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Reexamination of the Kochen-Specker theorem: Relaxation of the completeness assumption
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The Kochen-Specker theorem states that exclusive and complete deterministic outcome assignments are
impossible for certain sets of measurements, called Kochen-Specker (KS) sets. A straightforward consequence is
that KS sets do not have joint probability distributions because no set of joint outcomes over such a distribution
can be constructed. However, we show it is possible to construct a joint quasiprobability distribution over any
KS set by relaxing the completeness assumption. Interestingly, completeness is still observable at the level
of measurable marginal probability distributions. This suggests the observable completeness might not be a
fundamental feature, but a secondary property.
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I. INTRODUCTION

Violations of Bell inequalities [1–5], or noncontextual-
ity inequalities [6–9], imply a lack of a joint probability
distribution (JPD) over a set of corresponding measure-
ments [10,11]. Let us consider one of the simplest examples:
the Wright–Klyachko-Can-Binicioglu-Shumovsky (Wright-
KCBS) inequality [12,13]

5∑
i=1

〈Ai〉 � 2. (1)

It involves five events to which one assigns a binary {0, 1} ran-
dom variable (measurement) {Ai}5

i=1. The events are cyclically
exclusive, i.e., if Ai = 1, then Ai±1 = 0 (summing is mod 5).
Moreover, these events are cyclically comeasurable, meaning
Ai can be jointly measured with Ai±1, but not with Ai±2. The
Wright-KCBS scenario can be implemented on a quantum
three-level system (qutrit), in which case {Ai}5

i=1 are cyclically
orthogonal projective rank one measurements. If the qutrit is
in a maximally mixed state ρ = 1/3, then Tr{ρAi} = 1/3 for
all i and the inequality (1) is not violated. In this case there
exists a classical JPD

p(A1 = a1, . . . , A5 = a5) ≡ p(a1, . . . , a5), (2)

where ai ∈ {0, 1}. It recovers all measurable marginal prob-
abilities p(ai, ai±1). Such a JPD is not unique so here is an
example:

p(1, 0, 1, 0, 0) = 1/6,

p(1, 0, 0, 1, 0) = 1/6,

p(0, 1, 0, 1, 0) = 1/6,

*phykd@nus.edu.sg
†pawel.kurzynski@amu.edu.pl

p(0, 1, 0, 0, 1) = 1/6,

p(0, 0, 1, 0, 1) = 1/6,

p(0, 0, 0, 0, 0) = 1/6. (3)

This JPD obeys the exclusivity relations, i.e., no two jointly
measurable properties are both assigned the value of 1. How-
ever, there exists a set of measurements and a qutrit state
|ψ〉 such that 〈ψ |Ai|ψ〉 = 1/

√
5 for all i [13]. These mea-

surements violate (1) up to
√

5, excluding a positive JPD
emulation. However, a quasiprobability distribution with neg-
ative probabilities (JQD) is possible [14–16], for instance,

q(1, 0, 1, 0, 0) = 1/2
√

5,

q(1, 0, 0, 1, 0) = 1/2
√

5,

q(0, 1, 0, 1, 0) = 1/2
√

5,

q(0, 1, 0, 0, 1) = 1/2
√

5,

q(0, 0, 1, 0, 1) = 1/2
√

5,

q(0, 0, 0, 0, 0) = 1 − 5/2
√

5 ≈ −0.118 (4)

does the job. It satisfies the exclusivity relations and recovers
the measurable marginal probability distributions.

Although seemingly exotic, JQD is a well-defined mathe-
matical concept [17–19], extensively used in quantum theory
since the Wigner function discovery [20–23]. Recently, we
demonstrated that JQDs can also be used as a computational
resource to reach a nonclassical computing speedup [24].
In addition, the JQD’s negativity can be used as a mea-
sure of nonclassicality (“quantumness”) [25–27], hence the
Wright-KCBS scenario classifies the maximally mixed state
as classical and |ψ〉 as nonclassical.

Curiously, there are measurement scenarios, contextual
for any quantum state [6], called state-independent contex-
tuality (SI-C) [7]. Can one construct a JQD for any SI-C
scenario? A positive answer to this question was given in [14]
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using the sheaf-theoretic approach. Here we provide a simple
JQD construction for specific SI-C scenarios corresponding
to Kochen-Specker (KS) sets and later we show that this
construction works for arbitrary measurement scenarios, con-
textual or noncontextual. In addition, we focus on a particular
problem of the origin of such JQDs. Similarly to JPDs, JQDs
assign quasiprobabilities to all measurement events. Each
such event corresponds to an outcome assignment to all ob-
servables at once. The flagship specimen is the KS theorem
[28]. It states that, for certain measurement sets, KS sets, it is
impossible to find outcome assignments, satisfying exclusivity
and completeness. Exclusivity means that no two measure-
ment events can be observed at the same time. However, the
completeness of a mutually exclusive event sets means that
exactly one of these events will be observed. Formally it is as
follows.

(1) Exclusivity. For a jointly measurable subset of mutu-
ally exclusive events, corresponding to {A1, A2, . . . , Am}, at
most one of them will occur at the same time, i.e., only the
following outcome assignments {a1, a2, . . . , am} are allowed:
{0, 0, . . . , 0}, {1, 0, . . . , 0}, {0, 1, . . . , 0}, . . ., {0, 0, . . . , 1}.

(2) Completeness. For a complete jointly measurable
subset of mutually exclusive events, corresponding to
{A1, A2, . . . , An}, exactly one of them will occur, i.e., only the
following outcome assignments {a1, a2, . . . , an} are allowed:
{1, 0, . . . , 0}, {0, 1, . . . , 0}, . . ., {0, 0, . . . , 1}.

For the projective quantum measurements, the mutual ex-
clusivity of projector subsets SE is imposed by their mutual
orthogonality, i.e., AiAj = δi, jAi for all pairs {Ai, Aj} ∈ SE .
However, a mutually exclusive subset of projectors SC is com-
plete if

∑
Ai∈SC

Ai = 1. Finally, note that any complete subset
is exclusive and any exclusive subset can be extended to a
complete subset SE ⊆ SC .

The exclusivity is a necessary ingredient of all contextu-
ality scenarios, both state-dependent and state-independent.
However, as far as we know, the completeness assumption
is necessary for all known SI-C scenarios. In particular, all
known KS sets contain complete subsets. Here we show that
it is possible to construct a JQD for any KS set if one relaxes
the completeness assumption. Moreover, our constructions
are compatible with the quantum theory. These JQDs can
be used to model realistic measurements on KS sets, where
completeness is observed in the measurable marginal distri-
butions. This strongly suggests that completeness might be a
secondary property, rather than a fundamental phenomenon.

We also note that not all SI-C scenarios correspond to KS
sets [29]. In such cases outcome assignments are possible and
therefore we can construct a JQD without relaxation of the
completeness assumption. Nevertheless, later we are going to
show that our method allows to find an alternative JQD for
such scenarios. In fact, we show that it allows to find a JQD
for an arbitrary measurement scenario.

II. QUASIPROBABILITY DISTRIBUTIONS

Before we show how to construct a JQD for a given KS set,
let us present a simple idea of how observable completeness,
as well as exclusivity, appears in quasiprobability theories.

Consider two events A and B with attached indicator ran-
dom variables (indicators) RA and RB. These indicators have

an outcome of 1 if the corresponding event occurs and 0
otherwise. Let us assume the events can be jointly mea-
sured and the indicators return one of the following outcomes
{00, 01, 10, 11}, where the first outcome corresponds to RA

and the second one to RB. A general probability distribution
over these outcomes reads p = {p00, p01, p10, p11}. We do not
assume A and B’s exclusivity and completeness so, in general,
p11 	= 0 and p00 	= 0.

Next, consider a third event C with the corresponding
indicator RC . Let us first assume that all three events are
jointly measurable, hence a measurement returns one of the
eight outcomes {000, 001, . . . , 111}, where the last position
corresponds to RC . The corresponding probability distribu-
tion reads q = {q000, q001, . . . , q111}. If we do not make any
assumptions about exclusivity and completeness, the only
constraint on q is

q000 + q001 + · · · + q111 = 1. (5)

Now, assume q is a quasiprobability distribution, i.e., some
probabilities are negative, but still sum up to 1 as in (5). To
exclude the negative probabilities in the laboratory (we do not
know what they mean), we postulate that A, B, and C cannot
be measured together (only A and B are comeasurable). In
addition, we demand the marginal distribution over A and B
to be positive

p00 = q000 + q001 � 0,

p01 = q010 + q011 � 0,

p10 = q100 + q101 � 0,

p11 = q110 + q111 � 0. (6)

Remarkably, if q111 = −q110, A and B become exclusive. In
addition, if q000 = −q001, we guarantee observable complete-
ness. This shows that observable exclusivity and completeness
may not be a fundamental but a secondary property.

The above quasiprobability scenario with three questions,
where only two can be asked simultaneously, has been studied
since the so-called Specker’s triangle discovery [11,30]. In
particular, the Specker’s triangle scenario assumes that one
can measure jointly either A and B, or A and C, or B and C.
The corresponding quasiprobability distribution can be given
by

q(ST )
010 = q(ST )

100 = q(ST )
110 = q(ST )

001 = q(ST )
011 = q(ST )

101 = 1
4 ,

q(ST )
000 = q(ST )

111 = − 1
4 . (7)

This distribution says that whatever two questions you ask,
you always find that either one or the other occurs, each with
probability 1/2. For example, if one measures A and B, the
corresponding marginal distribution is

p00 = q000 + q001 = 0,

p01 = q010 + q011 = 1/2,

p10 = q100 + q101 = 1/2,

p11 = q110 + q111 = 0. (8)

Therefore, the Specker’s triangle exhibits both the exclusivity
and completeness.
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Let us explain in more detail what do we mean by the
completeness and the exclusivity as a secondary property of
some system. The fact that for two events, A and B, one
does not observe outcomes 00 and 11 may simply be a
fundamental property, namely, that the system has only two
states corresponding to the outcomes {01, 10}. On the other
hand, the system might have four states corresponding to
{00, 01, 10, 11}, but one simply prepares it in the anticorre-
lated state of A and B, i.e., in the state 01 with probability
p and 10 with probability 1 − p. In this case the observable
secondary completeness and exclusivity are trivial. However,
in the case of the Specker’s triangle (and in other contextual-
ity scenarios) the situation is more complicated. One cannot
assume the fundamental completeness and exclusivity, since
there is no set of outcomes for A, B, and C that would reduce
to {01, 10} for each pair. In addition, one cannot assume the
trivial secondary completeness and exclusivity, since there is
no JPD over the set {000, 001, . . . , 111} that would explain
the statistics of the Specker’s triangle. However, as presented
above, one can construct a JQD over {000, 001, . . . , 111} that
would explain the observable statistics and would give rise to
the completeness and exclusivity.

III. JQD CONSTRUCTION

Here we propose a JQD for an arbitrary KS set. The KS
set consists of N events, corresponding to {A1, A2, . . . , AN }.
The smallest known KS set that can be implemented within
quantum theory consists of N = 18 events and can be realized
on a four-level quantum system [31]. There are subsets of
the KS set, commonly known as measurement contexts, that
correspond to jointly measurable sets of exclusive events.
Some contexts are complete subsets (recall definitions above).
Each KS set consists a proof of the KS theorem, i.e., there are
no outcome assignments {a1, a2, . . . , aN }, where ai ∈ {0, 1},
such that for each complete context Cc one gets

∑
i∈Cc

ai = 1.
Quantum realization of a KS set consists of N rank one

projectors. Each measurement context consists of mutually or-
thogonal projectors and each complete context Cc consists of
projectors that obey

∑
i∈Cc

Ai = 1. In particular, for rank-one
projectors, the number of projectors in the complete set equals
to the dimension of the Hilbert space of the corresponding
quantum system.

Our JQD construction starts with an arbitrary preparation
of the system that assigns to each event from the KS set a
probability of its occurrence

pi ≡ p(Ai = 1) � 0. (9)

For a quantum system, we start with an arbitrary state ρ that
assigns to each projector a probability pi ≡ Tr{ρAi}. Next,
we give up the completeness assumption and allow for the
following N + 1 outcome assignments to all the events in the
KS set:

ωi ≡ {0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i

}, (10)

where i = 1, . . . , N , and

ω0 ≡ {0, . . . , 0︸ ︷︷ ︸
N

}. (11)

We assign to each ωi (i 	= 0) the probability

p(ωi ) ≡ pi, i 	= 0. (12)

Finally, we assign to ω0 the following quasiprobability

p(ω0) ≡ p0 ≡ 1 −
N∑

i=1

pi < 0. (13)

Note that p0 is negative since for each complete measurement
context Cc that is strictly included in the KS set the following
holds: ∑

i∈Cc

pi = 1, (14)

therefore

1 −
N∑

i=1

pi < 1 −
∑
i∈Cc

pi = 0. (15)

Let us show that the above construction recovers observ-
able marginal probability distributions for all measurement
contexts, including complete ones. Consider a context C corre-
sponding to an n-element subset {A(C)

1 , A(C)
2 , . . . , A(C)

n }, where
n < N . Each A(C)

i corresponds to a different element Aj from
the KS set. The corresponding probability assignments are

p(C)
i = p

(
A(C)

i

)
, i 	= 0, (16)

and the following holds:
n∑

i=1

p(C)
i � 1. (17)

The probability that none of the events in the context C occurs
is

p(C)
0 =

(
N∑

i=0

pi

)
−

⎛
⎝ n∑

j=1

p(C)
j

⎞
⎠ = 1 −

⎛
⎝ n∑

j=1

p(C)
j

⎞
⎠ � 0.

(18)
Finally, if C is a complete context, i.e., C = Cc, then (14) holds
and p(Cc )

0 = 0. Therefore, the completeness is recovered at the
level of marginals.

It is important to notice that in our JQD construction the
relaxation of the completeness assumptions turns a KS set
into a non-KS set. Nevertheless, the quasiprobabilities are
assigned such that the measurable marginal distributions obey
completeness assumptions. Therefore, at the level of allowed
observations, the system described by our JQD cannot be
distinguished from any system described by the correspond-
ing KS set, hence our JQD provides a description of such a
system.

IV. DISCUSSION

Although we discussed KS sets, the proposed JQD con-
struction applies to an arbitrary set of measurement events
{A1, A2, . . . , AM}. For such a set we can define outcome
assignments {ω0, ω1, . . . , ωM} in the same way as we did
in Eqs. (10) and (11). These outcome assignments may re-
quire relaxation of the completeness assumption, even if the
corresponding set of measurements is not a KS set. The
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probabilities corresponding to {ω1, . . . , ωM} stem from a par-
ticular preparation of the system (e.g., pi ≡ Tr{ρAi} in a
quantum case) and the quasiprobability corresponding to ω0

is p0 ≡ 1 − ∑M
i=1 pi. What is important, due to the arguments

presented in the previous section, such a JQD recovers all
completeness relations at the level of observable marginal
distributions. Finally, note that this JQD is nonunique, i.e.,
there might be some other JQD, perhaps over a different set
of outcome assignments, that exhibits less negativity, or even
no negativity, in which case it becomes a JPD and the corre-
sponding scenario is clearly noncontextual. However, in some
cases our construction may also lead to a JPD. In particular,
if the set of measurements and the preparation of the system
yield

∑M
i=1 pi � 1, then p0 � 0.

To get a better understanding of our idea, it is
worth using a graph representation in which measurement
events {A1, A2, . . . , AM} are depicted as vertices V (G) =
{v1, v2, . . . , vM} of some graph G [32]. There are two ap-
proaches. One can consider exclusivity graphs [33], in which
case the edges E (G) represent exclusivity relations between
the events, i.e., if Ai and Aj are exclusive, then {vi, v j} ∈
E (G). Moreover, an edge {vi, v j} implies that the respec-
tive probabilities obey pi + p j � 1. Alternatively, one can
consider hypergraphs [34], in which case hyperedges H (G)
represent complete subsets, i.e., if {Ai, Aj, . . . , Ak} forms a
complete subset, then {vi, v j, . . . , vk} ∈ H (G). Such a hy-
peredge implies that the respective probabilities obey pi +
p j + · · · + pk = 1. Here we use the hypergraph approach
to represent our idea, see Fig. 1. By introducing outcome
assignments {ω1, ω2, . . . , ωM} we drop the completeness as-
sumptions, which can be visualized as the erasure of all
hyperedges (the first step in Fig. 1). Next, we introduce the
outcome assignment ω0, which can be visualized as the ad-
dition of an auxiliary vertex (blank vertex, the second step
in Fig. 1) to the graph. This vertex can be interpreted as a
complementary event that, together with the previous events,
forms a new complete set which can be assigned a new hy-
peredge (the third step in Fig. 1). This new hyperedge implies
p0 + p1 + · · · + pM = 1 since ω0 is assigned the quasiproba-
bility 1 − ∑M

i=1 pi.
Let us also mention that our JQD construction applies to

a continuous set of measurements. Note that the precursor
of the KS theorem, the Gleason’s theorem [35] that is about

FIG. 1. Representation of our idea using the hypergraph ap-
proach. Above we present an example hypergraph with five vertices
and two hyperedges corresponding to two complete sets, each having
three elements. These two sets overlap. Relaxation of the complete-
ness assumptions is visualized as an erasure of the hyperedges. The
new blank vertex represents the outcome assignment ω0 that corre-
sponds to a situation in which none of the previous events happens.
Finally, assigning this vertex with a quasiprobability allows us to
introduce a new hyperedge. See text for more details.

a continuous sets of projective measurements, also relies on
exclusivity and completeness. Our approach allows to relax
the Gleason’s assumptions and to assign quasiprobabilities
over a continuous set.

An additional consequence of our result is that JQDs
allow for a unified nonclassicality measure of both, state-
dependent and state-independent contextuality scenarios. Of
course, since we did not prove that our construction is optimal
in a sense that the corresponding negativity is minimal, the
nonclassicality measure based on our JQDs may overestimate
the nonclassicality of KS sets. Nevertheless, we believe that
our method is a step on the way of establishing such measures.
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