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We propose a scheme to implement the quantum walk for SU(1,1) in the phase space, which generalizes those
associated with the Heisenberg-Weyl group. The movement of the walker described by the SU(1,1) coherent
states can be visualized on the hyperboloid or the Poincaré disk. In both one-mode and two-mode realizations,
we introduce the corresponding coin-flip and conditional-shift operators for the SU(1,1) group, whose relations
with those for the Heisenberg-Weyl group are analyzed. The probability distribution, the standard deviation, and
the von Neumann entropy are employed to describe the walking process. The nonorthogonality of the SU(1,1)
coherent states precludes the quantum walk for SU(1,1) from the idealized one. However, the overlap between
different SU(1,1) coherent states can be reduced by increasing the Bargmann index k, which indicates that the
two-mode realization provides more possibilities to simulate the idealized quantum walk.
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I. INTRODUCTION

The classical random walk has been employed as a frame-
work to understand and utilize the stochastic processes in a
wide spectrum of scientific disciplines [1]. The superposition
and entanglement inherent in the quantum theory introduce
some novel perspectives. The combination of quantum theory
with the classical random walk provides a new framework,
i.e., quantum walks [2–4]. A key difference between quantum
and classical random walks is the enhanced rate of spreading:
the quantum walk reveals a quadratic increase in the vari-
ance due to the quantum interference effects [3,4]. It is also
noteworthy that the quantum entanglement is inherent in the
quantum walk [4–6], which distinguishes it from its classical
counterpart.

Quantum walks can be regarded as one of the most fruitful
outcomes of quantum information theory [7], as they under-
lie the development for other models of computation and
help in designing quantum algorithms with speed-ups over
the classical ones [8–10]. Quantum walks also pave the way
towards the development of universal quantum computation
[11–13]. In addition to the potential applications in quan-
tum information and quantum computation, quantum walks
also serve as a powerful tool to simulate various physical
phenomena, such as the Landau-Zener transition [14], Ander-
son localization [15–17], dynamic quantum phase transitions
[18], quantum-to-classical transition [19–24], the nontrivial
topological phase [25–29], non-Hermitian system [30–33],
strongly correlated quantum matter [34], etc. Motivated by
the rich applications of the quantum walk, various experi-
mental platforms have been proposed or developed, including
the trapped ion [19,35,36], NMR [37], photonics [15,31–
33], neutral atoms [23], Bose-Einstein condensate [24,29],
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cavity quantum electrodynamics [21,38], superconducting
qubits [39,40], etc.

Depending on the timing used to perform evolution op-
erators, quantum walks are generally classified into two
categories [4]: discrete and continuous quantum walks. For
the discrete quantum walk, the evolution operator of the sys-
tem is performed only in discrete time steps [2], while for
the continuous quantum walk, the corresponding evolution
operator can be performed with no timing restrictions at all
[10]. In this paper, we mainly focus on the former case. The
implementation of discrete quantum walks generally requires
two basic operations [3,4]: the coin-flip operation, which
determines the state of the coin, and the conditional-shift
operation, which determines the movement of the walker.

The phase space provides a platform to perform the quan-
tum walk [19,35,41]. Previous studies mainly focus on the
phase plane associating with the Heisenberg-Weyl group.
Based on the harmonic oscillator, the quantum walks over a
circle [21,28,38] or a line [35,36] on the phase plane have
attracted persistent attention. The coherent state is feasible
in the experiments [42], which can be chosen to describe the
walker. The number of steps of the quantum walk is limited by
the nonorthogonality of the coherent states [21,35,36]. There
exist various phase spaces, which are intimately connected
with the dynamical group of each physical problem [42]. Re-
cently, the quantum walk in the phase space has been extended
to the Bloch sphere, which is closely related to the SU(2)
group [43]. A spin cluster described by the spin coherent state
serves as the walker. An additional spin plays the role of a
coin, who interacts with the spin cluster and determines its
rotation on the Bloch sphere.

In this paper, we generalize the quantum walk to the
SU(1,1) group. The SU(1,1) group has been employed in var-
ious branches, such as quantum optics [44,45], Bose-Einstein
condensates [46–49], and quantum metrology [50,51], etc.
With regard to the quantum walk for SU(1,1), the hyper-
boloid or the Poincaré disk provides a platform to visualize
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the walking process. The corresponding condition-shift op-
erator is closely related to that of the quantum walk for the
Heisenberg-Weyl group, which indicates that one can extend
the well-studied experimental setups for the Heisenberg-Weyl
group to that for SU(1,1). The SU(1,1) coherent state can be
used to describe the walker’s location, whose superpositions
can be generated during the walking process and have poten-
tial applications in quantum sensing [52,53].

The paper is structured as follows. In Sec. II, we introduce
the Heisenberg-Weyl group, and demonstrate the correspond-
ing quantum walk over a circle on the phase plane. The
conditional-shift operator and the coin-flip operator are intro-
duced, which will be employed to construct corresponding
operators for SU(1,1). In Sec. III, we first revisit the basic
properties of the SU(1,1) group. The phase space for SU(1,1)
corresponds to a hyperboloid or a Poincaré disk. Then, the
quantum walk on the hyperboloid or the Poincaré disk is
proposed for both one-mode and two-mode realizations of
the SU(1,1) group. The walker is described by the SU(1,1)
coherent states. The probability distribution and the standard
deviation are calculated, from which we confirm the quadrat-
ically growing variance. The influence of nonorthogonality is
also discussed. In Sec. IV, we introduce the von Neumann
entropy to describe the quantum entanglement between the
coin and the walker. Finally, a brief summary is given in
Sec. V.

II. QUANTUM WALK RELATED TO THE
HEISENBERG-WEYL GROUP

The quantum walk in phase spaces has been widely stud-
ied. We begin by briefly reviewing the quantum walk over a
circle on the phase plane [19,28], which is closely related to
the Heisenberg-Weyl group. The phase plane consists of all
possible values of position and momentum variables, and the
walker’s location on the phase plane can be described by the
coherent state. The coin-flip and the conditional-shift opera-
tors for the Heisenberg-Weyl group are introduced, which will
be generalized to those in the SU(1,1) group in Sec. III.

A. Heisenberg-Weyl group

One usually introduces the bosonic annihilation operator â
and the creation operator â† to describe the harmonic oscilla-
tor, which satisfies

[â, â†] = Îa, [â, Îa] = [â†, Îa] = 0, (1)

with Îa being the identity operator. The above commutation
relations are described by the Heisenberg-Weyl group, and the
corresponding operators can be regarded as the generators of
the Heisenberg-Weyl algebra [54].

The coherent state related to the Heisenberg-Weyl (HW)
group is defined as

|α〉 = exp(αâ† − α∗â)|0〉, (2)

with α = |α|eiθ . For clarity, we just call |α〉 the HW coherent
state. The position and momentum operators can be defined
as

x̂ = â† + â√
2

, p̂ = i
â† − â√

2
. (3)

FIG. 1. Schematic diagram of the quantum walk on a circle
related to the Heisenberg-Weyl group. The walker located on the
phase plane with (x, p) is described by the HW coherent states |α〉
with α = |α|eiθ . For clarification, L = 4 sites are shown with θ = 0,
±π/2, and π .

The harmonic oscillator described by |α〉 is centered at

(x, p) =
√

2|α|(cos θ, sin θ ), (4)

with A = 〈α|Â|α〉 (A = x and p). As long as |α| is fixed, (x, y)
is located on a circle with radius

√
2|α| in the phase plane, as

shown in Fig. 1.

B. Quantum walk for Heisenberg-Weyl group

The quantum walk over a circle on the phase plane arises
naturally for a harmonic oscillator. The harmonic oscillator
serves as the walker whose location is determined by the
HW coherent state. As shown in Fig. 1, a set of equally
displacing points on the circle can be expressed as {|αn〉}, with
αn = |α|eiθn , θn = nδθ , n ∈ [− L

2 , L
2 ], and δθ = 2π/L. L is the

total number of sites on the phase plane.
In addition to the walker, a typical discrete quantum walk

also consists of a coin which can be an arbitrary two-level
system. For example, a spin can be regarded as the coin, with
spin-up (| ↑〉) and spin-down (| ↓〉) states corresponding to the
head and the tail of the coin, respectively. In each step of the
quantum walk, one needs to flip the coin at first. This process
can be described by the coin-flip operator Ĉ. In this paper,
we employ the widely used Hadamard gate Ĥ to perform the
coin-flip operation. Ĥ can be written as a 2 × 2 matrix in the
bases of spin-up and spin-down states as follows,

Ĥ = 1√
2

(
1 1
1 −1

)
. (5)

with which the coin-flip operator can be expressed as

Ĉ = Îa ⊗ Ĥ . (6)

Subsequently, the walker shifts its location according to
the state of the flipped coin. This process is described by the
conditional-shift operator Ŝa(δθ ), which can be written as

Ŝa(δθ ) = exp(iδθ â†â ⊗ σ̂z )

= e+iδθ â†â ⊗ | ↑〉〈 ↑ | + e−iδθ â† â ⊗ | ↓〉〈 ↓ |, (7)
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with σ̂z being the Pauli matrix. The conditional-shift operator
Ŝa(δθ ) leads to a counterclockwise rotating by angle δθ when
the coin is on the spin-up state, and vice versa, as follows,

Ŝa(δθ )|αn〉 ⊗ | ↑〉 = |αn+1〉 ⊗ | ↑〉, (8a)

Ŝa(δθ )|αn〉 ⊗ | ↓〉 = |αn−1〉 ⊗ | ↓〉. (8b)

Given that the walker and the coin are initially at |α0〉 and
| ↑〉, respectively, after l steps the state of the whole system
will become

|ψ (l )〉 = (Ŝa(δθ ) · Ĉ)l |ψ (0)〉, (9)

with |ψ (0)〉 = |α0〉 ⊗ | ↑〉. For an idealized quantum walk,
the walker’s states corresponding to different sites are orthog-
onal. In other words, there is no overlap between different
states. However, the coherent states are not orthogonal due
to

〈αm|αn〉 = exp[−|α|2(1 − ei(n−m)δθ )], (10)

which leads to a limitation on the number of steps for the
quantum walk [21,35,36].

III. QUANTUM WALK RELATED TO THE SU(1,1) GROUP

A. SU(1,1) group

The SU(1,1) group is noncompact. The generators associ-
ated with the SU(1,1) group satisfy the following commuta-
tion relations,

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = −2K̂0. (11)

The Casimir Ĉ operator commutes with all the generators of
the su(1,1) Lie algebra, which can be written as

Ĉ = K̂2
0 − 1

2 (K̂+K̂− + K̂−K̂+). (12)

One can choose the basis |k, m〉, which satisfies

K̂0|k, m〉 = (k + m)|k, m〉, (13a)

K̂+|k, m〉 =
√

(m + 1)(m + 2k)|k, m + 1〉, (13b)

K̂−|k, m〉 =
√

m(m + 2k − 1)|k, m − 1〉, (13c)

Ĉ|k, m〉 = k(k − 1)|k, m〉, (13d)

with m = 0, 1, 2, . . . The number k is known as the Bargmann
index, which separates different irreducible representations.

The HW coherent state defined in the preceding section can
be generalized to any Lie group. The SU(1,1) coherent state is
defined as [55]

|k, ζ 〉 = exp(ζ ∗K̂+ − ζ K̂−)|k, 0〉, (14)

with ζ = reiθ . It is easy to prove that

(K0, K1, K2) = k(cosh 2r, sinh 2r cos θ, sinh 2r sin θ ), (15)

FIG. 2. Schematic diagram of the quantum walk on a circle re-
lated to the SU(1,1) group. The walker located on the hyperboloid
with (K1, K2, K0) is described by the SU(1,1) coherent states |k, ζ 〉.
Alternately, one can choose the Poincaré disk which can be regarded
as a projection viewed from (0, 0, −1).

with Ki = 〈k, ζ |K̂i|k, ζ 〉 (i = 0, 1, and 2) and

K̂1 = K̂+ + K̂−
2

, K̂2 = K̂+ − K̂−
2i

. (16)

Therefore, K2
0 − K2

1 − K2
2 = k2 indicates that |k, ζ 〉 is cen-

tered at (K1, K2, K0) on the hyperboloid, as shown in Fig. 2.
Alternately, one can choose the Poincaré disk to geometrize
each SU(1,1) coherent state. As long as r does not change, K0

is fixed, whereas K2
1 + K2

2 = k2 sinh2 2r forms a circle on the
hyperboloid or the Poincaré disk. A set of equally displacing
sites on the circle can be expressed as {|k, ζn〉}, with ζn = reiθn .

B. Quantum walk for SU(1,1)

To perform the quantum walk over a circle on the hyper-
boloid, one can choose the same coin-flip operator as Eq. (6).
With regard to the conditional-shift operator Ŝ(δθ ), it can be
expressed as

Ŝ(δθ ) = exp(−iδθ K̂0 ⊗ σz )

= e−iδθK̂0 ⊗ | ↑〉〈 ↑| + e+iδθK̂0 ⊗ | ↓〉〈 ↓|, (17)

which leads to

Ŝ(δθ )|k, ζn〉 ⊗ | ↑〉 = |k, ζn+1〉 ⊗ | ↑〉, (18a)

Ŝ(δθ )|k, ζn〉 ⊗ | ↓〉 = |k, ζn−1〉 ⊗ | ↓〉. (18b)

It should be noted that the SU(1,1) coherent states are also
not orthogonal due to

〈k, ζm|k, ζn〉 = [cosh2 r − ei(θm−θn ) sinh2 r]−2k. (19)

However, we can decrease the overlap |〈k, ζm|k, ζn〉| by in-
creasing k and r.

1. One-mode realization

Depending on the underlying physical system, we can
choose different realizations of the SU(1,1) group. The gen-
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erators of su(1,1) Lie algebra with one-mode realization [55]
can be written as

K̂0 = 1

2

(
â†â + 1

2

)
, (20a)

K̂+ = 1
2 (â†)2, (20b)

K̂− = 1
2 â2. (20c)

The corresponding Bargmann index is k = 1
4 or 3

4 . Given the
Fock states |n〉a (â†â|n〉a = n|n〉a, with n = 0, 1, 2 . . . ), |k, m〉
can be rewritten as

|k, m〉 =
∣∣∣∣2

(
m + k − 1

4

)〉
a

. (21)

Accordingly, the SU(1,1) coherent state is nothing but the
squeezed vacuum state for k = 1

4 and the squeezed one-
photon state for k = 3

4 , due to

|k, ζ 〉 = exp

[
ζ ∗

2
(â†)2 − ζ

2
â2

]∣∣∣∣2
(

k − 1

4

)〉
a

. (22)

Both of them can be produced in the experiments by engi-
neering the interactions between a quantum system (such as a
trapped ion) and the environment [56,57]. It should be noted
that the SU(1,1) coherent state [Eq. (22)] is always centered at
the origin of the phase plane, namely, (x, p) = (0, 0). There-
fore, the circular movement of the walker cannot be visualized
on the phase plane but rather on the hyperboloid.

In the one-mode realization, the conditional-shift operator
Ŝ1(δθ ) can be written as

Ŝ1(δθ ) = exp(−iδθ K̂0 ⊗ σz )

= Ŝa

(
−δθ

2

)
·
[

Îa ⊗ exp

(
−i

δθ

4
σ̂z

)]
. (23)

Therefore, the conditional-shift operator Ŝ1(δθ ) in the one-
mode realization is equivalent to the coin operation Îa ⊗
exp(−iδθσ̂z/4) followed by the conditional-shift operator
Ŝa(− δθ

2 ) for the HW coherent state.
In a word, the quantum walk for the Heisenberg-Weyl

group can be easily extended to that for SU(1,1) in the
one-mode realization. The latter only introduces an extra
coin operation before performing the conditional shift for the
walker. Besides, the squeezed vacuum or the one-photon state
should be introduced as the initial state.

2. Two-mode realization

The generators of su(1,1) Lie algebra with a two-mode
realization [55] can be expressed as

K̂0 = 1
2 (â†â + b̂†b̂ + 1), (24a)

K̂+ = â†b̂†, (24b)

K̂− = âb̂. (24c)

Given the Fock states |n〉s (s = a and b), |k, m〉 can be rewrit-
ten as

|k, m〉 = |m + 2k − 1〉a ⊗ |m〉b, (25)

with the Bargmann index k = 1
2 , 1, 3

2 , . . . From Eqs. (14)
and (24), the corresponding SU(1,1) coherent state is

|k, ζ 〉 = exp
(
ζ ∗â†b̂† − ζ âb̂

)|2k − 1〉a ⊗ |0〉b, (26)

which represents the two-mode squeezed operator acting on
the Fock states.

In the two-mode realization, the conditional-shift operator
Ŝ2(δθ ) can be written as

Ŝ2(δθ ) = exp(−iδθ K̂0 ⊗ σz )

= Ŝa

(
−δθ

2

)
· Ŝb

(
−δθ

2

)

·
[

Îa ⊗ Îb ⊗ exp

(
−i

δθ

2
σ̂z

)]
, (27)

which corresponds to a coin operation followed by the
conditional-shift operators for modes a and b, respectively.

C. Probability distribution and standard deviation

The quantum walk is a quantum mechanical extension of
the classical random walk. Due to the quantum interference
effect, the quantum walk presents a ballistic spread quadrat-
ically faster than the classical one which yields a diffusive
spread. The quadratic enhancement can be well captured by
the probability distribution and the corresponding standard
deviation. The probability to find the walker at site n after l
steps [35,36] can be approximately given by

Pn(l ) = 1

N 〈k, ζn|ρ̂w(l )|k, ζn〉, (28)

where ρ̂w(l ) = trc[|ψ (l )〉〈ψ (l )|] is the reduced density matrix
for the walker and N is introduced to normalize the whole
probabilities. The approximation is due to the nonorthogonal-
ity of the SU(1,1) coherent states, as given in Eq. (19).

The overlap between two SU(1,1) coherent states |k, ζ =
reiθ 〉 and |k, ζ ′ = r〉 is depicted in Fig. 3. When r remains un-
changed, the overlap decreases with the increase of k as shown
in Fig. 3(a). For the one-mode realization, the Bargmann index
k only has two choices. The overlap for k = 3

4 is much smaller
than that for k = 1

4 . With respect to the two-mode realization,
k can be much larger, which further decreases the overlap.
Figure 3(b) illustrates the influence of r on the overlap.
Clearly, we prefer a larger r to eliminate the nonorthogonality.

As the overlap decreases with the increase of the Bargmann
index k, we expect that a larger k can better simulate the
idealized quantum walk. When k is large enough, the overlap
between different sites can be ignored, namely, 〈k, ζm|k, ζn〉 ≈
δm,n, which will lead to the idealized quantum walk. The
probability distribution after l = 40 steps is shown in Fig. 4.
The idealized quantum walk is also present for comparison.
Initially, the walker is located at site n = 0. For an idealized
quantum walk, the walker can only be detected at sites with
even position index n if the number of steps l is even. This
constraint is relieved due to the nonorthogonality, which is
especially obvious for the one-mode realization with k = 1

4
or 3

4 . The multipeak structures are smeared out as shown in
Fig. 4(a), and similar phenomena have also been found for the
quantum walk with coherent states on the phase plane [36] and
the Bloch sphere [43]. Beyond the one-mode realization, we
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FIG. 3. The overlap of SU(1,1) coherent states |〈k, ζ |k, ζ ′〉| with
ζ = reiθ and ζ ′ = r as a function of θ . (a) r = 2 is fixed with k = 1

4
(blue dash line), 3

4 (red dot line), 2 (green dash-dot line), and 10
(black solid line). (b) k = 10 is fixed with r = 0.5 (blue dash line), 1
(red dot line), 1.5 (green dash-dot line), and 2 (black solid line).

can further increase k in the two-mode realization. When k is
large enough, the quantum walk with SU(1,1) coherent states

FIG. 4. Probability distribution of the quantum walk with L =
200 sites after l = 40 steps for r = 2: (a) k = 3

4 , and (b) k = 10.
The red bars correspond to the quantum walk with SU(1,1) coherent
states, whereas the blue dots correspond to the idealized quantum
walk which serves as a benchmark.

FIG. 5. The standard deviation σ (l ) as a function of the number
of steps l for k = 3

4 (black circle) and k = 10 (red crossing). The blue
solid line corresponds to the idealized quantum walk which serves as
a benchmark.

can almost exactly reproduce the idealized quantum walk over
a circle, as indicated in Fig. 4(b).

Once the probability distribution is achieved, it is straight-
forward to calculate the standard deviation as follows,

σ (l ) =
√

〈θ2〉 − 〈θ〉2, (29)

with 〈θm〉 = ∑
n Pn(l )θm

n . As shown in Fig. 5, the standard
deviation grows linearly with the number of walking steps
(σ ∝ l), which is a typical character of the quantum walk,
even if the overlap is not negligible for k = 3

4 .

IV. QUANTUM ENTANGLEMENT

The quantum entanglement is a key ingredient in quan-
tum information and quantum computation. Entanglement
between the coin and the walker is one of the unique char-
acters owned by the discrete quantum walk, which cannot be
exactly reproduced by its classical counterpart [4–6].

The von Neumann entropy, also known as the entropy of
entanglement, can be employed to quantify the entanglement
between the coin and the walker [5,6]. Generally, one needs
to calculate the reduced density matrix of the coin or the
walker to obtain the von Neumann entropy. Since the coin is a
two-level system, we can employ an alternate approach [58],
defined as

SE = −p+ log2 p+ − p− log2 p−, (30)

with

p± = 1
2

(
1 ±

√
M2

x + M2
y + M2

z

)
, (31)

and Mi = 〈ψ (l )|σ̂i|ψ (l )〉 (i = x, y, and z). For the Hadamard
gate we considered, Carneiro et al. numerically studied the
long-time asymptotic behavior of entanglement, and they con-
jectured that the entanglement is 0.872 for arbitrary coin
initial states [5]. Soon after that, it was proved by Abal et al.
through an analytical approach in the Fourier representation
[6]. The evolution of the von Neumann entropy SE with initial
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FIG. 6. The evolution of the von Neumann entropy with ini-
tial states (a) |ψ (0)〉 = |k, ζ0〉 ⊗ | ↑〉 and (b) |ψ (0)〉 = |k, ζ0〉 ⊗

1√
2
(|↑〉 + i| ↓〉). k = 10 is fixed with r = 0.5 (blue dots), 1 (red cir-

cles), 2 (yellow squares), and 3 (purple triangles). The black dashed
lines correspond to the asymptotic value SE = 0.872 of the idealized
quantum walk which serves as a benchmark.

states |ψ (0)〉 = |k, ζ0〉 ⊗ | ↑〉 and |ψ (0)〉 = |k, ζ0〉 ⊗ 1√
2
(| ↑

〉 + i| ↓〉) is shown in Figs. 6(a) and 6(b), respectively. When
r is large enough, the long-time asymptotic value tends to be
0.872 in both cases which does not depend on the initial states
of the coin. When r is small, however, the initial states play
a significant role in the long-time evolution. As illustrated
by Abal et al. [6], the asymptotic entanglement depends on
the initial condition of the coin when nonlocal initial condi-
tions of the walker are considered. It should be noted that
the walker is not absolutely localized due to the nonorthog-
onality 〈k, ζ0|k, ζn〉 = 0 especially for small r, which leads to
the dependence of the asymptotic entanglement on the initial
conditions of the coin.

V. CONCLUSIONS

The quantum walk can be visualized by choosing proper
phase spaces. Persistent attention has been drawn to the quan-
tum walk over a circle on the phase plane, which associates
with the Heisenberg-Weyl group. In this paper, we propose
an alternative possibility to perform the quantum walk in
the experiments, which generalizes it to the SU(1,1) group.
The walker is described by the SU(1,1) coherent states, whose
movement during the walking process can be visualized on the
hyperboloid or the Poincaré disk.

We consider two different realizations of the SU(1,1)
group. In the one-mode realization, the conditional-shift op-
erators for the Heisenberg-Weyl and the SU(1,1) groups share
similar structures. One only needs to be careful about the
initial state of the walker, as the SU(1,1) coherent states cor-
respond to the squeezed vacuum or the one-photon states. In
the two-mode realization, the conditional-shift operations for
both modes should be performed separately.

The nonorthogonality of the SU(1,1) coherent states pre-
cludes the quantum walk for SU(1,1) from the idealized
quantum walk. Increasing the Bargmann index k can decrease
the overlap between different SU(1,1) coherent states. From
this perspective, the two-mode realization is able to provide
the larger Bargmann index k required to simulate the idealized
quantum walk.

The quantum walk is known for its ballistic spread, which
is confirmed by the quadratically growing variance with the
number of steps, namely, σ 2 ∝ l2. The entanglement between
the coin and the walker is also a characteristic feature of the
discrete quantum walk, whose long-time asymptotic behavior
depends on the coin’s initial state if the nonorthogonality of
the SU(1,1) coherent states is not negligible. The decoher-
ence can destroy the quantum interference and entanglement,
which leads to the classical random walk with σ 2 ∝ l [20,22].
The dependence of the quantum walk for SU(1,1) on the
decoherence deserves further studies, which is left to future
research.
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and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011).

022224-6

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1088/1367-2630/7/1/156
https://doi.org/10.1103/PhysRevA.73.042302
https://doi.org/10.1016/j.cosrev.2021.100419
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1126/science.1229957
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevLett.94.100602
https://doi.org/10.1103/PhysRevLett.106.180403


QUANTUM WALK FOR SU(1,1) PHYSICAL REVIEW A 107, 022224 (2023)

[16] A. Ahlbrecht, V. B. Scholz, and A. H. Werner, J. Math. Phys.
52, 102201 (2011).

[17] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio,
L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, Nat.
Photonics 7, 322 (2013).

[18] K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue,
Phys. Rev. Lett. 122, 020501 (2019).

[19] B. C. Travaglione and G. J. Milburn, Phys. Rev. A 65, 032310
(2002).

[20] T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67,
032304 (2003).

[21] B. C. Sanders, S. D. Bartlett, B. Tregenna, and P. L. Knight,
Phys. Rev. A 67, 042305 (2003).

[22] T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. Lett.
91, 130602 (2003).

[23] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D.
Meschede, and A. Widera, Science 325, 174 (2009).

[24] S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S.
Summy, Phys. Rev. Lett. 121, 070402 (2018).

[25] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Phys. Rev.
A 82, 033429 (2010).

[26] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg,
I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Nat.
Commun. 3, 882 (2012).

[27] F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo,
C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L.
Marrucci, M. Lewenstein, and P. Massignan, Nat. Commun. 8,
15516 (2017).

[28] V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao,
Phys. Rev. Lett. 118, 130501 (2017).

[29] D. Xie, T.-S. Deng, T. Xiao, W. Gou, T. Chen, W. Yi, and B.
Yan, Phys. Rev. Lett. 124, 050502 (2020).

[30] K. Mochizuki, D. Kim, and H. Obuse, Phys. Rev. A 93, 062116
(2016).

[31] L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P.
Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H.
Obuse, B. C. Sanders, and P. Xue, Nat. Phys. 13, 1117 (2017).

[32] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue,
Nat. Phys. 16, 761 (2020).

[33] K. Wang, T. Li, L. Xiao, Y. Han, W. Yi, and P. Xue, Phys. Rev.
Lett. 127, 270602 (2021).

[34] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.
Zupancic, Y. Lahini, R. Islam, and M. Greiner, Science 347,
1229 (2015).

[35] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M.
Enderlein, T. Huber, and T. Schaetz, Phys. Rev. Lett. 103,
090504 (2009).

[36] R. Matjeschk, C. Schneider, M. Enderlein, T. Huber, H.
Schmitz, J. Glueckert, and T. Schaetz, New J. Phys. 14, 035012
(2012).

[37] C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Phys.
Rev. A 72, 062317 (2005).

[38] P. Xue and B. C. Sanders, New J. Phys. 10, 053025
(2008).

[39] Z. Yan, Y.-R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang,
F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C.-Z. Peng, K. Xia, H.
Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J.-W.
Pan, Science 364, 753 (2019).

[40] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu,
Q. Zhu, Y. Zhao, S. Li, S. Guo, H. Qian, Y. Ye, F. Chen, C. Ying,
J. Yu, D. Fan, D. Wu, H. Su, H. Deng, H. Rong et al., Science
372, 948 (2021).

[41] S. Omanakuttan and A. Lakshminarayan, J. Phys. A: Math.
Theor. 51, 385306 (2018).

[42] W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62,
867 (1990).

[43] L. Duan, Phys. Rev. A 105, 042215 (2022).
[44] K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2, 458

(1985).
[45] C. C. Gerry, Opt. Express 8, 76 (2001).
[46] C. Lv, R. Zhang, and Q. Zhou, Phys. Rev. Lett. 125, 253002

(2020).
[47] C. Lyu, C. Lv, and Q. Zhou, Phys. Rev. Lett. 125, 253401

(2020).
[48] Y.-Y. Chen, P. Zhang, W. Zheng, Z. Wu, and H. Zhai, Phys. Rev.

A 102, 011301(R) (2020).
[49] Y. Cheng and Z.-Y. Shi, Phys. Rev. A 104, 023307

(2021).
[50] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,

4033 (1986).
[51] Z. Y. Ou and X. Li, APL Photonics 5, 080902 (2020).
[52] F. R. Cardoso, D. Z. Rossatto, G. P. L. M. Fernandes, G.

Higgins, and C. J. Villas-Boas, Phys. Rev. A 103, 062405
(2021).

[53] N. Akhtar, B. C. Sanders, and G. Xianlong, Phys. Rev. A 106,
043704 (2022).

[54] H. Weyl, The Theory of Groups and Quantum Mechanics (origi-
nally published in 1931), translation by H. P. Robertson, Dover,
New York, (1950).

[55] A. Perelomov, Coherent states and discrete subgroups: The
case of SU (1, 1), in Generalized Coherent States and Their
Applications (Springer, Berlin, 1986), pp. 173–181.

[56] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F.
Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P. Home,
Science 347, 53 (2015).

[57] D. Kienzler, H.-Y. Lo, V. Negnevitsky, C. Flühmann, M.
Marinelli, and J. P. Home, Phys. Rev. Lett. 119, 033602
(2017).

[58] T. A. Costi and R. H. McKenzie, Phys. Rev. A 68, 034301
(2003).

022224-7

https://doi.org/10.1063/1.3643768
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1103/PhysRevLett.122.020501
https://doi.org/10.1103/PhysRevA.65.032310
https://doi.org/10.1103/PhysRevA.67.032304
https://doi.org/10.1103/PhysRevA.67.042305
https://doi.org/10.1103/PhysRevLett.91.130602
https://doi.org/10.1126/science.1174436
https://doi.org/10.1103/PhysRevLett.121.070402
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1103/PhysRevLett.118.130501
https://doi.org/10.1103/PhysRevLett.124.050502
https://doi.org/10.1103/PhysRevA.93.062116
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1103/PhysRevLett.127.270602
https://doi.org/10.1126/science.1260364
https://doi.org/10.1103/PhysRevLett.103.090504
https://doi.org/10.1088/1367-2630/14/3/035012
https://doi.org/10.1103/PhysRevA.72.062317
https://doi.org/10.1088/1367-2630/10/5/053025
https://doi.org/10.1126/science.aaw1611
https://doi.org/10.1126/science.abg7812
https://doi.org/10.1088/1751-8121/aad50c
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/PhysRevA.105.042215
https://doi.org/10.1364/JOSAB.2.000458
https://doi.org/10.1364/OE.8.000076
https://doi.org/10.1103/PhysRevLett.125.253002
https://doi.org/10.1103/PhysRevLett.125.253401
https://doi.org/10.1103/PhysRevA.102.011301
https://doi.org/10.1103/PhysRevA.104.023307
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1063/5.0004873
https://doi.org/10.1103/PhysRevA.103.062405
https://doi.org/10.1103/PhysRevA.106.043704
https://doi.org/10.1126/science.1261033
https://doi.org/10.1103/PhysRevLett.119.033602
https://doi.org/10.1103/PhysRevA.68.034301

