid. As we shall see in the following section,
many important impairments in the CHSH experiment can be
characterized as qubit preserving. The effect of most qubit-
preserving impairments, which include misalignments, can be
calculated using unitary transformations to the quantum state.
However, noise can also be qubit preserving, but cannot be
represented as a unitary transformation, and its detrimental ef-
fects on a quantum system must be calculated using a density
operator.

Not all impairments in a system are qubit preserving.
An impairment that is not qubit preserving will transform
the state in such a way that the resulting interference in
the full Hilbert space, outside of the two-qubit basis, cannot
be removed. An example of this situation would be multiple
pair generation without number-resolving detectors [42–44].
In this case, the additional photons will negatively impact
the resulting CHSH parameter even in the ideal case. In
the present article, we will focus solely on qubit-preserving
impairments.

We will represent a general qubit in the computational
basis |0〉 and |1〉 using the vectors

|0〉 ≡
(

1
0

)
and |1〉 ≡

(
0
1

)
. (1)

We note that this representation is independent of the
underlying physical system and holds for all orthonor-
mal qubit encodings such as photon polarization or
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path, and electron spin. It also approximately holds for
pseudo-orthonormal bases such as time/frequency bins and
Schrödinger cat states so long as the overlap between the
respective time/frequency bins or composite coherent states is
negligible.

In order to achieve a general characterization of qubit-
preserving impairments on the CHSH parameter, we need
to have a geometric description of a two-qubit state. This is
sufficient because qubit-preserving impairments preserve the
two-qubit approximation as stated above. It is well known that
a single-qubit density operator ρ̂1 in the basis of Eq. (1) can be
geometrically represented in the Bloch sphere using the Bloch
vector a as [29]

ρ̂1 = 1
2 (1̂ + a · σ̂), (2)

where 1̂ is the single-qubit identity operator and σ̂ is the Pauli
vector

σ̂ ≡ σ̂1x1 + σ̂2x2 + σ̂3x3

=
(

0 1
1 0

)
x1 +

(
0 −i
i 0

)
x2 +

(
1 0
0 −1

)
x3, (3)

with the x j corresponding to the R3 unit vectors. This concept
can be extended for a two-qubit state ρ̂ as [45]

ρ̂ = 1

4

⎛
⎝1̂ ⊗ 1̂+ a · σ̂ ⊗ 1̂+ 1̂ ⊗ b · σ̂+

3∑
j=1

3∑
k=1

Tjk σ̂ j ⊗ σ̂k

⎞
⎠,

(4)

where a and b are two independent Bloch vectors, one for
each qubit, and the Tjk form the elements of the 3 × 3 matrix
T, which describes the correlations between the two qubits.
The elements that comprise a, b, and T must be real. By con-
struction, the operator ρ̂ of Eq. (4) has Tr(ρ̂) = 1 and ρ̂ = ρ̂†.
However, the operator ρ̂ is a density operator corresponding to
a physical system if and only if it is positive semidefinite [46],
which is not guaranteed.

We now consider the symmetric matrix V = T�T. This
matrix has real eigenvalues v1, v2, and v3 in order of
descending magnitude. It has previously been shown that
the maximum possible measurable CHSH parameter Smax

is [45]

Smax = 2
√

v1 + v2. (5)

Thus, a CHSH inequality can be violated if and only if v1 +
v2 > 1 [45]. Inspection of Eq. (5) reveals that the impairments
that affect the optimal CHSH parameter can only contribute to
its reduction through the two eigenvalues v1 and v2.

The value of the CHSH parameter of Eq. (5) is found by
varying the Bell test angles θA, θ ′

A, θB, and θ ′
B of Fig. 1(a). For

a general two-qubit state, finding the specific Bell test angles
that yield the maximum value is analytically challenging.
Typically, one desires a Bell state in a given measurement
basis. It is well known that the Bell test angles that give the
maximum CHSH parameter for a Bell state are

θA = 0, θ ′
A = π

4
, θB = π

8
, and θ ′

B = 3π

8
. (6)

We refer to these angles as the canonical Bell test angles.

In what follows, we will fix the Bell test angles to those
of Eq. (6). It is important to note that, upon doing this and
given the influence of the impairments in the system on the
quantum state, it will likely not be possible to achieve the
Smax of Eq. (5). We now consider the experimental situation
of Fig. 1(b). Here, we have introduced angles α j for path A
and β j for path B with j ∈ {1, 2, 3}. These angles, which we
refer to as the optimization angles, remain fixed throughout
the course of the experiment. They are adjusted to yield the
maximum possible CHSH parameter given the canonical Bell
test angles of Eq. (6). We denote this CHSH parameter as
Scanon, and we have that Scanon � Smax. Despite this fact, we
will see that there is some merit to considering this CHSH
parameter.

We find Scanon of Fig. 1(b) by following a similar procedure
to the one used in Ref [45] to obtain Eq. (5). It can be shown
that, given the Bell test angles of Eq. (6), the general CHSH
parameter is given by the expectation value

S =
√

2〈σ̂1 ⊗ σ̂1 + σ̂3 ⊗ σ̂3〉 =
√

2(T11 + T33), (7)

where the right-hand side follows from Eq. (4).
Next, we consider the rotations by the angles α j and

β j of Fig. 1(b). We apply these angles to the observable
in Eq. (7) using the Heisenberg picture. The rotations ap-
ply the unitary operator Û(α1, α2, α3) ⊗ Û(β1, β2, β3), where
Û(α1, α2, α3) = Û3(α3)Û2(α2)Û1(α1) and

Û1(α) =
(

cos α i sin α

i sin α cos α

)
, Û2(α) =

(
cos α − sin α

sin α cos α

)
,

Û3(α) =
(

eiα 0
0 e−iα

)
. (8)

This gives

Scanon =
√

2〈Û†(α1, α2, α3)σ̂1Û(α1, α2, α3)

⊗ Û†(β1, β2, β3)σ̂1Û(β1, β2, β3)

+ Û†(α1, α2, α3)σ̂3Û(α1, α2, α3)

⊗ Û†(β1, β2, β3)σ̂3Û(β1, β2, β3)〉. (9)

It can be shown that

Û†(α1, α2, α3)σ̂1Û(α1, α2, α3)

= cos 2α2 cos 2α3σ̂1 + (sin 2α1 sin 2α2 cos 2α3

− cos 2α1 sin 2α3)σ̂2

+ (cos 2α1 sin 2α2 cos 2α3 + sin 2α1 sin 2α3)σ̂3,

Û†(α1, α2, α3)σ̂2Û(α1, α2, α3)

= − cos 2α2 sin 2α3σ̂1 − (sin 2α1 sin 2α2 sin 2α3

+ cos 2α1 cos 2α3)σ̂2

− (cos 2α1 sin 2α2 sin 2α− sin 2α1 cos 2α3)σ̂3,

Û†(α1, α2, α3)σ̂3Û(α1, α2, α3)

= − sin 2α2σ̂1 + sin 2α1 cos 2α2σ̂2 + cos 2α1 cos 2α2σ̂3.

(10)
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Thus, if we define the rotation matrix

R(α1, α2, α3)

≡
⎛
⎝ cos 2α2 cos 2α3 sin 2α1 sin 2α2 cos 2α3 − cos 2α1 sin 2α3 cos 2α1 sin 2α2 cos 2α3 + sin 2α1 sin 2α3

− cos 2α2 sin 2α3 −(sin 2α1 sin 2α2 sin 2α3 + cos 2α1 cos 2α3) −(cos 2α1 sin 2α2 sin 2α3 − sin 2α1 cos 2α3)
− sin 2α2 sin 2α1 cos 2α2 cos 2α1 cos 2α3

⎞
⎠,

(11)

we have that

Scanon =
√

2〈R�(α1, α2, α3)x1 · σ̂ ⊗ R�(β1, β2, β3)x1 · σ̂

+ R�(α1, α2, α3)x3 · σ̂ ⊗ R�(β1, β2, β3)x3 · σ̂〉.
(12)

Using Eq. (4) in Eq. (12) gives

Scanon =
√

2[R�(α1, α2, α3)x1 · TR�(β1, β2, β3)x1

+ R�(α1, α2, α3)x3 · TR�(β1, β2, β3)x3]. (13)

We now consider the polar decomposition of the matrix
T. That is, we consider a unitary matrix W = T(T�T)−1/2

and symmetric matrix
√

V =
√

T�T such that T = W
√

V.
Without loss of generality, we next choose the α j such that
W�R�(α1, α2, α3) = R�(β1, β2, β3). This gives

Scanon =
√

2[R�(β1, β2, β3)x1 ·
√

VR�(β1, β2, β3)x1

+ R�(β1, β2, β3)x3 ·
√

VR�(β1, β2, β3)x3]. (14)

We now want use the angles β j to optimize Scanon. This
is a completely analogous optimization problem to that of
Ref. [45]. We recall that the matrix V is symmetric. This
means that the eigenvectors of V are orthogonal, allowing
us to choose the β j so that the vectors R�(β1, β2, β3)x1 and
R�(β1, β2, β3)x3 are aligned to the eigenvectors correspond-
ing to the two largest eigenvalues of V. Following the same
arguments of Ref. [45], we now have that the optimal value of
Scanon is

Scanon =
√

2(
√

v1 + √
v2), (15)

where v1 and v2 are once again the two leading eigenvalues
of the matrix V. Comparison of Eqs. (5) and (15) reveals that
Scanon � Smax in general as expected.

Equation (15) shows that the CHSH parameter with fixed
Bell test angles depends on the same two parameters as the
optimal CHSH parameter where the Bell test angles were
allowed to vary. Since these parameters are positive, both Smax

and Scanon are both monotonically dependent on the nonlo-
cality of the underlying system. This relationship provides a
useful technique in characterizing the impairments affecting a
CHSH parameter measurement.

To see this, note that, like Ref. [45], we have not specified
the optimization angles α j and β j that yield Scanon. As with
Smax, finding the angles for a general state is an analytically
hard problem. However, as mentioned above, this arrange-
ment presupposes that the target state of a CHSH violation
experiment is one of the four Bell states. These states have
V matrices with eigenvectors that are automatically aligned to
the unit vectors x1 and x3 or are rotated by π/2 about a known
axis. Certain impairments either preserve this alignment or
misalign each channel independently, allowing the optimiza-
tion angles to be trivially obtained. Since each channel is
affected independently and the parameter Scanon depends only
on the optimization angles, which are local operations, we
have transformed the optimization problem into an alignment
problem. We may thus probe the system first with classical
signals to find the ideal values for the optimization angles
before any entangled resources are used in Fig. 1(b). These an-
gles will be those that preserve the alignment of the classical
signal in the two-qubit space of each channel after the signals
have been subjected to the same impairments that would affect
the entangled state. We will show specific examples of these
impairments in the following section. With a method for easily
computing Scanon, we now have a technique for experimentally
characterizing the impairments affecting a general quantum
system.

Thus far, we have made no assumptions about the state of
the system after all qubit-preserving impairments have been
considered, and Eqs. (5) and (15) are completely general. We
will now demonstrate an interesting property of impairments
that preserve the purity of the state. That is, we will assume
that the target state is expected to be pure and the impairments
affecting the system preserve Tr(ρ̂2) = 1.

Let a general pure state be defined using the state vector

|ψ〉 = C00|0〉 ⊗ |0〉 + C01|0〉 ⊗ |1〉 + C10|1〉 ⊗ |0〉
+ C11|1〉 ⊗ |1〉, (16)

where the Cjk are complex coefficients such that

|C00|2 + |C01|2 + |C10|2 + |C11|2 = 1. (17)

The density operator corresponding to the pure state would be
given as ρ̂pure = |ψ〉〈ψ |. Expressing this density operator in
the form of Eq. (4) gives a T matrix [45]

Tpure =

⎛
⎜⎝

2Re(C∗
00C11 + C∗

01C10) 2Im(C∗
00C11 − C∗

01C10) 2Re(C∗
00C10 − C∗

11C01)

2Im(C∗
00C11 + C∗

01C10) −2Re(C∗
00C11 − C∗

01C10) 2Im(C∗
00C10 + C∗

11C01)

2Re(C∗
00C01 − C∗

11C10) 2Im(C∗
00C01 + C∗

11C10) |C00|2 + |C11|2 − |C01|2 − |C10|2

⎞
⎟⎠. (18)
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If we were to now compute the matrix Vpure = T�
pureTpure we

would find that its eigenvalues take on the remarkably simple
form

v1 = 1

v2 = v3 = 4|C00C11 − C01C10|2. (19)

If we were to use Eq. (19) in either Eq. (5) or Eq. (15),
we would find that the optimal CHSH parameter now
only depends on a single free parameter. We refer to
this parameter as the mismatch parameter γ and define it
as

γ ≡ √
v2 = 2|C00C11 − C01C10|. (20)

This parameter is identical to the nonlocality measure and
entanglement measures for pure states as demonstrated in
Ref. [33]. With this mismatch parameter, the maximum possi-
ble measurable CHSH parameter Smax for a pure state is given
as

Smax = 2
√

1 + γ 2, (21)

while the maximum possible measurable CHSH parameter
with keeping the Bell test angles fixed to those of Eq. (6) Scanon

for a pure state is simply

Scanon =
√

2(1 + γ ). (22)

This means that all possible qubit-preserving impairments that
reduce the CHSH parameter while preserving the purity of the
state can be characterized by a single parameter γ . We see that
this mismatch parameter can be easily obtained from Eq. (22).
This demonstrates an additional advantage of Fig. 1(b) for
pure states.

There exists a theoretical advantage for pure states as well.
That is, we may simply obtain the mismatch parameter di-
rectly from the matrix Tpure as

det(Tpure) = −4|C00C11 − C01C10|2 = −γ 2, (23)

where “det” denotes the determinant. Thus, we have that γ =√−det(Tpure).
Recall that certain impairments will preserve the align-

ment of the eigenvectors with the unit vectors x1 and x3.
We now provide two examples where we may let α j =
β j = 0 for all j ∈ {1, 2, 3}. Such systems will have diagonal
V matrices. We may then let their T matrices be diago-
nal so that the T matrices for the two examples are given
as

To =
⎛
⎝1 0 0

0 −γ 0
0 0 γ

⎞
⎠ and Tu =

⎛
⎝γ 0 0

0 −γ 0
0 0 1

⎞
⎠.

(24)

Inspection of Eq. (24) reveals that we may let α j = β j = 0 for
all j ∈ {1, 2, 3} as described. The pure states corresponding to
these two T matrices are

|ψo〉 = 1

2
[
√

1 + γ (|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

+
√

1 − γ (|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉)],

|ψu〉 =
√

1 +
√

1 − γ 2

2
|0〉 ⊗ |0〉

+
√

1 −
√

1 − γ 2

2
|1〉 ⊗ |1〉. (25)

Using the fact that the four Bell states are given as

|
±〉 = 1√
2

(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉),

|�±〉 = 1√
2

(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉), (26)

we see that the mismatch parameter can affect the system
in two distinct ways. That is, we obtain the superposition of
two opposing Bell states, |ψo〉, or we have a single Bell state
that is unbalanced, |ψu〉. These two situations are equivalent
up to a local operation given by the optimization angles of
Fig. 1(b). Furthermore, the optimization angles of Fig. 1(b)
may transform any pure state to those of Eq. (25) up to a phase
difference, which does not contribute a reduction to Smax or
Scanon.

In this section, we introduced a generalized characteri-
zation of impairments affecting a CHSH measurement. We
demonstrated that, by fixing the Bell test angles to those of
Eq. (6), the resulting optimal CHSH parameter Scanon de-
pends on the same free parameters as the truly optimal CHSH
parameter Smax. Furthermore for pure states, the number of
possible free parameters that reduce the CHSH parameter
drops from two to one. This free parameter was denoted as
the mismatch parameter and is easily computed. The relation-
ship between Scanon and Smax allows for easy computation of
the optimal CHSH parameter regardless of the impairments
affecting the underlying physical system.

III. EXAMPLE IMPAIRMENTS
IN POLARIZATION-ENCODED QUBITS

In this section, we consider characterizing the impairments
that can affect a CHSH experiment involving polarization-
encoded qubits using the techniques of the previous section.
Specifically, we are considering the physical situation outlined
in Fig. 2. This experimental setup is designed to produce Bell
states entangled in a photon’s polarization degree of freedom.

If we let |0〉 correspond to the optical vacuum state, then
the qubit states of Eq. (1) can be represented as

|0〉 = ĉ†
H|0〉, |1〉 = ĉ†

V|0〉, (27)

where ĉ†
H creates a horizontally polarized photon and ĉ†

V cre-
ates a vertically polarized photon. To incorporate both spatial
paths, we define

â†
H,V ≡ ĉ†

H,V ⊗ 1̂, b̂†
H,V ≡ 1̂ ⊗ ĉ†

H,V, (28)

where the operators â†
H,V act on path A and the operators b̂†

H,V
act on path B.

Ideally, the pumped PPKTP source in Fig. 2 produces a
single pair of orthogonally polarized photons. This pair passes
through a polarizing beam splitter and is recombined at a
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FIG. 2. A technique for generating the |�−〉 Bell state of Eq. (26)
using the joint polarization state of a photon pair. A periodically
poled potassium-titanyl-phosphate (PPKTP) crystal is pumped to
produce orthogonally polarized photon pairs through the process of
type-II spontaneous parametric down conversion (SPDC). The pairs
are split at a polarizing beam splitter (PBS) and recombined at a
50:50 beam splitter to produce the state of Eq. (29) in the main text.
Each of these components may be nonideal, contributing sources of
impairments to the resulting CHSH parameter. Additionally, we have
narrow bandpass filters (NBPF) and a variable delay line (VDL) that
may contribute additional impairments if not properly aligned.

50:50 beam splitter to produce the state

|ψ〉 = 1
2 (â†

Hb̂†
V − â†

Vb̂†
H + iâ†

Hâ†
V + ib̂†

Hb̂†
V)|0〉. (29)

Note that Eq. (29) contains terms that are outside of the
two-qubit encoding of Eq. (4). These terms do not contribute
any coincidence counts to the CHSH measurement and can
be safely ignored when considering only qubit-preserving im-
pairments. Normalizing this postselected state gives the |�−〉
state of Eq. (26) in the polarization-encoded basis of Eq. (27).
Therefore, in the ideal case Scanon = Smax = 2

√
2, which is the

maximum value permitted by quantum mechanics [30].
In reality, the experimental components would not be ideal

and the measured CHSH parameter value would likely be
reduced. In the following sections, we will consider various
impairments that could affect the CHSH experiment when
using polarization-encoded qubits. Each of the impairments
that we consider can be classified as qubit preserving, which
we will see represents a significant number of the possible
nonidealities in polarization-based quantum optical systems.

A. Polarization misalignments

The first class of impairments that we consider are those
that affect the polarization state of the photons directly. There
are several nonideal experimental components that can intro-
duce this impairment. Additionally, these impairments can
take on two distinct forms, those that can be compensated
for using the optimization angles of Fig. 1(b) and those that
cannot.

The first type of polarization misalignment we consider is
the kind that can be compensated for using the optimization
angles. Specifically, we will consider the case where the po-
larization vector of the photons in each path are rotated so they
are no longer optimal. The total polarization misalignment in
path A can be represented by a rotation of angle δA about some
arbitrary axis of the Bloch sphere, and the total polarization
misalignment in path B is a potentially different rotation by
angle δB. For simplicity, we will let the axis of both of these
polarization rotations be about the x2 axis of the Bloch sphere.
Similar results exist for rotations about other axes.

The rotation by angles δA and δB as described above trans-
forms the relevant terms of Eq. (29) as

|ψout〉 = 1√
2

[sin(δA − δB)(â†
Hb̂†

H + â†
Vb̂†

V)

+ cos(δA − δB)(â†
Hb̂†

V − â†
Vb̂†

H)]|0〉. (30)

At first glance, the state of Eq. (30) appears to be of the form
of the opposing Bell state case of Eq. (25). However, we note
that there is a crucial minus sign in the final term of Eq. (30).
Thus, using Eq. (30) in Eq. (20) gives the mismatch parameter
as γ = 1, which gives Scanon = Smax = 2

√
2.

This means that this type of mismatch is easily correctable.
To see this, let the general mismatch in a single path be
described by the unitary operator Δ̂(δ). This rotation is now
applied about an arbitrary axis as originally described above.
We also recall the transformation due to the optimization an-
gles Û(α1, α2, α3) ⊗ Û(β1, β2, β3). The general output state
after considering both the impairments and the optimization
angles is given as

|ψout〉 = Û(α1, α2, α3) ⊗ Û(β1, β2, β3)Δ̂(δA) ⊗ Δ̂(δB)|�−〉
= Û(α1, α2, α3)Δ̂(δA) ⊗ Û(β1, β2, β3)Δ̂(δB)|�−〉.

(31)

This means that we may choose the α j such that
Û(α1, α2, α3) = Δ̂†(δA) and we similarly choose the β j such
that Û(β1, β2, β3) = Δ̂†(δB). This restores the original |�−〉
Bell state yielding Scanon = Smax = 2

√
2.

This is a well-known feature of polarization alignment in
polarization-encoded quantum optical systems. Furthermore,
if the operators Δ̂(δA) and Δ̂(δB) are channel specific and in-
dependent of whether a quantum or classical signal is inserted,
we may use a classical signal to probe these rotations and
find the optimization angles. This is one of the advantages of
Fig. 1(b) that was discussed in Sec. II. We expect that similar
techniques exist for other qubit encodings.

Not all polarization misalignments can be compensated for
using the optimization angles in Eq. (31). We now consider
polarization misalignment in the generation of the state of
Eq. (29). There are several experimental components that can
introduce such nonidealities. For simplicity, we will consider
a nonideal 50:50 beam splitter. Similar results exist when
considering a nonideal PBS.

The application of the unitary evolution operator for a
general spatial beam splitter ÛBS to a state transforms the
creation operators of Eq. (28) as

â†
H,V → ÛBSâ†

H,VÛ†
BS = TH,Vâ†

H,V + iRH,Vb̂†
H,V,

b̂†
H,V → ÛBSb̂†

H,VÛ†
BS = TH,Vâ†

H,V + iRH,Vâ†
H,V, (32)

where

T 2
H,V + R2

H,V = 1. (33)

Given this transformation, the generated state is not given by
Eq. (29), but is instead given as

|ψout〉 = 1√
T 2

HT 2
V + R2

HR2
V

(THTVâ†
Hb̂†

V − RHRVâ†
Vb̂†

H)|0〉,

(34)
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where we have neglected the terms that do not contribute
coincidence counts and normalized the postselected state.

Inspection of Eq. (34) reveals that this output state is indeed
of the form of the unbalanced Bell state example of Eq. (25).
Using Eq. (34) in Eq. (20) gives the mismatch parameter as

γ = 2THTVRHRV

T 2
HT 2

V + R2
HR2

V

. (35)

This parameter can then be used in Eqs. (21) and (22) to give
Smax and Scanon, respectively. The ideal value of γ = 1, where
Scanon = Smax = 2

√
2, occurs when TH = TV = RH = RV =

1/
√

2, corresponding to an ideal spatial 50:50 beam splitter
as expected.

Note that the optimization angles do not need to be adjusted
from the settings that give the ideal value for |�−〉 in this par-
ticular example. This confirms the argument for the versatility
of Scanon introduced in the previous section. Furthermore, even
when the optimization angles need to be adjusted, they often
have a trivial relationship with a given nonideality such as in
the polarization mismatch of Eq. (31).

B. Spectrotemporal impairments

The creation operators ĉ†
H and ĉ†

V of Eq. (27) approximately
correspond to the creation of single-mode photons. Such pho-
tons can be said to have been created at a known time t or with
a known angular frequency ω. However, in reality photons are
distributed in creation time and likewise have a distribution of
possible angular frequencies as required by the principles of
quantum mechanics. Thus, the creation operators of Eq. (27)
may be further specified as [47]

ĉ†
H,V =

∫
dt fH,V(t )ĈH,V(t ) =

∫
dω f̃H,V(ω)C̃H,V(ω), (36)

where

[Ĉ j (t ), Ĉ†
k (t ′)] = δ j,kδ(t − t ′),

[C̃ j (ω), C̃†
k (ω′)] = δ j,kδ(ω − ω′), (37)

with δ(x) being the Dirac delta function, δ j,k being the Kro-
necker delta function, j, k ∈ {H,V}; and

C̃†
H,V(ω) = 1√

2π

∫
dteiωt Ĉ†

H,V(t ), (38)

so that

f̃H,V(ω) = 1√
2π

∫
dte−iωt fH,V(t ). (39)

The operators of Eq. (38) are known as the multimode creation
operators.

Depending on the source of polarization-encoded photons,
it may no longer be possible to simply express the operators
â†

H,V and b̂†
H,V using Eq. (28). Instead, we would need to use

the multimode creation operators

Â†
H,V(t ) ≡ Ĉ†

H,V(t ) ⊗ 1̂, Ã†
H,V(ω) ≡ C̃†

H,V(ω) ⊗ 1̂,

B̂†
H,V(t ) ≡ 1̂ ⊗ Ĉ†

H,V(t ), B̃†
H,V(ω) ≡ 1̂ ⊗ C̃†

H,V(ω) (40)

to define [47]

â†
j b̂

†
k =

∫
dtAdtBFjk (tA, tB)Â†

j (tA)B̂†
k (tB)

=
∫

dωAdωBF̃jk (ωA, ωB)Ã†
j (ωA)B̃†

k (ωB), (41)

where j, k ∈ {H,V}. The reason for this is due to the potential
spectrotemporal entanglement present in the source photons.
Such entanglement requires that the distributions FH,V and
F̃H,V are nonseparable, meaning we cannot express the cre-
ation operators using Eq. (28). This gives the most general
output pure state in the expanded spectrotemporal two-qubit
basis as

|ψout〉 =
∫

dtAdtB[FHH(tA, tB)Â†
H(tA)B̂†

H(tB)

+ FHV(tA, tB)Â†
H(tA)B̂†

V(tB)

+ FVH(tA, tB)Â†
V(tA)B̂†

H(tB)

+ FVV(tA, tB)Â†
H(tA)B̂†

H(tB)]|0〉. (42)

This state includes all possible impairments—
spectrotemporal or otherwise—in the Fjk distributions
that preserve the purity of the state. A similar formalism may
be used to incorporate mixed states.

In quantum optics, each creation time and spectral fre-
quency correspond to an independent mode. This is enforced
by the commutation relationship of Eq. (37). This may seem
to imply that spectrotemporal impairments are not qubit pre-
serving because it requires expanding the qubit space to a
continuum of modes as in Eq. (42). However, we let the
computational basis still be described by Eq. (27) using the
operators of Eq. (36). In this case, the distributions fH,V(t )
become detection window amplitudes and the distributions
f̃H,V(ω) become spectral bandwidth amplitudes. We may con-
tinue to use the techniques of Sec. II; however, we need
to demonstrate how the optimal CHSH parameters Smax and
Scanon must be computed in this situation.

To begin, we note that one cannot directly measure projec-
tors of the basis states in the computational basis of Eq. (27)
when the operators are spectrotemporally defined by Eq. (36).
Quantum optically we measure product intensities R of the
form

Rjk =
∫

dtAdtB
〈
Â†

j (tA)Â j (tA)B̂†
k (tB)B̂k (tB)

〉
=

∫
dωAdωB

〈
Ã†

j (ωA)Ã j (ωA)B̃†
k (ωB)B̃k (ωB)

〉
, (43)

where j, k ∈ {H,V}. The Rjk of Eq. (43) are proportional to
coincidence rates, which can be used to define the measurable
CHSH parameter. This fact inspires the definition of the fol-
lowing set of operators:

Σ̂1(t ) ≡ Ĉ†
H(t )ĈV(t ) + Ĉ†

V(t )ĈH(t ),

Σ̂2(t ) ≡ iĈ†
H(t )ĈV(t ) − iĈ†

V(t )ĈH(t ),

Σ̂3(t ) ≡ Ĉ†
H(t )ĈH(t ) − Ĉ†

V(t )ĈV(t ), (44)

with similar definitions for a set Σ̃ j (ω) j ∈ {1, 2, 3} using the
operators C̃†

k (ω) k ∈ {H,V}. The operators of Eq. (44) are
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averaged over all times to give measurements of the Pauli
operators in polarization-encoded quantum-optical systems.
Such measurements are used to define the corresponding
CHSH parameter using expressions such as Eq. (7) or the
techniques of Ref. [45].

We now find the optimal CHSH parameters Smax and
Scanon. Since the only usable information comes from the
time-averaged measurements of the observables of Eq. (44) in
polarization-encoded quantum-optical systems, we may now
define an effective T matrix with elements

Tjk ≡
∫

dtAdtB
〈
Σ̂ j (tA) ⊗ Σ̂k (tB)

〉
=

∫
dωAdωB

〈
Σ̃ j (ωA) ⊗ Σ̃k (ωB)

〉
, (45)

where j, k ∈ {1, 2, 3}, and we may once again use the argu-
ments of Sec. II. That is, Smax is given by Eq. (5) and Scanon

is given by Eq. (15). This is only true if the state is given
by Eq. (42), its equivalent mixed state definition, or includes
negligible terms that do not contribute coincidence counts.
Otherwise, we would have an impairment that is not qubit
preserving.

Defining the effective matrix of Eq. (45) with similarly de-
fined Bloch vectors a and b yields effective density operators
through Eq. (4). However, this effective density operator can
correspond to a mixed state even when the actual state is pure.
That is, if the state is given by the pure state of Eq. (42), the
effective two-qubit density operator of Eq. (4) may be a mixed
state depending on the distributions Fjk j, k ∈ {H,V}. This
state is mixed by the averaged measurement of the observables
of Eq. (44). This means that we cannot define a mismatch
parameter using Eq. (20) in this situation. Despite this fact, if
we consider only the spectral impairments in the experiment
of Fig. 2, and neglect all other types of impairments, the
output state simplifies to

|ψ〉 = 1√
2

∫
dtAdtB[F0(tA, tB)Â†

H(tA)B̂†
V(tB)

− F0(tB, tA)Â†
V(tA)B̂†

H(tB)]|0〉

= 1√
2

∫
dωAdωB[F̃0(ωA, ωB)Ã†

H(ωA)B̃†
V(ωB)

− F̃0(ωB, ωA)Ã†
V(ωA)B̂†

H(ωB)]|0〉, (46)

where the distribution F0 is normalized over all times or
F̃0 is equivalently normalized over all angular frequencies,
and they contain all spectrotemporal impairments. Ideally,
F0(tA, tB) = F0(tB, tA) and F̃0(ωA, ωB) = F̃0(ωB, ωA); how-
ever, spectrotemporal impairments such as misaligned filters
and chromatic dispersion can cause this to not be the case. Us-
ing the state of Eq. (46) in Eq. (45) gives an effective T matrix
with a corresponding matrix V = T�T that has eigenvalues
v1 = 1 and v2 = v3 = γ , where

γ =
∫

dtAdtBF ∗
0 (tB, tA)F0(tA, tB)

=
∫

dωAdωBF̃ ∗
0 (ωB, ωA)F̃0(ωA, ωB), (47)

which is a single effective mismatch parameter. Thus, the
effective density operator is pure in this case and the optimal
CHSH parameters Smax and Scanon are given by Eqs. (21)
and (22), respectively. This is an analogous result to that of
Ref. [48].

In this section, we demonstrated how spectrotemporal
impairments may be incorporated into the optimal CHSH
parameters of Sec. II. This involves defining an effective T
matrix using Eqs. (44) and (45). When incorporating both
spectrotemporal impairments and the polarization impair-
ments of the previous section, this effective T matrix can
correspond to a mixed state even if the actual state is otherwise
pure. However, if we only consider spectrotemporal impair-
ments in the experiment of Fig. 2, we find that the effective
state is also pure and we may define an effective mismatch
parameter using Eq. (47).

C. White noise

For the final example, we consider a nonideal system sub-
ject to noise. Specifically, we will consider a model for white
noise given as

ρ̂out = η|ψout〉〈ψout| + 1 − η

4
1̂ ⊗ 1̂, (48)

where |ψout〉 is a state subject to impairments. For simplicity,
we will ignore spectral impairments in this situation. Further-
more, white noise is an important type of noise to consider in
polarization-encoded systems since the noise part of the state
represents completely unpolarized light.

If the state |ψout〉 = |�−〉, we have a Werner state [49]. We
will thus assume that the ideal state is the pure state |�−〉.
Additionally, the density operator ρ̂ = 1̂ ⊗ 1̂/4 is the maxi-
mally mixed state. Therefore, if we define a unitary evolution
operator Ûimp that describes all impairments that preserve the
purity of the state, then we have

1
4 Ûimp1̂ ⊗ 1̂Û†

imp = 1
4 1̂ ⊗ 1̂, (49)

meaning we can consider the noise and all other impairments
separately. However, Eq. (48) is not the only noise model that
exists [33,34], and it is possible to have noise that couples to
impairments. In these situations, Eqs. (5) and (15) still hold,
and we consider the model of Eq. (48) for simplicity.

Another advantage of Eq. (49) is that the optimization
angles for Scanon do not affect the noise part of the density
operator. This means that we can let |ψout〉 be given by one of
the two states of Eq. (25) without loss of generality. Using the
|ψo〉 of Eq. (25) as |ψout〉 in Eq. (48) and inserting the result
into Eq. (4) gives a T matrix as

T =
⎛
⎝η 0 0

0 −ηγ 0
0 0 ηγ

⎞
⎠. (50)

Trivially, computing V = T�T gives v1 = η2 and v2 = v3 =
η2γ 2. Thus, the optimal CHSH parameter of Fig. 1(a) is

Smax = 2η
√

1 + γ 2, (51)

and the optimal CHSH parameter of Fig. 1(b) is

Scanon =
√

2η(1 + γ ). (52)
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From Smax and Scanon we see that noise part and the
mismatch part in the reduction of the optimal CHSH pa-
rameters of Figs. 1(a) and 1(b) are factorable as expected.
As mentioned, this is only true for non-spectrally-dependent
qubit-preserving impairments and a noise model of the form
of Eq. (48). Nonetheless, this is still a useful result that allows
for the characterization of white noise and other impairments
of a system.

IV. CONCLUSION

In this paper, we demonstrated a method for experimentally
characterizing the reductions to the maximum possible mea-
surable CHSH parameter. This technique was independent
of the underlying physical qubit encoding and only assumes
that all impairments in the system are qubit preserving. Fur-
thermore, we developed a simple technique for finding these
reductions to the optimal CHSH parameter. This was by the
use of the experiment in Fig. 1(b). This setup converts the
complicated optimization procedure of Fig. 1(a) to a sim-
ple alignment problem using classical signals that yield the
optimization angles in Fig. 1(b). Implementing the transfor-
mation due to these angles yields the CHSH parameter Scanon

of Eq. (15). This parameter can then be related to the truly
optimal CHSH parameter Smax using Eq. (5). For impairments
that preserve the purity of the state, these expressions simplify

further to Eqs. (22) and (21), respectively. Additionally, the
experiment of Fig. 1(b) is able to discern the quality of en-
tanglement using less measurements than full quantum state
tomography.

We also demonstrated example impairments for the case
of qubits encoded in the polarization degree of freedom in
a quantum optical system. These examples demonstrated the
usefulness of this characterization technique. Furthermore, we
also developed a method in which spectral impairments may
be incorporated into this formalism. This was by defining the
effective T matrix of Eq. (45).

The techniques of this work are important in characterizing
the quality of an entanglement resource in a quantum optical
system. Entanglement is a vital resource in quantum informa-
tion for the reasons specified in Sec. I. With the techniques
introduced here, we hope to aid in system design. Characteriz-
ing impairments in this way allows for simplifying the process
of finding the sources of detrimental impairments in a quan-
tum system, and mitigating the effects of these impairments.
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